1
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Li G, Row KH. Single-drop microextraction technique for the determination of antibiotics in environmental water. J Sep Sci 2021; 45:883-895. [PMID: 34919334 DOI: 10.1002/jssc.202100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, P. R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402751, Korea
| |
Collapse
|
3
|
Grau J, Benedé JL, Chisvert A. Polydopamine-coated magnetic nanoparticles for the determination of nitro musks in environmental water samples by stir bar sorptive-dispersive microextraction. Talanta 2021; 231:122375. [PMID: 33965039 DOI: 10.1016/j.talanta.2021.122375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Magnetic-based microextraction approaches have gained popularity in recent years due to the magnetic properties of the extraction phases allowing to handle them easier and more efficiently. This work describes a magnetic-based analytical method for the determination of the family of nitro musks in environmental water samples. These compounds have been of great concern due to their environmental impacts and potential health effects. The method is based on stir bar sorptive-dispersive microextraction (SBSDME) as extraction approach, prior to thermal desorption coupled to gas chromatography-mass spectrometry analysis (TD-GC-MS). For this purpose, polydopamine-coated cobalt ferrite magnetic nanoparticles (CoFe2O4@PDA) were used as extraction material. The main parameters involved in the extraction procedure (i.e., sorbent amount, extraction time and ionic strength) as well as in the thermal desorption step (i.e., temperature and desorption time) were evaluated in order to obtain the highest sensitivity. Under the selected conditions, the method showed good linearity, limits of detection and quantification in the low ng L-1 range, intra- and inter-day repeatability with RSD <15%, and high enrichment factors (178-640). Finally, the method was applied to four environmental water samples of different origin. Relative recovery values ranging from 91 to 120% highlighted that the matrices under consideration do not affect the extraction process. This work constitutes the first time in which nitro musks compounds were selectively extracted by taking advantage the high potential that magnetic-based microextraction techniques offer, specially SBSDME.
Collapse
Affiliation(s)
- José Grau
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Juan L Benedé
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
4
|
Trujillo‐Rodríguez MJ, Pino V, Miró M. High‐throughput microscale extraction using ionic liquids and derivatives: A review. J Sep Sci 2020; 43:1890-1907. [DOI: 10.1002/jssc.202000045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - Verónica Pino
- Departamento de Química (Unidad Departamental de Química Analítica)Universidad de La Laguna (ULL) Tenerife Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna (ULL) Tenerife Spain
| | - Manuel Miró
- FI‐TRACE group, Department of ChemistryUniversity of the Balearic Islands Palma Spain
| |
Collapse
|
5
|
Elpa DP, Prabhu GRD, Wu SP, Tay KS, Urban PL. Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta 2019; 208:120304. [PMID: 31816721 DOI: 10.1016/j.talanta.2019.120304] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
The developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past. In this article, the available MS automation strategies are critically evaluated. Automation of analytical workflows culminating with MS detection encompasses involvement of automated operations in any of the steps related to sample handling/treatment before MS detection, sample introduction, MS data acquisition, and MS data processing. Automated MS workflows help to overcome the intrinsic limitations of MS methodology regarding reproducibility, throughput, and the expertise required to operate MS instruments. Such workflows often comprise automated off-line and on-line steps such as sampling, extraction, derivatization, and separation. The most common instrumental tools include autosamplers, multi-axis robots, flow injection systems, and lab-on-a-chip. Prototyping customized automated MS systems is a way to introduce non-standard automated features to MS workflows. The review highlights the enabling role of automated MS procedures in various sectors of academic research and industry. Examples include applications of automated MS workflows in bioscience, environmental studies, and exploration of the outer space.
Collapse
Affiliation(s)
- Decibel P Elpa
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan.
| | - Kheng Soo Tay
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| |
Collapse
|
6
|
Lv Y, Bai H, Yang J, He Y, Ma Q. Direct Mass Spectrometry Analysis Using In-Capillary Dicationic Ionic Liquid-Based in Situ Dispersive Liquid–Liquid Microextraction and Sonic-Spray Ionization. Anal Chem 2019; 91:6661-6668. [DOI: 10.1021/acs.analchem.9b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
7
|
Simultaneous determination of synthetic musks and UV-filters in water matrices by dispersive liquid-liquid microextraction followed by gas chromatography tandem mass-spectrometry. J Chromatogr A 2019; 1590:47-57. [DOI: 10.1016/j.chroma.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 09/13/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
|
8
|
Li M, Li R, Wang Z, Zhang Q, Bai H, Lv Q. Optimization of headspace for GC-MS analysis of fragrance allergens in wooden children's products using response surface methodology. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Meiping Li
- College of Life Science; Shanxi University; Taiyuan Shanxi Province P. R. China
| | - Rong Li
- College of Life Science; Shanxi University; Taiyuan Shanxi Province P. R. China
- Chinese Academy of Inspection and Quarantine; Institute of Industrial and Consumer Product Safety; Beijing P. R. China
| | - Zhijuan Wang
- Chinese Academy of Inspection and Quarantine; Institute of Industrial and Consumer Product Safety; Beijing P. R. China
| | - Qing Zhang
- Chinese Academy of Inspection and Quarantine; Institute of Industrial and Consumer Product Safety; Beijing P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine; Institute of Industrial and Consumer Product Safety; Beijing P. R. China
| | - Qing Lv
- Chinese Academy of Inspection and Quarantine; Institute of Industrial and Consumer Product Safety; Beijing P. R. China
| |
Collapse
|
9
|
Afshar Mogaddam MR, Mohebbi A, Pazhohan A, Khodadadeian F, Farajzadeh MA. Headspace mode of liquid phase microextraction: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Li X, Chu Z, Yang J, Li M, Du M, Zhao X, Zhu ZJ, Li Y. Synthetic Musks: A Class of Commercial Fragrance Additives in Personal Care Products (PCPs) Causing Concern as Emerging Contaminants. ADVANCES IN MARINE BIOLOGY 2018; 81:213-280. [PMID: 30471657 DOI: 10.1016/bs.amb.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic musks (SMs) are promising fragrance additives used in personal care products (PCPs). The widespread presence of SMs in environmental media remains a serious risk because of their harmful effects. Recently, the environmental hazards of SMs have been widely reported in various environmental samples including those from coastal and marine regions. This paper provides a systematic review of SMs, including their classification, synthetic routes, analysis and occurrence in environmental samples, fate and toxicity in the environment, as well as the associated risk assessment and pollution control. Research gaps and future opportunities were also identified with the hope of raising interest in this topic.
Collapse
Affiliation(s)
- Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zhenhua Chu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Jiawen Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Minghao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China
| | - Zhiwen Joy Zhu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, China.
| |
Collapse
|
11
|
Tang S, Qi T, Ansah PD, Nalouzebi Fouemina JC, Shen W, Basheer C, Lee HK. Single-drop microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Nazaripour A, Yamini Y, Bagheri H. Extraction and determination of trace amounts of three anticancer pharmaceuticals in urine by three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents followed by high-performance liquid chromatography. J Sep Sci 2018; 41:3113-3120. [DOI: 10.1002/jssc.201800183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Nazaripour
- Department of Chemistry, Faculty of Sciences; Tarbiat Modares University; Tehran Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences; Tarbiat Modares University; Tehran Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, System Biology and Poisoning Institute; Baqiyatallah University of Medical Sciences; Tehran Iran
| |
Collapse
|
13
|
Xie WQ, Gong YX, Yu KX. Utilizing two detectors in the measurement of trichloroacetic acid in human urine by reaction headspace gas chromatography. Biomed Chromatogr 2018; 32:e4288. [DOI: 10.1002/bmc.4288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/01/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wei-Qi Xie
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou China
- School of Materials Science and Engineering; South China University of Technology; Guangzhou China
| | - Yi-Xian Gong
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou China
| | - Kong-Xian Yu
- Health Supervision Bureau of Liaoning Province; Shenyang China
| |
Collapse
|
14
|
Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 2017; 172:86-94. [DOI: 10.1016/j.talanta.2017.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
|
15
|
Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction. Anal Chim Acta 2017; 983:130-140. [DOI: 10.1016/j.aca.2017.06.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
|
16
|
S R, A B, M P, T L. Occurrence and toxicity of musks and UV filters in the marine environment. Food Chem Toxicol 2017; 104:57-68. [DOI: 10.1016/j.fct.2016.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022]
|
17
|
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 2017; 1500:1-23. [DOI: 10.1016/j.chroma.2017.04.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
|
18
|
Heydari R, Hosseini M, Rezaeepour R. Semi-automated salt-assisted liquid–liquid extraction coupled to high-performance liquid chromatography to determine three aromatic hydrocarbons in aqueous samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1110-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Lucena R, Cárdenas S. Ionic Liquids in Sample Preparation. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Affiliation(s)
- Liang Guo
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering
Drive 1, Singapore 117411, Singapore
| | - Nurliyana binte Nawi
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hian Kee Lee
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering
Drive 1, Singapore 117411, Singapore
| |
Collapse
|
21
|
Abdelhamid HN. Ionic liquids for mass spectrometry: Matrices, separation and microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Anal Chim Acta 2016; 906:22-40. [DOI: 10.1016/j.aca.2015.11.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
|
23
|
Hu L, Shan W, Zhang Y, Li S, Gao H, Lu R, Zhang S, Zhou W. Liquid phase microextraction based on the solidification of a floating ionic liquid combined with high-performance liquid chromatography for the preconcentration of phthalate esters in environmental waters and in bottled beverages. RSC Adv 2016. [DOI: 10.1039/c6ra00788k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liquid-phase microextraction based on the solidification of floating ionic liquids.
Collapse
Affiliation(s)
- Lu Hu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Wanyu Shan
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Ying Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Songqing Li
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Haixiang Gao
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Runhua Lu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Sanbing Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Wenfeng Zhou
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| |
Collapse
|
24
|
Hu L, Qian H, Yang X, Li S, Zhang S, Lu R, Zhou W, Gao H. Effervescence-assisted dispersive liquid–liquid microextraction based on the solidification of a floating ionic liquid with a special collection method for the rapid determination of benzoylurea insecticides in water samples. RSC Adv 2016. [DOI: 10.1039/c6ra17889h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dispersion liquid–liquid microextraction based on the solidification of a floating ionic liquid.
Collapse
Affiliation(s)
- Lu Hu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Heng Qian
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Xiaoling Yang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Songqing Li
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Sanbing Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Runhua Lu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Wenfeng Zhou
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| | - Haixiang Gao
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100194
- China
| |
Collapse
|
25
|
YILMAZ E, SOYLAK M. Latest trends, green aspects, and innovations in liquid-phase--based microextraction techniques: a review. Turk J Chem 2016. [DOI: 10.3906/kim-1605-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
26
|
Amde M, Liu JF, Pang L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12611-27. [PMID: 26445034 DOI: 10.1021/acs.est.5b03123] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Hubei Province, Wuhan 430056, China
| | - Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry , No. 166, Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
27
|
In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples. Talanta 2015; 144:98-104. [DOI: 10.1016/j.talanta.2015.05.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/23/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022]
|
28
|
Marcinkowski Ł, Pena-Pereira F, Kloskowski A, Namieśnik J. Opportunities and shortcomings of ionic liquids in single-drop microextraction. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Vallecillos L, Borrull F, Pocurull E. Recent approaches for the determination of synthetic musk fragrances in environmental samples. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Green sample-preparation methods using room-temperature ionic liquids for the chromatographic analysis of organic compounds. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Luigi V, Giuseppe M, Claudio R. Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14050-14066. [PMID: 25956513 DOI: 10.1007/s11356-015-4388-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
There is a substantial lack of information on most priority pollutants, related contamination trends, and (eco)toxicological risks for the major Italian watercourse, the River Po. Targeting substances of various uses and origins, this study provides the first systematic data for the River Po on a wide set of priority and emerging chemicals, all characterized by endocrine-active potentials. Flame retardants, natural and synthetic hormones, surfactants, personal care products, legacy pollutants, and other chemicals have been investigated in sediments from the River Po and its tributary, the River Lambro, as well as in four fish species from the final section of the main river. With few exceptions, all chemicals investigated could be tracked in the sediments of the main Italian river for tens or hundreds of kilometres downstream from the Lambro tributary. Nevertheless, the results indicate that most of these contaminants, i.e., TBBPA, TCBPA, TBBPA-bis, DBDPE, HBCD, BPA, OP, TCS, TCC, AHTN, HHCB, and DDT, individually pose a negligible risk to the River Po. In contrast, PBDE, PCB, natural and synthetic estrogens, and to a much lower extent NP, were found at levels of concern either to aquatic life or human health. Adverse biological effects and prohibition of fish consumption deserve research attention and management initiatives, also considering the transport of contaminated sediments to transitional and coastal environments of the Italian river.
Collapse
Affiliation(s)
- Viganò Luigi
- National Research Council (CNR), Istituto di Ricerca Sulle Acque (Water Research Institute), Sezione di Brugherio, Via del Mulino, 19, 20861, Brugherio, MB, Italy,
| | | | | |
Collapse
|
32
|
Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid–liquid extraction and gas chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 992:96-102. [DOI: 10.1016/j.jchromb.2015.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
|
33
|
Li S, Hu L, Chen K, Gao H. Extensible automated dispersive liquid–liquid microextraction. Anal Chim Acta 2015; 872:46-54. [DOI: 10.1016/j.aca.2015.02.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/19/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
|
34
|
Vallecillos L, Pocurull E, Borrull F. Influence of pre-treatment process on matrix effect for the determination of musk fragrances in fish and mussel. Talanta 2015; 134:690-698. [DOI: 10.1016/j.talanta.2014.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/27/2022]
|
35
|
Homem V, Silva JA, Ratola N, Santos L, Alves A. Long lasting perfume--a review of synthetic musks in WWTPs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 149:168-192. [PMID: 25463582 DOI: 10.1016/j.jenvman.2014.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Synthetic musks have been used for a long time in personal care and household products. In recent years, this continuous input has increased considerably, to the point that they were recognized as emerging pollutants by the scientific community, due to their persistence in the environment, and hazardous potential to ecosystems even at low concentrations. The number of studies in literature describing their worldwide presence in several environmental matrices is growing, and many of them indicate that the techniques employed for their safe removal tend to be ineffective. This is the case of conventional activated sludge treatment plants (WWTPs), where considerable loads of synthetic musks enter mainly through domestic sewage. This review paper compiles and discusses the occurrence of these compounds in the sewage, effluents and sludge, main concentration levels and phase distributions, as well as the efficiency of the different methodologies of removal applied in these treatment facilities. To the present day, it has been demonstrated that WWTPs lack the ability to remove musks completely. This shows a clear need to develop new effective and cost-efficient remediation approaches and foresees potential for further improvements in this field.
Collapse
Affiliation(s)
- Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - José Avelino Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Ratola
- Physics of the Earth, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
36
|
Vallecillos L, Borrull F, Sanchez JM, Pocurull E. Sorbent-packed needle microextraction trap for synthetic musks determination in wastewater samples. Talanta 2015; 132:548-56. [DOI: 10.1016/j.talanta.2014.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/01/2022]
|
37
|
Vallecillos L, Borrull F, Pocurull E. On-line coupling of solid-phase extraction to gas chromatography–mass spectrometry to determine musk fragrances in wastewater. J Chromatogr A 2014; 1364:1-11. [DOI: 10.1016/j.chroma.2014.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022]
|
38
|
Ternary composites of nanocellulose, carbonanotubes and ionic liquids as new extractants for direct immersion single drop microextraction. Talanta 2014; 125:72-7. [DOI: 10.1016/j.talanta.2014.02.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 11/24/2022]
|
39
|
Analysis of 7 synthetic musks in cream by supported liquid extraction and solid phase extraction followed by GC–MS/MS. Talanta 2014; 120:248-54. [DOI: 10.1016/j.talanta.2013.11.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022]
|
40
|
Richardson SD, Ternes TA. Water analysis: emerging contaminants and current issues. Anal Chem 2014; 86:2813-48. [PMID: 24502364 DOI: 10.1021/ac500508t] [Citation(s) in RCA: 479] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | | |
Collapse
|
41
|
Relationship study of partition coefficients between ionic liquid and headspace for organic solvents by HS-GC. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946:60-7. [DOI: 10.1016/j.jchromb.2013.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/24/2013] [Accepted: 11/09/2013] [Indexed: 11/16/2022]
|
42
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
43
|
Kocúrová L, Balogh IS, Andruch V. A glance at achievements in the coupling of headspace and direct immersion single-drop microextraction with chromatographic techniques. J Sep Sci 2013; 36:3758-68. [DOI: 10.1002/jssc.201300575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Lívia Kocúrová
- Department of Analytical Chemistry; Pavol Jozef Šafárik University in Košice; Slovak Republic
| | - Ioseph S. Balogh
- Department of Chemistry; College of Nyíregyháza; Nyíregyháza Hungary
| | - Vasil Andruch
- Department of Analytical Chemistry; Pavol Jozef Šafárik University in Košice; Slovak Republic
| |
Collapse
|
44
|
Vallecillos L, Borrull F, Pocurull E. An automated headspace solid-phase microextraction followed by gas chromatography–mass spectrometry method to determine macrocyclic musk fragrances in wastewater samples. Anal Bioanal Chem 2013; 405:9547-54. [DOI: 10.1007/s00216-013-7375-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
45
|
Vallecillos L, Pocurull E, Borrull F. Fully automated determination of macrocyclic musk fragrances in wastewater by microextraction by packed sorbents and large volume injection gas chromatography–mass spectrometry. J Chromatogr A 2012; 1264:87-94. [DOI: 10.1016/j.chroma.2012.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/12/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
|
46
|
Vallecillos L, Borrull F, Pocurull E. Determination of musk fragrances in sewage sludge by pressurized liquid extraction coupled to automated ionic liquid-based headspace single-drop microextraction followed by GC-MS/MS. J Sep Sci 2012; 35:2735-42. [DOI: 10.1002/jssc.201200326] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Laura Vallecillos
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili; Tarragona; Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili; Tarragona; Spain
| | - Eva Pocurull
- Department of Analytical Chemistry and Organic Chemistry; Universitat Rovira i Virgili; Tarragona; Spain
| |
Collapse
|