1
|
Chen Z, Yang Y, Cui X, Chai L, Liu H, Pan Y, Zhang Y, Xie Y, Le T. Process, advances, and perspectives of graphene oxide-SELEX for the development of aptamer molecular probes: A comprehensive review. Anal Chim Acta 2024; 1320:343004. [PMID: 39142771 DOI: 10.1016/j.aca.2024.343004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Aptamers are screened via the systematic evolution of ligands by exponential enrichment (SELEX) and are widely used in molecular diagnostics and targeted therapies. The development of efficient and convenient SELEX technology has facilitated rapid access to high-performance aptamers, thereby advancing the aptamer industry. Graphene oxide (GO) serves as an immobilization matrix for libraries in GO-SELEX, making it suitable for screening aptamers against diverse targets. RESULTS This review summarizes the detailed steps involved in GO-SELEX, including monitoring methods, various sublibrary acquisition methods, and practical applications from its inception to the present day. In addition, the potential of GO-SELEX in the development of broad-spectrum aptamers is explored, and its current limitations for future development are emphasized. This review effectively promotes the application of the GO-SELEX technique by providing valuable insights and assisting researchers interested in conducting related studies. SIGNIFICANCE AND NOVELTY To date, no review on the topic of GO-SELEX has been published, making it challenging for researchers to initiate studies in this area. We believe that this review will broaden the SELEX options available to researchers, ensuring that they can meet the growing demand for molecular probes in the scientific domain.
Collapse
Affiliation(s)
- Zhuoer Chen
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Ying Yang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xinge Cui
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Luwei Chai
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Hongbing Liu
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yangwei Pan
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yongkang Zhang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yujia Xie
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Tao Le
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China.
| |
Collapse
|
2
|
Zhou CY, Pan CG, Peng FJ, Zhu RG, Hu JJ, Yu K. Simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in various environmental and biota matrices. MARINE POLLUTION BULLETIN 2024; 203:116444. [PMID: 38705002 DOI: 10.1016/j.marpolbul.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.
Collapse
Affiliation(s)
- Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
3
|
Narasimman V, Ramachandran S. Purification, structural characterization, and neuroprotective effect of 3,6-diisobutyl-2,5-piperazinedione from Halomonas pacifica CARE-V15 against okadaic acid-induced neurotoxicity in zebrafish model. J Biochem Mol Toxicol 2024; 38:e23708. [PMID: 38597299 DOI: 10.1002/jbt.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Vignesh Narasimman
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| | - Saravanan Ramachandran
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
4
|
Liu Y, Liu Z, Qiao F, Xu L, Xu Z. Identification of Perna viridis contaminated with diarrhetic shellfish poisoning toxins in vitro using NIRS and a discriminative non-negative representation-based classifier. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122514. [PMID: 36870183 DOI: 10.1016/j.saa.2023.122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Diarrhetic shellfish poisoning (DSP) toxins are one of the most widespread marine biotoxins that affect aquaculture and human health, and their detection has become crucial. In this study, near-infrared reflectance spectroscopy (NIRS) with non-destructive characteristics was used to identify DSP toxins in Perna viridis. The spectral data of the DSP toxin-contaminated and non-contaminated Perna viridis samples were acquired in the 950-1700 nm range. To solve the discrimination of spectra with crossover and overlapping, a discriminative non-negative representation-based classifier (DNRC) has been proposed. Compared with collaborative and non-negative representation-based classifiers, the DNRC model exhibited better performance in detecting DSP toxins, with a classification accuracy of 99.44 %. For a relatively small-scale sample dataset in practical applications, the performance of the DNRC model was compared with those of classical models. The DNRC model achieved the best results for both identification accuracy and F-measure, and its detection performance did not significantly decrease with decreasing sample size. The experimental results validated that a combination of NIRS and the DNRC model can facilitate rapid, convenient, and non-destructive detection of DSP toxins in Perna viridis.
Collapse
Affiliation(s)
- Yao Liu
- School of Electronic and Electrical Engineering, Lingnan Normal University, Zhanjiang 524048, China.
| | - Zhongyan Liu
- School of Computer Science and Intelligence Education, Lingnan Normal University, Zhanjiang 524048, China
| | - Fu Qiao
- School of Computer Science and Intelligence Education, Lingnan Normal University, Zhanjiang 524048, China; Mangrove Institute, Lingnan Normal University, Zhanjiang 524048, China
| | - Lele Xu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Zhen Xu
- Science and Technology Extension Department, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
5
|
Hendrickson OD, Mukhametova LI, Zvereva EA, Zherdev AV, Eremin SA. A Sensitive Fluorescence Polarization Immunoassay for the Rapid Detection of Okadaic Acid in Environmental Waters. BIOSENSORS 2023; 13:bios13040477. [PMID: 37185552 PMCID: PMC10136290 DOI: 10.3390/bios13040477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs-tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4-72.5 ng/mL (0.5-90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Liliya I Mukhametova
- Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elena A Zvereva
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Sergei A Eremin
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
6
|
Simultaneous determination of okadaic acid, dinophysistoxin-1, dinophysistoxin-2, and dinophysistoxin-3 using liquid chromatography-tandem mass spectrometry in raw and cooked food matrices. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yu S, Zhou X, Hu P, Chen H, Shen F, Yu C, Meng H, Zhang Y, Wu Y. Inhalable particle-bound marine biotoxins in a coastal atmosphere: Concentration levels, influencing factors and health risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128925. [PMID: 35460997 DOI: 10.1016/j.jhazmat.2022.128925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.
Collapse
Affiliation(s)
- Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuedong Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peiwen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haoxuan Chen
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - He Meng
- Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
9
|
Quezada C, Vera M, Barraza LF, García Y, Pereira ED. Molecularly imprinted nanoparticle-based assay (MINA): Potential application for the detection of the neurotoxin domoic acid. Anal Chim Acta 2021; 1181:338887. [PMID: 34556224 DOI: 10.1016/j.aca.2021.338887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 01/22/2023]
Abstract
Domoic acid (DA) is a natural amino acid and water-soluble neurotoxic biotoxin primarily produced by the microalgae Pseudo-nitzschia. DA can cause poisoning in humans and a wide variety of marine species. In this work, a molecularly imprinted nanoparticle-based assay (MINA) was developed as an alternative to enzyme-linked immunosorbent assay (ELISA) for selective detection of DA. In contrast with ELISA, MINA uses molecularly imprinted polymer nanoparticles (nanoMIPs) as plastic antibodies due to its higher stability and lower production costs. In this work, dihydrokainic acid (DKA) was used as a dummy template because this molecule is structurally similar to DA but less toxic. The developed MINA had a high linear response for DKA and DA, showing detection limits of 2.12 nmol L-1 and 4.32 nmol L-1, respectively. Additionally, q-RMN studies demonstrated that DKA - nanoMIPs were selective for DKA, since they presented the best association parameters with a high loading load capacity of 175% and an association efficiency of 18%. No cross-reactivity towards 1, 3, 5 - pentanetricarboxylic acid was observed. These results suggest that MINA could be a more robust, more sensitive, and less expensive alternative to ELISA. The assay developed with DKA - nanoMIPs has strong potential for the detection of domoic acid in real samples of red tide.
Collapse
Affiliation(s)
- Camila Quezada
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Luis F Barraza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 7100, Talcahuano, Chile
| | - Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Avenida Lircay S/N, Talca, Chile.
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
10
|
Proteome Response of Meretrix Bivalves Hepatopancreas Exposed to Paralytic Shellfish Toxins Producing Dinoflagellate Gymnodinium catenatum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paralytic shellfish toxins (PSTs) contamination of seafood has become a growing global problem. However, the molecular response of bivalves, some of the most popular seafoods, to PSP toxins has seldom been reported and the underlying molecular mechanisms of the interactions between Meretrix meretrix bivalves and PSTs-producing dinoflagellates are scarcely known. This study compared the protein expression profiles between PSP toxin-contaminated and non-PSP toxin contaminated M. meretrix, determined proteome responses and identified potential biomarkers based on feeding experiments. Results showed that the content of total PSP toxins in contaminated bivalves was 40.63 ± 4.08 μg saxitoxin (STX) equivalents per gram, with 95.3% in hepatopancreas, followed by gill (1.82%) and foot (1.79%). According to two-dimensional gel electrophoresis (2-DE), 15 differentially expressed proteins (at least 2-fold difference) between the hepatopancreas of bivalves with and without PSP toxins were detected. Eight of them were successfully identified by MALDI-TOF MS. These were catalase, protein ultraspiracle homolog, G2 and S phase-expression protein, paramyosin, Mn-superoxide dismutase, response regulator receiver domain-containing protein, sarcoplasmic calcium-binding protein and major facilitator superfamily transporters. The differences in the expression levels of the last three proteins involving in cell signaling, structure and membrane transport were 4.2, 5.3 and 4.9-fold, respectively. These proteins could be further developed as potential biomarkers. The other two up-regulated proteins, Mn-superoxide dismutase and catalase, were involved in cell defence mechanisms against oxidative stress, suggesting PSP toxin acts as xenobiotics and poses oxidative stress in bivalves. This study gives insights into the response of bivalves to PSP toxin-producing dinoflagellate at the proteomic level and the potential of using 2-DE to develop specific protein markers in bivalves.
Collapse
|
11
|
Wang Y, Rao D, Wu X, Zhang Q, Wu S. Aptamer-based microcantilever-array biosensor for ultra-sensitive and rapid detection of okadaic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Recent progress in micro/nano biosensors for shellfish toxin detection. Biosens Bioelectron 2020; 176:112899. [PMID: 33358058 DOI: 10.1016/j.bios.2020.112899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Shellfish toxins, as one kind of marine toxin, have attracted worldwide attention due to their severe threat to food safety and human health. Therefore, it is highly essential and urgent to develop a low-cost and convenient method to detect these toxins. With the rapid advance in microfabrication processes, micro/nano biosensors provide novel approaches to address this issue. In addition to their features of low cost, portability, easy operation, high efficiency and high bioactivity, micro/nano biosensors have great potential to realize on-the-spot, rapid detection of shellfish toxins. This review focuses on the most recent advances in the development of micro/nano biosensors for shellfish toxin detection. These biosensors are mainly classified into five categories according to their transducer detection principles, which include optical devices, electrochemical sensors, electrochemiluminescence, field-effect transistors, and acoustic devices. Sensor strategies, toxin analytes, biosensitive elements, coupling methods and field detection performance are highlighted to discuss the applications of shellfish toxin detection. With advances in sensor technology, biomaterials, microfabrication and miniaturized electronics, micro/nano biosensors applied to in-field fast detection of shellfish toxins are expected to play a critical role in food safety, environmental monitoring, and foreign trade in the foreseeable future. Finally, the current challenges and future development trends of micro/nano biosensors for shellfish toxin detection are discussed.
Collapse
|
13
|
Wu H, Chen J, Peng J, Zhong Y, Zheng G, Guo M, Tan Z, Zhai Y, Lu S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12366-12375. [PMID: 32902972 DOI: 10.1021/acs.est.0c03691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-resolution mass spectrometry (HRMS) analysis with the assistance of molecular networking was used to investigate intracellular toxin profiles of five Prorocentrum lima (P. lima) strains sampled from the north Yellow Sea and South China Sea. Mice were used as a model species for testing the acute toxicity of intracellular okadaic acid (OA) and dinophysistoxins (DTXs) in free and esterified states. Results showed that OA and DTX1 esterified derivatives were detected in all P. lima samples, accounting for 55%-96% of total toxins in five strains. A total of 24 esters and 1 stereoisomer of DTX1 (35S DTX1) were identified based on molecular networking and MS data analysis, 15 esters of which have been reported first. All P. lima strains displayed specific toxin profiles, and preliminary analysis suggested that toxin profiles of the five P. lima strains might be region-related. Moreover, acute toxicity in mice suggested higher toxicity of esters compared with free toxins, which highlights the importance and urgency of attention to esterified toxins in P. lima.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|
15
|
Li A, Zhao M, Qiu J, Ji Y. Accumulation and esterification of diarrhetic shellfish toxins from the aqueous phase in laboratory-exposed mussels. HARMFUL ALGAE 2020; 93:101797. [PMID: 32307077 DOI: 10.1016/j.hal.2020.101797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
In recent years, marine bivalves cultured in the natural environment have been confirmed to accumulate diarrhetic shellfish toxins (DSTs) from the aqueous phase. To investigate the effects of varying seston concentrations on DST accumulation, mussels (Mytilus galloprovincialis) were exposed to comparable concentrations of okadaic acid (OA) and dinophysistoxin-1 (DTX1) in 0.45-μm filtered seawater spiked with varying concentrations of ambient suspended particles at 0, 10, 30, 60, 90, and 120 mg L-1, for 96 h. Effects of seston additions on the mussels' feeding on nontoxic microalgae, Isochrysis galbana, the stability of dissolved toxins and the anatomical compartmentalization of toxins were also assessed. Results showed that mussels more readily accumulated OA than DTX1 from the aqueous phase. Three potential mechanisms of the effects of seston on toxin accumulation were identified. First, seston at low concentrations (10 mg L-1) adsorbed toxins and thus promoted toxin accumulation. Second, seston enhanced the degradation of aqueous OA and DTX1, and possibly reduced the adsorption by digestive gland (DG) cells through simple diffusion due to competitive adsorption. Third, the clearance rate of mussels was significantly reduced at high seston concentrations (120 mg L-1). The esterification of DSTs was maximized in DG tissue, although a high percentage (52%) of DSTs was distributed in non-visceral tissues of mussels exposed to aqueous toxins. This study suggests that the risk of benthic DST-producing microalgae to marine cultured shellfish should be taken into consideration, even in the absence of a bloom of toxic microalgae in the water column.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Mingyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
16
|
Xu F, Liu F, Wang C, Wei Y. Reversed-phase/weak anion exchange magnetic mesoporous microspheres for removal of matrix effects in lipophilic marine biotoxins analysis by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. Food Chem 2019; 294:104-111. [DOI: 10.1016/j.foodchem.2019.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
17
|
Deng Y, Zheng H, Yi X, Shao C, Xiang B, Wang S, Zhao Z, Zhang X, Hui G. Paralytic shellfish poisoning toxin detection based on cell-based sensor and non-linear signal processing model. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1614052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yanjun Deng
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, P.R. China
- Hangdian Smart City Research Center of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Haonan Zheng
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Xiaomei Yi
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Chenning Shao
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Bin Xiang
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Siyang Wang
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| | - Zhidong Zhao
- Hangdian Smart City Research Center of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, P.R. China
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, P.R. China
- Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Xiaohong Zhang
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, P.R. China
| | - Guohua Hui
- School of Information Engineering, Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Linan, P.R. China
| |
Collapse
|
18
|
Ramalingam S, Chand R, Singh CB, Singh A. Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens Bioelectron 2019; 135:14-21. [PMID: 30981975 DOI: 10.1016/j.bios.2019.03.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/25/2022]
Abstract
Okadaic acid (OA) is one of the most prevalent and largely distributed bio-toxin in the world. Consumption of OA results in a series of digestive ailments such as nausea and diarrhea. This study demonstrates the preparation and functioning of an electrochemical microfluidic biochip for the detection of OA. The screen-printed carbon electrode (SPCE) was modified by phosphorene-gold nanocomposite onto which an aptamer specific to OA was immobilized. BP-Au nanocomposites were synthesized by an in-situ, one-step method without the use of a reducing agent. Potassium ferro-ferri cyanide was used as a redox pair to quantify signal strength. To improve reaction time, increase sensitivity and portability, a microfluidic platform was designed and developed. This device comprised of channels identified for specific purposes such as sample mixing and incubation. Overall, the integrated system consisted of a polydimethylsiloxane microfluidic chip housing an aptamer modified SPCE, as a single detection module for Okadaic acid. The nanomaterials and the microfluidic channels prepared were spectroscopically and electrochemically analyzed. Differential pulse voltammograms revealed a detection limit of 8 pM, while a linear range was found between 10 nM-250 nM. Selectivity studies were also performed with spiked mussel samples and other interfering species. This point-of-care device can be deployed to perform on-farm assays in fishing units.
Collapse
Affiliation(s)
| | - Rohit Chand
- W. Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Chandra B Singh
- Stored Grains Engineering, School of Engineering, University of South Australia, Adelaide, SA, 5001, Australia
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
19
|
Chen J, Tan Z, Wu H, Peng J, Zhai Y, Guo M. Selective enrichment and quantification of okadaic acid in shellfish using an immunomagnetic-bead-based liquid chromatography with tandem mass spectrometry assay. J Sep Sci 2019; 42:1423-1431. [PMID: 30667151 DOI: 10.1002/jssc.201800875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/10/2022]
Abstract
Okadaic acid is a marine biotoxin that primarily occurs in shellfish and can cause diarrheic shellfish poisoning in humans. When analyzing biological samples using liquid chromatography with tandem mass spectrometry, the presence of complex matrices is a major issue. Thus, it is crucial to selectively and simply extract the target analyte from samples and minimize matrix effects simultaneously. To meet this need, an immunomagnetic-bead-based liquid chromatography with tandem mass spectrometry method was developed to detect okadaic acid in shellfish. Magnetic beads bound to monoclonal antibody against okadaic acid were used as affinity probes to specifically enrich okadaic acid in samples, which effectively eliminated matrix effects. A magnetic separator was used to aggregate and separate magnetic particles from sample matrices, and methanol was used to elute okadaic acid from the magnetic beads. Standard solution prepared with methanol was employed directly for quantitative analysis. Several experimental conditions were optimized to improve performance. The method is of interest as a rapid (10 min) sample clean-up and selective enrichment tool, and it showed good linearity and sensitivity, with reported limits of detection and quantitation of 3 and 10 μg/kg, respectively. Fifty-three shellfish samples from an aquatic products market were tested using this method, and four samples positive for okadaic acid were found.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China.,College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| |
Collapse
|
20
|
Lee ME, Ko KH, Park NH, Lee W, Yoo HH, Lee J, Choi YS, Hong J. Reliable quantification of trace diarrhetic shellfish poisoning toxins in high-lipid bivalves by UHPLC-ESI-MS/MS in time segment polarity switching mode: Comparison of three extraction methods. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Pinzaru SC, Müller C, Ujević I, Venter MM, Chis V, Glamuzina B. Lipophilic marine biotoxins SERS sensing in solutions and in mussel tissue. Talanta 2018; 187:47-58. [DOI: 10.1016/j.talanta.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022]
|
22
|
LI H, WEI X, GU C, SU K, WAN H, HU N, WANG P. A Dual Functional Cardiomyocyte-based Hybrid-biosensor for the Detection of Diarrhetic Shellfish Poisoning and Paralytic Shellfish Poisoning Toxins. ANAL SCI 2018; 34:893-900. [DOI: 10.2116/analsci.18p029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hongbo LI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| | - Xinwei WEI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Chenlei GU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Kaiqi SU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Hao WAN
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Ning HU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- Department of Biomedical Engineering, Tufts University
| | - Ping WANG
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| |
Collapse
|
23
|
Leonardo S, Toldrà A, Rambla-Alegre M, Fernández-Tejedor M, Andree KB, Ferreres L, Campbell K, Elliott CT, O'Sullivan CK, Pazos Y, Diogène J, Campàs M. Self-assembled monolayer-based immunoassays for okadaic acid detection in seawater as monitoring tools. MARINE ENVIRONMENTAL RESEARCH 2018; 133:6-14. [PMID: 29174400 DOI: 10.1016/j.marenvres.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Rapid and cost-effective methods to monitor the presence of diarrhetic shellfish poisoning (DSP) toxins in seawater samples in an easy and reliable manner are required to protect human health and avoid economic losses to shellfish industry. Immunoassays for the detection of okadaic acid (OA) and dinophysistoxin-1 and dinophysistoxin-2 are developed by immobilising OA on self-assembled monothiols or dithiols in an ordered and oriented way, providing an effective limit of detection of ∼1 ng OA equiv./mL seawater. The immunoassays are applied to the analysis of the particulate fraction of seawater samples from two Catalan harbours (NW Mediterranean) and samples collected periodically from the Galician Rias (E Atlantic), as well as a reference mussel sample. Results are in agreement with LC-MS/MS and the certified values. OA concentration in seawater correlates with Dinophysis cell abundance, with a 1-2 weeks lag. The immunoassays provide powerful high-throughput analytical methods potentially applicable as alternative monitoring tools.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Anna Toldrà
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | | | - Karl B Andree
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Laura Ferreres
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, United Kingdom
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys, 23, 08010 Barcelona, Spain
| | - Yolanda Pazos
- INTECMAR, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou, Km. 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
24
|
Affiliation(s)
- Xuan Weng
- BioNano Laboratory, School of EngineeringUniversity of GuelphGuelph Canada
| | - Suresh Neethirajan
- BioNano Laboratory, School of EngineeringUniversity of GuelphGuelph Canada
| |
Collapse
|
25
|
Chen J, Wang Y, Pan L, Shen H, Fu D, Fu B, Sun C, Zheng L. Separation and purification of two minor typical diarrhetic shellfish poisoning toxins from harmful marine microalgae via combined liquid chromatography with mass spectrometric detection. J Sep Sci 2017; 40:2906-2913. [PMID: 28513110 DOI: 10.1002/jssc.201700125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/22/2023]
Abstract
A novel method was developed for the purification of two typical diarrhetic shellfish poisoning toxins from toxin-producing marine microalgae using macroporous resin, high-speed countercurrent chromatography-mass spectrometry, and semipreparative high-performance liquid chromatography-mass spectrometry. Analytical high-performance liquid chromatography-mass spectrometry was used for identification and purity analysis of okadaic acid and dinophysistoxin-1 because they exhibit no visible or ultraviolet absorption. First, four kinds of macroporous resins were investigated, and HP-20 macroporous resin was selected for the preenrichment and cleanup of the two target toxins. Second, the resin-purified sample was further purified using high-speed countercurrent chromatography coupled with a mass spectrometer. The purities of the obtained okadaic acid and dinophysistoxin-1 were 89.0 and 83.0%, respectively, as determined through analytical high-performance liquid chromatography-mass spectrometry. Finally, further purification was carried out using semipreparative high-performance liquid chromatography with mass spectrometry, and the purities of the final okadaic acid and dinophysistoxin-1 products were both over 98.0% based on the analytical high-performance liquid chromatography-mass spectrometry chromatograms and fraction spectra. This work demonstrates that the proposed purification process is a powerful method for the preparation of high-purity okadaic acid and dinophysistoxin-1 from toxin-producing marine microalgae. Moreover, it is particularly important for the purification and preparation of minor toxins that exhibit no visible or ultraviolet absorption from harmful marine algae.
Collapse
Affiliation(s)
- Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanlong Wang
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Lei Pan
- College of Chemistry and Molecular Engineering, Qingdao Technology University of Shandong, Qingdao, China
| | - Huihui Shen
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Dan Fu
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Boqiang Fu
- Division of Medical and Biological Measurements Laboratory of Biological Analysis and Cell Technology, National Institute of Metrology, Beijing, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Li Zheng
- Qingdao Key Laboratory of Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Pan Y, Wan Z, Zhong L, Li X, Wu Q, Wang J, Wang P. Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag. Biomed Microdevices 2017; 19:33. [DOI: 10.1007/s10544-017-0162-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
A novel sensitive cell-based Love Wave biosensor for marine toxin detection. Biosens Bioelectron 2016; 77:573-9. [DOI: 10.1016/j.bios.2015.07.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 02/02/2023]
|
28
|
Gu H, Duan N, Wu S, Hao L, Xia Y, Ma X, Wang Z. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci Rep 2016; 6:21665. [PMID: 26898784 PMCID: PMC4761938 DOI: 10.1038/srep21665] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/28/2016] [Indexed: 12/25/2022] Open
Abstract
Okadaic acid (OA) is a low-molecular-weight marine toxin from shellfish that causes abdominal pain, vomiting and diarrhea, i.e., diarrheic shellfish poisoning. In this study, a ssDNA aptamer that specifically binds to OA with high affinity was obtained via Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assisted by graphene oxide (GO). This aptamer was then applied to fabricate a novel direct competitive enzyme-linked aptamer assay (ELAA). At the optimized conditions, this ELAA method showed a low detection limit (LOD of 0.01 ng/mL), wide linear range (from 0.025 to 10 ng/mL), good recovery rate (92.86–103.34% in OA-spiked clam samples) and repeatability (RSD of 2.28–4.53%). The proposed method can be used to detect OA in seafood products with high sensitivity and can potentially be adapted for the determination of other small molecular analytes.
Collapse
Affiliation(s)
- Huajie Gu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liling Hao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
29
|
Acunha T, Ibáñez C, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2015; 37:111-41. [DOI: 10.1002/elps.201500291] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Tanize Acunha
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF Brazil
| | - Clara Ibáñez
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
| | | | | | | |
Collapse
|
30
|
|
31
|
Lin C, Liu ZS, Tan CY, Guo YP, Li L, Ren HL, Li YS, Hu P, Gong S, Zhou Y, Lu SY. Contamination of commercially available seafood by key diarrhetic shellfish poisons along the coast of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1545-1553. [PMID: 25167824 DOI: 10.1007/s11356-014-3494-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
With the increasing number of outbreaks of food-borne diseases caused by okadaic acid (OA) and its analogue dinophysistoxin-1 (DTX-1), two key diarrhetic shellfish poison (DSP) toxins, OA and DTX-1, have become a serious threat to public health and have attracted significant public attention in China. The aim of our study was to monitor OA and DTX-1 contamination in commercially available seafood and to provide references for tracking these toxins and preventing disease outbreaks. From 2010 to 2012, 40 species were collected from six coastal cities of four inland seas in China. An enzyme-linked immunosorbent assay (ELISA) and a lateral flow immunochromatographic (LFIC) test strip were used to analyse the samples, and the results were further confirmed using a commercially available ELISA kit. The monitoring results indicated that 23 of 40 species were positive for contamination. In addition, 14 of the positive species were determined to be inedible because the content of OA and DTX-1 was above the regulatory limit. Simultaneously, we verified that the digestive glands of shellfish tended to accumulate toxin, in contrast to the flesh. The highest concentrations of OA and DTX-1 were recorded in Scapharca broughtonii, which was collected from Qing Dao, in relation to the other analysed species. Moreover, the Arca family as well as Mytilus galloprovincialis were severely contaminated by OA and its analogue. The above results indicate that some of the commercially available seafood from the coastal cities in China may be inedible due to serious marine toxin contamination. The results of this study might play an important role in protecting consumer health and safety screening of marine products.
Collapse
Affiliation(s)
- Chao Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eissa S, Ng A, Siaj M, Tavares AC, Zourob M. Selection and identification of DNA aptamers against okadaic acid for biosensing application. Anal Chem 2013; 85:11794-801. [PMID: 24164310 DOI: 10.1021/ac402220k] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work describes the selection and identification of DNA aptamers that bind with high affinity and specificity to okadaic acid (OA), a lipophilic marine biotoxin that accumulates in shellfish. The aptamers selected using systematic evolution of ligands by exponential enrichment (SELEX) exhibited dissociation constants in the nanomolar range. The aptamer with the highest affinity was then used for the fabrication of a label-free electrochemical biosensor for okadaic acid detection. The aptamer was first immobilized on the gold electrode by a self-assembly approach through Au-S interaction. The binding of okadaic acid to the aptamer immobilized on the electrode surface induces an alteration of the aptamer conformation causing a significant decrease in the electron-transfer resistance monitored by electrochemical impedance spectroscopy. The aptasensor showed a linear range for the concentrations of OA between 100 pg/mL and 60 ng/mL with a detection limit of 70 pg/mL. The dissociation constant of okadaic acid with the aptamer immobilized on the electrode surface showed good agreement with that determined using fluorescence assay in solution. Moreover, the aptasensor did not show cross-reactivity toward toxins with structures similar to okadaic acid such as dinophysis toxin-1 and 2 (DTX-1, DTX-2). Further biosensing applications of the selected aptamers are expected to offer promising alternatives to the traditional analytical and immunological methods for OA detection.
Collapse
Affiliation(s)
- Shimaa Eissa
- Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications , 1650 Boulevard Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | | | | | | | | |
Collapse
|
33
|
Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs 2013; 11:4328-49. [PMID: 24184795 PMCID: PMC3853731 DOI: 10.3390/md11114328] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023] Open
Abstract
Okadaic acid (OA) is one of the most frequent and worldwide distributed marine toxins. It is easily accumulated by shellfish, mainly bivalve mollusks and fish, and, subsequently, can be consumed by humans causing alimentary intoxications. OA is the main representative diarrheic shellfish poisoning (DSP) toxin and its ingestion induces gastrointestinal symptoms, although it is not considered lethal. At the molecular level, OA is a specific inhibitor of several types of serine/threonine protein phosphatases and a tumor promoter in animal carcinogenesis experiments. In the last few decades, the potential toxic effects of OA, beyond its role as a DSP toxin, have been investigated in a number of studies. Alterations in DNA and cellular components, as well as effects on immune and nervous system, and even on embryonic development, have been increasingly reported. In this manuscript, results from all these studies are compiled and reviewed to clarify the role of this toxin not only as a DSP inductor but also as cause of alterations at the cellular and molecular levels, and to highlight the relevance of biomonitoring its effects on human health. Despite further investigations are required to elucidate OA mechanisms of action, toxicokinetics, and harmful effects, there are enough evidences illustrating its toxicity, not related to DSP induction, and, consequently, supporting a revision of the current regulation on OA levels in food.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981167000; Fax: +34-981167172
| | - María Verónica Prego-Faraldo
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Eduardo Pásaro
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| | - Josefina Méndez
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Blanca Laffon
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| |
Collapse
|
34
|
Shen Q, Gong L, Baibado JT, Dong W, Wang Y, Dai Z, Cheung HY. Graphene based pipette tip solid phase extraction of marine toxins in shellfish muscle followed by UPLC-MS/MS analysis. Talanta 2013; 116:770-5. [PMID: 24148472 DOI: 10.1016/j.talanta.2013.07.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/17/2013] [Accepted: 07/21/2013] [Indexed: 11/15/2022]
Abstract
Graphene is a novel carbonic material with great potentials for the use as sorbent due to its ultrahigh surface area. Herein, we report the use of graphene as sorbent in solid-phase extraction (SPE) using pipette tip as cartridge namely GPT-SPE, together with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), for the analysis of lipophilic marine toxins (LMTs), including yessotoxins (YTX), okadaic acid (OA), dinophysistoxin-1 (DTX1), gymnodimine (GYM), spirolides-1 (SPX1), pectenotoxin-2 (PTX2) and azaspiracid-1 (AZA1) in shellfish. The GPT-SPE procedure was optimized and the performance of graphene was fully validated. Results with high-sensitivity and good reproducibility was obtained and compared with that of other sorbents like C18 silica, multi-walled carbon nanotubes (MWCNTs), commercial Oasis HLB, and Strata-X for the extraction of LMTs, which showed superiority and advantages of graphene, such as good recoveries, stability and compatibility with various solvents. In order to exhibit the potentials of graphene as an excellent sorbent material, 67 mussel samples from six coastal cities of China were analyzed. OA was found to be the dominant contaminant, while YTX was also detected with low level.
Collapse
Affiliation(s)
- Qing Shen
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
35
|
Suárez-Ulloa V, Fernández-Tajes J, Aguiar-Pulido V, Rivera-Casas C, González-Romero R, Ausio J, Méndez J, Dorado J, Eirín-López JM. The CHROMEVALOA database: a resource for the evaluation of Okadaic Acid contamination in the marine environment based on the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis. Mar Drugs 2013; 11:830-41. [PMID: 23481679 PMCID: PMC3705373 DOI: 10.3390/md11030830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/28/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022] Open
Abstract
Okadaic Acid (OA) constitutes the main active principle in Diarrhetic Shellfish Poisoning (DSP) toxins produced during Harmful Algal Blooms (HABs), representing a serious threat for human consumers of edible shellfish. Furthermore, OA conveys critical deleterious effects for marine organisms due to its genotoxic potential. Many efforts have been dedicated to OA biomonitoring during the last three decades. However, it is only now with the current availability of detailed molecular information on DNA organization and the mechanisms involved in the maintenance of genome integrity, that a new arena starts opening up for the study of OA contamination. In the present work we address the links between OA genotoxicity and chromatin by combining Next Generation Sequencing (NGS) technologies and bioinformatics. To this end, we introduce CHROMEVALOAdb, a public database containing the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis (a sentinel model organism) in response to OA exposure. This resource constitutes a leap forward for the development of chromatin-based biomarkers, paving the road towards the generation of powerful and sensitive tests for the detection and evaluation of the genotoxic effects of OA in coastal areas.
Collapse
Affiliation(s)
- Victoria Suárez-Ulloa
- Chromatin Structure and Evolution Group (CHROMEVOL-XENOMAR), Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.S.-U.); (J.F.-T.); (C.R.-C.); (R.G.-R.); (J.M.)
- Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Juan Fernández-Tajes
- Chromatin Structure and Evolution Group (CHROMEVOL-XENOMAR), Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.S.-U.); (J.F.-T.); (C.R.-C.); (R.G.-R.); (J.M.)
- Wellcome Trust Center for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Vanessa Aguiar-Pulido
- Artificial Neural Networks and Adaptive Systems Laboratory (RNASA-IMEDIR), Department of Information and Communication Technologies, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.A.-P.); (J.D.)
| | - Ciro Rivera-Casas
- Chromatin Structure and Evolution Group (CHROMEVOL-XENOMAR), Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.S.-U.); (J.F.-T.); (C.R.-C.); (R.G.-R.); (J.M.)
| | - Rodrigo González-Romero
- Chromatin Structure and Evolution Group (CHROMEVOL-XENOMAR), Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.S.-U.); (J.F.-T.); (C.R.-C.); (R.G.-R.); (J.M.)
- Department of Biochemistry and Microbiology, University of Victoria, V8W 3P6 Victoria BC, Canada; E-Mail:
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, V8W 3P6 Victoria BC, Canada; E-Mail:
| | - Josefina Méndez
- Chromatin Structure and Evolution Group (CHROMEVOL-XENOMAR), Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.S.-U.); (J.F.-T.); (C.R.-C.); (R.G.-R.); (J.M.)
| | - Julián Dorado
- Artificial Neural Networks and Adaptive Systems Laboratory (RNASA-IMEDIR), Department of Information and Communication Technologies, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.A.-P.); (J.D.)
| | - José M. Eirín-López
- Chromatin Structure and Evolution Group (CHROMEVOL-XENOMAR), Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruna, Spain; E-Mails: (V.S.-U.); (J.F.-T.); (C.R.-C.); (R.G.-R.); (J.M.)
- Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981-167-000; Fax: +34-981-167-065
| |
Collapse
|