1
|
Yosri N, Gao S, Zhou R, Wang C, Zou X, El-Seedi HR, Guo Z. Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations. Food Chem 2024; 467:142395. [PMID: 39667301 DOI: 10.1016/j.foodchem.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Food contamination poses serious health risks, compelling the discovery of new methods to guarantee regulatory compliance and build consumer conviction. Surface Enhanced Raman Spectroscopy (SERS) has come into sight as a sophisticated approach for the ultrasensitive discovery of toxins in food and water, proposing non-destructive, quick, and precise analysis. Instantaneously, quantum dots (QDs) are astonishing nanomaterials, characterized by distinctive attributes such as quantum confinement and optical photostability. This article extends a decisive outline of SERS technology, pointing out its amalgamation with QDs and discussing numerous augmentation approaches i.e., chemical enhancement, electromagnetic enhancement, Van Hove singularities, the Brus equation, Förster resonance energy transfer, band gap energy, and quantum yield. The amalgamation of SERS with QDs commands an important promise in international food security and conservational sustainability. Nevertheless, QDs provide several compensations, they also aspect a few concerns, counting probable toxicity, stability problems, and predisposition to interference. To tackle these items, further research is required to synthesize safer, more stable QD materials and to refine protocols for practical real-world applications. While some reviews on SERS have been published recently, to our knowledge, the current review is the first one dedicated to QDs-assisted SERS in food safety.
Collapse
Affiliation(s)
- Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Maia Júnior FF, Sales Junior R, Barbosa GF, Hussain S, Jara-Cornejo E, Khan S. Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity. BIOSENSORS 2024; 14:304. [PMID: 38920608 PMCID: PMC11202226 DOI: 10.3390/bios14060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.
Collapse
Affiliation(s)
- Francisco Franciné Maia Júnior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Rui Sales Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Geovani Ferreira Barbosa
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Swabi 23640, Pakistan;
| | - Eduardo Jara-Cornejo
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima 15032, Peru;
| | - Sabir Khan
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima 15032, Peru;
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
3
|
Ulloa-Gomez AM, Waimin JF, Yu YC, Lucas A, Stanciu LA. A smartphone-integrated aptasensor for pesticide detection using gold-decorated microparticles. Mikrochim Acta 2024; 191:194. [PMID: 38472537 DOI: 10.1007/s00604-024-06255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The increasing incidence of environmental concerns related to excessive use of pesticides, such as imidacloprid and carbendazim, poses risks to pollinators, water bodies, and human health, prompting regulatory scrutiny and bans in developed countries. In this study, we propose a portable smartphone-based biosensor for rapid and label-free colorimetric detection by using the gold-decorated polystyrene microparticles (Ps-AuNP) functionalized with specific aptamers to imidacloprid and carbendazim on a microfluidic paper-based analytical device (μ-PAD). Four aptamers were selected for the detection of these pesticides and their sensitivity and selectivity performance was evaluated. The sensitivity results show a detection limit for imidacloprid of 3.12 ppm and 1.56 ppm for carbendazim. The aptamers also exhibited high selectivity performance against other pesticides, such as thiamethoxam, fenamiphos, isoproturon, and atrazine. However, the platform presented cross-selectivity when detecting imidacloprid, carbendazim, and linuron, which is discussed herein. Overall, we present a promising platform for simple, on-site, and rapid colorimetric screening of specific pesticides, while highlighting the challenges of aptasensors in achieving selectivity amidst diverse molecular structures.
Collapse
Affiliation(s)
- Ana M Ulloa-Gomez
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jose F Waimin
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ya-Ching Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Alec Lucas
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lia A Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Ilager D, Malode SJ, Shetti NP. Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. CHEMOSPHERE 2022; 303:134919. [PMID: 35568220 DOI: 10.1016/j.chemosphere.2022.134919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Incorporating new pollutants and environmental pollution has become a formidable issue as new pollutants are introduced into it and have become a significant concern in recent years. Detection of such pollutants needs a susceptible, selective, and cost-effective sensor that can sense their presence and quantify them at a trace level. In the present study, we have designed a 2D graphene oxide (GO)-based glassy carbon electrode (GCE) electrochemical sensor (GO/GCE) and utilized it as a sensing material for the detection and determination of CRZ. The voltammetric behavior of CRZ was studied using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. The SWV was applied to quantify and analyze CRZ in actual samples. A better response of CRZ was noticed at GO/GCE when phosphate buffer solution of pH 4.2 was used as a supporting electrolyte for to experiment. The SWV technique achieved trace-level detection of CRZ. A linearity plot was obtained for the concentration range of 1.0 × 10-7 M to 2.5 × 10-4 M with a limit of detection of 1.38 × 10-8 M. The selectivity of the modified sensor was verified by the interference study of metal ions and other pesticides with CRZ. The agricultural and environmental significance of the developed method was successfully tested by estimating CRZ in water and soil samples.
Collapse
Affiliation(s)
- Davalasab Ilager
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580030, Karnataka, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| |
Collapse
|
5
|
A comprehensive review of liquid chromatography hyphenated to post-column photoinduced fluorescence detection system for determination of analytes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
6
|
Yola ML. Carbendazim imprinted electrochemical sensor based on CdMoO 4/g-C 3N 4 nanocomposite: Application to fruit juice samples. CHEMOSPHERE 2022; 301:134766. [PMID: 35490760 DOI: 10.1016/j.chemosphere.2022.134766] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Carbendazim (CAR) as a fungicide is utilized for fruits and vegetables to provide diseases' control and the degradation of carbendazim having benzimidazole ring is slow. Herein, a molecularly imprinted electrochemical sensor based on CdMoO4/g-C3N4 nanocomposite was prepared for CAR determination in fruit juice samples. Firstly, CdMoO4/g-C3N4 nanocomposite with high yield was fabricated via one-pot in-situ hydrothermal approach including environmentally friendly method. Formation of CAR imprinted polymers was performed on CdMoO4/g-C3N4 nanocomposite modified glassy carbon electrode (GCE) in presence of CAR as template and pyrrole (Py) as a monomer by cyclic voltammetry (CV) technique. Following the morphological, structural, and optical characterization of as-synthesized nanocomposite, the electrochemical techniques were also implemented to evaluate the electrochemical features of fabricated electrodes. The limit of quantification (LOQ) and limit of detection (LOD) values were calculated as 0.1 × 10-10 M, and 2.5 × 10-12 M, respectively in addition to satisfactory selectivity, stability, reproducibility and reusability. The findings revealed that the proposed CAR imprinted electrochemical sensor can be successfully employed in food safety.
Collapse
Affiliation(s)
- Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey.
| |
Collapse
|
7
|
Zou Y, Zhou X, Xie L, Tang H, Yan F. Vertically-Ordered Mesoporous Silica Films Grown on Boron Nitride-Graphene Composite Modified Electrodes for Rapid and Sensitive Detection of Carbendazim in Real Samples. Front Chem 2022; 10:939510. [PMID: 35903187 PMCID: PMC9314778 DOI: 10.3389/fchem.2022.939510] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Carbendazim (CBZ), a kind of widely used pesticide, is harmful to human health and environmental ecology. Therefore, it is of great importance to detect CBZ in real samples. Herein we report the stable growth of vertically-ordered mesoporous silica films (VMSF) on the glassy carbon electrode (GCE) using boron nitride-reduced graphene oxide (BN-rGO) nanocomposite as an adhesive and electroactive layer. Oxygen-containing groups of rGO and 2D planar structure of BN-rGO hybrid favor the stable growth of VMSF via the electrochemically assisted self-assembly (EASA) method. Combining the good electrocatalytic activity of BN-rGO and the enrichment effect of VMSF, the proposed VMSF/BN-rGO/GCE can detect CBZ with high sensitivity (3.70 μA/μM), a wide linear range (5 nM–7 μM) and a low limit of detection (2 nM). Furthermore, due to the inherent anti-fouling and anti-interference capacity of VMSF, direct and rapid electrochemical analyses of CBZ in pond water and grape juice samples are also achieved without the use of complicated sample treatment processes.
Collapse
Affiliation(s)
- Yanqi Zou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyu Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liuhong Xie
- The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
- *Correspondence: Hongliang Tang, ; Fei Yan,
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Hongliang Tang, ; Fei Yan,
| |
Collapse
|
8
|
Peng G, Gao F, Zou J, Wang X, Gao Y, Zhou H, Liu S, Li M, Lu L. One-step electrochemical synthesis of tremella-like Co-MOFs/carbon nanohorns films for enhanced electrochemical sensing of carbendazim in vegetable and fruit samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Nguyen MC, Ngan Luong TQ, Vu TT, Anh CT, Dao TC. Synthesis of wool roll-like silver nanoflowers in an ethanol/water mixture and their application to detect traces of the fungicide carbendazim by SERS technique. RSC Adv 2022; 12:11583-11590. [PMID: 35425087 PMCID: PMC9006241 DOI: 10.1039/d1ra09286c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
The Raman signal enhancement ability of the surface-enhanced Raman scattering (SERS) technique is largely determined by the SERS substrate, which is usually a collection of precious metal (such as silver or gold) nanoparticles. For use in the SERS substrate, anisotropic metal nanoparticles, e.g. flower-like, will be preferred over the isotropic ones since they will give higher Raman enhancement. The problem is that it is very difficult to fabricate anisotropic metal nanoparticles as small as the isotropic ones that are best suited for use as SERS substrates. This study deals with the synthesis of wool roll-like silver nanoflowers (AgNFs) in a mixed ethanol/water solution instead of the usual aqueous solution when reducing silver nitrate with ascorbic acid in the presence of citric acid, which acts as a structure-directing agent. The size of the wool roll-shaped AgNFs was reduced from about 700 nm when the solution was purely aqueous to about 280 nm when in the mixed solution the ethanol/water volume ratio was 75/25. Thanks to the size reduction of AgNFs, the enhancement factor of SERS substrates made from them has increased dramatically, from 2.7 × 106 when the size of AgNFs is 700 nm to 5.4 × 109 when their size is 280 nm (the calculation is based on rhodamine 6G Raman and SERS spectroscopy). The application of the above AgNFs to recording the SERS spectrum of carbendazim (CBZ), a typical fungicide, at low concentrations has also shown that the smaller the size of the AgNFs, the higher the intensity of the CBZ characteristic bands. The wool roll-shaped AgNFs with a size of 280 nm allowed CBZ to be detected down to a concentration of 0.01 ppm (4.2 × 10-8 M) with a detection limit of 3.2 ppb (13.4 × 10-9 M).
Collapse
Affiliation(s)
- Manh Cuong Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Truc Quynh Ngan Luong
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Thi Thu Vu
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Cao Tuan Anh
- Tantrao University Yen Son Trung Mon 22000 Tuyenquang Vietnam
| | - Tran Cao Dao
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| |
Collapse
|
10
|
Li Y, Chen X, Ren H, Li X, Chen S, Ye BC. A novel electrochemical sensor based on molecularly imprinted polymer-modified C-ZIF67@Ni for highly sensitive and selective determination of carbendazim. Talanta 2022; 237:122909. [PMID: 34736646 DOI: 10.1016/j.talanta.2021.122909] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022]
Abstract
In this work, we propose a two-step coating method, combining C-ZIF67@Ni with molecular imprinting polymer (MIP), to develop a high-sensitivity and high-selectivity Carbendazim (CBD) electrochemical sensor. ZIF67@Ni was prepared by a simple chemical bath method, and C-ZIF67@Ni was obtained by high-temperature carbonization of ZIF67@Ni. Then, MIP layer was prepared by electrochemical in-situ polymerization, with O-aminophenol as functional monomers, CBD acting as template on the surface of the C-ZIF67@Ni-modified glassy carbon electrode (GCE). During the preparation process, the types of functional monomers, the polymerization solution pH, the ratio of functional monomers to template molecules, and the incubation time are optimized. The morphological characteristics, composition information and electrochemical properties of MIP/C-ZIF67@Ni/GCE were investigated in detail under optimal conditions. Physical characterization and electrochemical tests revealed that ZIF67@Ni significantly improves the electron transmission capacity and surface area of the sensor after high-temperature carbonization. C-ZIF67@ Ni has a good synergistic effect on MIP, allowing rapid and specific identification of the test substance. MIP/C-ZIF67@Ni/GCE showed a good linear relationship with CBD in the concentration range from 4 × 10-13 M to 1 × 10-9 M, the lowest detection limit was 1.35 × 10-13 M (S/N = 3) R2 = 0.9983 and RSD = 2.34. Additionally, the sensor showed good repeatability, stability, and selectivity, and can be used for the detection of carbendazim in soil and water with a recovery of 98% above.
Collapse
Affiliation(s)
- Yangguang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xuan Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Hailong Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Shenyan Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
11
|
Tursen J, Yang T, Bai L, Li D, Tan R. Determination of imidacloprid and acetamiprid in bottled juice by a new DLLME-HPLC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50867-50877. [PMID: 33973119 DOI: 10.1007/s11356-021-13540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
A new kind of surfactant-emulsified vortex-assisted dispersive liquid-liquid microextraction method (SE-VA-DLLME) using benzyldimethyldodecylammonium chloride (BDDAC) as emulsifier and disperser has been developed for the determination of imidacloprid and acetamiprid in bottled grenadine and black currant juice samples prior to high-performance liquid chromatography-diode array detection. For grenadine juice and black currant juice, LODs were 0.78 and 0.45 μg/L and 0.81 and 0.83 μg/L and LOQs were 2.8 and 1.7 μg/L and 3.2 and 2.8 μg/L for imidacloprid and acetamiprid, respectively. The linear ranges were wider than 10-3000 μg/L with a correlation coefficient higher than 0.9913, the extraction recoveries were in the range of 61.6-84.2%, the enrichment factors were in the range of 27.0-43.3, and the recoveries and relative standard deviations of the studied neonicotinoids were in the range of 91.94-99.63% and 2.8-6.7%, respectively. The proposed method is presented as a simple, cheap, precise, accurate, and sensitive alternative for the determination of imidacloprid and acetamiprid in bottled grenadine juice and black currant juice samples.
Collapse
Affiliation(s)
- Janar Tursen
- College of Chemical Engineering, Xinjiang Agriculture University, No. 311, Agriculture University East Street, Urumqi, 830052, China.
| | - Ting Yang
- Dataway Horizon Technology Company Limited, No. 24, Jiuxianqiao Middle Road, Chaoyang District, Beijing, 100015, China
| | - Lu Bai
- College of Chemical Engineering, Xinjiang Agriculture University, No. 311, Agriculture University East Street, Urumqi, 830052, China
| | - Deqiang Li
- College of Chemical Engineering, Xinjiang Agriculture University, No. 311, Agriculture University East Street, Urumqi, 830052, China
| | - Ruikang Tan
- College of Chemical Engineering, Xinjiang Agriculture University, No. 311, Agriculture University East Street, Urumqi, 830052, China
| |
Collapse
|
12
|
An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Muhammad N, Zia-ul-Haq M, Ali A, Naeem S, Intisar A, Han D, Cui H, Zhu Y, Zhong JL, Rahman A, Wei B. Ion chromatography coupled with fluorescence/UV detector: A comprehensive review of its applications in pesticides and pharmaceutical drug analysis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
14
|
Chung YC, Park JE, Choi JW, Chun BC. The grafted carbendazim and 2,4,6-tris(dimethylaminomethyl)phenyl group onto polyurethane to improve its antifungal effectiveness and hydrophilicity. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03126-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zhang X, Du J, Wu D, Long X, Wang D, Xiong J, Xiong W, Liao X. Anchoring Metallic MoS 2 Quantum Dots over MWCNTs for Highly Sensitive Detection of Postharvest Fungicide in Traditional Chinese Medicines. ACS OMEGA 2021; 6:1488-1496. [PMID: 33490808 PMCID: PMC7818587 DOI: 10.1021/acsomega.0c05253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 06/01/2023]
Abstract
Carbendazim, a very common contamination to the traditional Chinese medicines (TCMs), has posed serious threat to the environment and human health. However, sensitive and selective detection of carbendazim (MBC) in the TCMs is a big challenge for their complex chemical constituents. In this work, a 0D/1D nanohybrid was developed by anchoring 1T-phased MoS2 quantum dots (QDs) over multiwall carbon nanotubes (MWCNTs) via a facile assembly method. High-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis (TGA) together with EIS reveal that the 1T-phased QDs can anchor over MWCNTs via van der Waals forces, and the anchoring improves the nanohybrid surface area and conductivity. Therefore, the electrochemical sensor fabricated based on the MoS2 QDs@MWCNT nanohybrid shows excellent catalytic activity to MBC oxidation. Under optimized conditions, the sensor presents a linear voltammetry response to MBC concentration from 0.04 to 1.00 μmol·L-1, a low detection limit of 2.6 × 10-8 mol·L-1, as well as high selectivity, good reproducibility, and long-term stability. Moreover, the sensor has been successfully employed to determine MBC in two typical TCMs and the obtained recoveries are in good accordance with the results achieved by HPLC, showing that the constructed sensor plate holds great practical application in MBC analysis with complex matrix.
Collapse
Affiliation(s)
- Xue Zhang
- Collaborative
Innovation Center of Postharvest Key Technology and Quality Safety
of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, P. R. China
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Juan Du
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Dongping Wu
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Xiaoyi Long
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Dan Wang
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Jianhua Xiong
- College
of Food Science and Engineering, Jiangxi
Agricultural University, Nanchang 330045, P. R. China
| | - Wanming Xiong
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Xiaoning Liao
- Collaborative
Innovation Center of Postharvest Key Technology and Quality Safety
of Fruits and Vegetables in Jiangxi Province, Nanchang 330045, P. R. China
- Department
of Chemistry, Jiangxi Agricultural University, Nanchang 330045, P. R. China
- Key
Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry
of Education, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| |
Collapse
|
16
|
Subhani Q, Muhammad N, Huang Z, Asif M, Hussain I, Zahid M, Hairong C, Zhu Y, Guo D. Simultaneous determination of acetamiprid and 6-chloronicotinic acid in environmental samples by using ion chromatography hyphenated to online photoinduced fluorescence detector. J Sep Sci 2020; 43:3921-3930. [PMID: 32844548 DOI: 10.1002/jssc.202000635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 01/01/2023]
Abstract
This study aims to introduce a simple, sensitive, and cost-effective method for the simultaneous determination of acetamiprid and its main metabolite 6-chloronicotinic acid in environmental samples by using a nonsuppressed ion chromatography hyphenated with an online postcolumn photoinduced fluorescence detection system. The fluorescence detector wavelengths λex /λem = 257/382 nm was set for up to 6.0 min for acetamiprid, while λex /λem = 231/370 nm programmed for 6-chloronicotinic acid for the rest of the analysis time. Both samples were treated by applying miniaturized quick, easy, cheap, effective, rugged, and safe method before the separation of analytes on an IonPac® AS11-HC column by pumping 40 mM NaOH having minuscule content of acetonitrile (5%, v/v) as an eluent. Both intrinsically nonfluorescent analytes were turned-on by online postcolumn photoinduced derivatization, avoiding the need for complex chemical derivatization or addition of a postcolumn extra pump. The developed method was appraised for the analysis of environmental samples, exhibiting excellent linearity (0.050-10 μg/mL) with a correlation coefficient greater than 0.9993 for both analytes. Whereas, obtained limit of detection (0.025-0.0072 μg/mL), recoveries (98.02-116.00%), and inter- and intraday precision (≤3.02 %) were satisfactory for both compounds in environmental samples.
Collapse
Affiliation(s)
- Qamar Subhani
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China.,Higher Education Department, Lahore, Punjab, Pakistan.,Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Nadeem Muhammad
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China.,Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Zhouman Huang
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Irshad Hussain
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cui Hairong
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Dandan Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China.,Ningbo University, Institution of drug discovery technology, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
17
|
Sant'Anna MVS, Carvalho SWMM, Gevaerd A, Silva JOS, Santos E, Carregosa ISC, Wisniewski A, Marcolino-Junior LH, Bergamini MF, Sussuchi EM. Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta 2020; 220:121334. [PMID: 32928384 DOI: 10.1016/j.talanta.2020.121334] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022]
Abstract
For the first time, a nanocomposite based on biochar and reduced graphene oxide (rGO) was employed to construct a modified carbon paste electrode and applied for the determination of carbendazim (CBZ). Biochar was obtained by through pyrolysis of Eichhornia crassipes biomass, also known how "Aguapé" at 400 °C. The modified electrode with our nanocomposite proposal shows to be able to preconcentrate CBZ and presented the highest analytical response in comparison to the unmodified electrode and by the electrodes prepared with the proposed materials separately. Using differential pulse voltammetry (DPV) under optimized conditions, the sensor showed a linear dynamic response (LDR) from 30 to 900 nmol L-1, a limit of detection (LOD) of 2.3 nmol L-1 and limit of quantification (LOQ) of 7.7 nmol L-1. No significant influence of inorganic ions or organic compounds on sensor response was verified, considering the recovery evaluation data. The proposed sensor was successfully applied for the determination of CBZ in spiked whole orange juice, lettuce leaves, drinking water, and wastewater samples. Good recovery values were found using the ex-situ methodology, showing excellent analytical performance of the electrochemical sensor based on biochar and rGO nanocomposite.
Collapse
Affiliation(s)
- Mércia V S Sant'Anna
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil; Laboratório de Corrosão e Nanotecnologia (LCNT), Núcleo de Competência Em Petróleo e Gás de Sergipe (NUPEG), Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| | - Sanny W M M Carvalho
- Laboratório de Corrosão e Nanotecnologia (LCNT), Núcleo de Competência Em Petróleo e Gás de Sergipe (NUPEG), Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| | - Ava Gevaerd
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CEP 81.531-980, Curitiba, PR, Brazil.
| | - Jonatas O S Silva
- Laboratório de Corrosão e Nanotecnologia (LCNT), Núcleo de Competência Em Petróleo e Gás de Sergipe (NUPEG), Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| | - Ewerton Santos
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| | - Ingred S C Carregosa
- Grupo de Pesquisa Em Petróleo e Energia da Biomassa (PEB), Departamento de Química, Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| | - Alberto Wisniewski
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil; Grupo de Pesquisa Em Petróleo e Energia da Biomassa (PEB), Departamento de Química, Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CEP 81.531-980, Curitiba, PR, Brazil.
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), CEP 81.531-980, Curitiba, PR, Brazil.
| | - Eliana Midori Sussuchi
- Programa de Pós-Graduação Em Química, Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil; Laboratório de Corrosão e Nanotecnologia (LCNT), Núcleo de Competência Em Petróleo e Gás de Sergipe (NUPEG), Universidade Federal de Sergipe (UFS), CEP 49.100-000, São Cristovão, SE, Brazil.
| |
Collapse
|
18
|
Malode SJ, Keerthi PK, Shetti NP, Kulkarni RM. Electroanalysis of Carbendazim using MWCNT/Ca‐ZnO Modified Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.201900776] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shweta J. Malode
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Prabhu K. Keerthi
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Nagaraj P. Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Raviraj M. Kulkarni
- Department of Chemistry and Centre for Nanoscience and Nanotechnology, K.L.S. Gogte Institute of Technology (Autonomous)Affiliated to Visvesvaraya Technological University Belagavi- 590008 Karnataka India
| |
Collapse
|
19
|
Farooq S, Nie J, Cheng Y, Bacha SAS, Chang W. Selective extraction of fungicide carbendazim in fruits using β‐cyclodextrin based molecularly imprinted polymers. J Sep Sci 2020; 43:1145-1153. [DOI: 10.1002/jssc.201901029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Saqib Farooq
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Jiyun Nie
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- College of HorticultureQingdao Agricultural University Qingdao P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Yang Cheng
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Syed Asim Shah Bacha
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| | - Weixia Chang
- Research Institute of PomologyChinese Academy of Agricultural Sciences (CAAS) Liaoning P. R. China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
- Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng)Ministry of Agriculture and Rural Affairs P. R. China
| |
Collapse
|
20
|
Maximiano EM, Cardoso CAL, Arruda GJ. Simultaneous Electroanalytical Determination of Thiram and Carbendazim in Samples of Fresh Fruit Juices in the Presence of Surfactants. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-019-01550-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Moradi Shahrebabak S, Saber-Tehrani M, Faraji M, Shabanian M, Aberoomand-Azar P. Simultaneous magnetic solid phase extraction of acidic and basic pesticides using triazine-based polymeric network modified magnetic nanoparticles/graphene oxide nanocomposite in water and food samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Yang P, Pan X, Wang J, Yang R, Chu J, Chen H, Nan H, Yang L, Zhao X. Nozzle-Less Electrospun Nitrogen-Doped Hollow Carbon Nanofibers as Enhanced Sensing Platform for Carbendazim Electrochemical Detection. ChemistrySelect 2019. [DOI: 10.1002/slct.201803056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pan Yang
- Institute of Materials; Chinese Academy of Engineering Physics; Jiangyou 621908 P. R. China
| | - Xinying Pan
- School of Chemical Engineering; Qinghai University; Xining 810016 P. R. China
| | - Jingchuan Wang
- Institute of Materials; Chinese Academy of Engineering Physics; Jiangyou 621908 P. R. China
| | - Ruizhu Yang
- Institute of Materials; Chinese Academy of Engineering Physics; Jiangyou 621908 P. R. China
| | - Jian Chu
- Institute of Materials; Chinese Academy of Engineering Physics; Jiangyou 621908 P. R. China
| | - Huiyuan Chen
- School of Chemical Engineering; Qinghai University; Xining 810016 P. R. China
| | - Hui Nan
- School of Chemical Engineering; Qinghai University; Xining 810016 P. R. China
| | - Lijun Yang
- Institute of Materials; Chinese Academy of Engineering Physics; Jiangyou 621908 P. R. China
| | - Xiaochong Zhao
- Institute of Materials; Chinese Academy of Engineering Physics; Jiangyou 621908 P. R. China
| |
Collapse
|
23
|
Muhammad N, Zhang Y, Li W, Zhao YG, Ali A, Subhani Q, Mahmud T, Liu J, Cui H, Zhu Y. Determination of nitenpyram and 6-chloronicotinic acid in environmental samples by ion chromatography coupled with online photochemically induced fluorescence detector. J Sep Sci 2018; 41:4096-4104. [PMID: 30230241 DOI: 10.1002/jssc.201800612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022]
Abstract
A simple, cost-effective, sensitive, and quick method for the determination of nitenpyram and its metabolite 6-chloronicotinic acid in environmental samples was developed by coupling an ion chromatograph with a fluorescence detector and a post-column photochemical reactor. This developed analytical method involved a rapid sample extraction by modified and miniaturized quick, easy, cheap, effective, rugged, and safe method followed by isocratic ion chromatographic separation of nitenpyram and 6-chloronicotinic acid into an IonPac™ AS11-HC column protected by IonPac™ AG11A guard column by running 30 mM NaOH + 10% acetonitrile mobile phase. A homemade post-column photochemical reactor was also integrated with the ion chromatographic system for online transformation of both analytes into their respective highly fluorescent photoproduct in basic media without using an extra pump. The developed method was validated by following SANTE/11945/2015 guidelines on analytical quality control and validation procedures. The method showed a good linear response (r > 0.999), improved limit of detection (0.101-0.132 μg/L), minimum or no matrix effect, excellent recoveries (90.2-100.10%) and relative standard deviations were found to be ≤6.50%.
Collapse
Affiliation(s)
- Nadeem Muhammad
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China.,Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China
| | - Yun Zhang
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China
| | - Weixia Li
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China
| | - Yong-Gang Zhao
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China
| | - Amjad Ali
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China
| | - Qamar Subhani
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China.,Higher Education Department, Punjab, Lahore, Pakistan
| | - Tariq Mahmud
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Junwei Liu
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China.,Department of Applied Chemistry, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Hairong Cui
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, P. R. China
| | - Yan Zhu
- Department of chemistry, Xixi Campus, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
24
|
Muhammad N, Subhani Q, Wang F, Lou C, Liu J, Zhu Y. Simultaneous determination of two plant growth regulators in ten food samples using ion chromatography combined with QuEChERS extraction method (IC-QuEChERS) and coupled with fluorescence detector. Food Chem 2018; 241:308-316. [DOI: 10.1016/j.foodchem.2017.08.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/29/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
25
|
Muhammad N, Wang F, Subhani Q, Zhao Q, Qadir MA, Cui H, Zhu Y. Comprehensive two-dimensional ion chromatography (2D-IC) coupled to a post-column photochemical fluorescence detection system for determination of neonicotinoids (imidacloprid and clothianidin) in food samples. RSC Adv 2018; 8:9277-9286. [PMID: 35541852 PMCID: PMC9078649 DOI: 10.1039/c7ra12555k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
There are increasing concerns about the dietary risks of neonicotinoids (NNIs); therefore their sensitive and accurate determination in dietary products is indispensable. However, the complex composition of agricultural food matrixes makes their extraction and quantitative determination a challenging task. Realizing this need, we herein report a simple, cost-effective, selective and sensitive fluorescence analytical workflow for analyses of two non-fluorescent neonicotinoids imidacloprid (IMI) and clothianidin (CLT) in six complex food samples (honey, ginger, durian, apple, tomato, cucumber) by online clean-up of sample extracts using two-dimensional ion chromatography (2D-IC) and a subsequent online post column UV induced fluorescence detection system. This online clean-up setup has proven advantageous to improve the limit of detection, potentially diminish matrix effects, and reduce analysis time and labor. The developed method showed excellent analytical figures of merit including linearity, selectivity, repeatability, recovery, and resolution for analysis of IMI and CLT in food samples. A 2D-IC system was successfully fabricated for clean isocratic chromatographic separations and sensitive post column UV induced fluorescence determination of two NNIs in six complex food samples.![]()
Collapse
Affiliation(s)
- Nadeem Muhammad
- Department of Environmental Engineering
- Wuchang University of Technology
- Wuhan
- China
- Department of Chemistry
| | - Fenglian Wang
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Qamar Subhani
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Qiming Zhao
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | | | - Hairong Cui
- Department of Environmental Engineering
- Wuchang University of Technology
- Wuhan
- China
| | - Yan Zhu
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| |
Collapse
|
26
|
Tian J, Rustum A. Development and Validation of a Stability-indicating Reversed-phase UPLC-UV Method for the Assay of Imidacloprid and Estimation of its Related Compounds. J Chromatogr Sci 2017; 56:131-138. [DOI: 10.1093/chromsci/bmx091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/29/2017] [Indexed: 11/13/2022]
|
27
|
Ma Y, Liu L, Tang W, Zhu T. Sulfonated poly(styrene-divinylbenzene) modified with amines and the application for pipette-tip solid-phase extraction of carbendazim in apples. J Sep Sci 2017; 40:3938-3945. [PMID: 28792120 DOI: 10.1002/jssc.201700594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Sulfonated poly(styrene-divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette-tip solid-phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid-phase extraction sorbent based on sulfonated poly(styrene-divinylbenzene) were tested under static and pipette-tip solid-phase extraction conditions. The polymer modified with p-methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00-200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31-98.13% with associated intraday relative standard deviations of 0.76-2.13% and interday relative standard deviations of 1.10-1.85%. Sulfonated poly(styrene-divinylbenzene) modified with p-methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette-tip solid-phase extraction.
Collapse
Affiliation(s)
- Yuxin Ma
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lingling Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Weiyang Tang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
28
|
Yanke JGM, Dedzo GK, Ngameni E. Solvent Effect on the Grafting of an Organophilic Silane Onto Smectite-type Clay: Application as Electrode Modifiers for Pesticide Detection. ELECTROANAL 2017. [DOI: 10.1002/elan.201700144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Gustave Kenne Dedzo
- Laboratory of Analytical Chemistry; Faculty of Science; University of Yaounde I; B.P. 812 Yaoundé Cameroon
| | - Emmanuel Ngameni
- Laboratory of Analytical Chemistry; Faculty of Science; University of Yaounde I; B.P. 812 Yaoundé Cameroon
| |
Collapse
|
29
|
Cui R, Xu D, Xie X, Yi Y, Quan Y, Zhou M, Gong J, Han Z, Zhang G. Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chem 2017; 221:457-463. [DOI: 10.1016/j.foodchem.2016.10.094] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
|
30
|
İlktaç R, Aksuner N, Henden E. Selective and sensitive fluorimetric determination of carbendazim in apple and orange after preconcentration with magnetite-molecularly imprinted polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:86-93. [PMID: 27886648 DOI: 10.1016/j.saa.2016.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
In this study, magnetite-molecularly imprinted polymer has been used for the first time as selective adsorbent before the fluorimetric determination of carbendazim. Adsorption capacity of the magnetite-molecularly imprinted polymer was found to be 2.31±0.63mgg-1 (n=3). Limit of detection (LOD) and limit of quantification (LOQ) of the method were found to be 2.3 and 7.8μgL-1, respectively. Calibration graph was linear in the range of 10-1000μgL-1. Rapidity is an important advantage of the method where re-binding and recovery processes of carbendazim can be completed within an hour. The same imprinted polymer can be used for the determination of carbendazim without any capacity loss repeatedly for at least ten times. Proposed method has been successfully applied to determine carbendazim residues in apple and orange, where the recoveries of the spiked samples were found to be in the range of 95.7-103%. Characterization of the adsorbent and the effects of some potential interferences were also evaluated. With the reasonably high capacity and reusability of the adsorbent, dynamic calibration range, rapidity, simplicity, cost-effectiveness and with suitable LOD and LOQ, the proposed method is an ideal method for the determination of carbendazim.
Collapse
Affiliation(s)
- Raif İlktaç
- Application and Research Center for Testing and Analysis, University of Ege, 35100 Bornova, İzmir, Turkey
| | - Nur Aksuner
- Department of Chemistry, Faculty of Science, University of Ege, 35100 Bornova, İzmir, Turkey.
| | - Emur Henden
- Department of Chemistry, Faculty of Science, University of Ege, 35100 Bornova, İzmir, Turkey
| |
Collapse
|
31
|
Li M, Dai C, Wang F, Kong Z, He Y, Huang YT, Fan B. Chemometric-assisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables. Sci Rep 2017; 7:42489. [PMID: 28225030 PMCID: PMC5320482 DOI: 10.1038/srep42489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/11/2017] [Indexed: 02/04/2023] Open
Abstract
An effective analysis method was developed based on a chemometric tool for the simultaneous quantification of five different post-harvest pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), carbendazim, thiabendazole, iprodione, and prochloraz) in fruits and vegetables. In the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, the factors and responses for optimization of the extraction and cleanup analyses were compared using the Plackett-Burman (P-B) screening design. Furthermore, the significant factors (toluene percentage, hydrochloric acid (HCl) percentage, and graphitized carbon black (GCB) amount) were optimized using a central composite design (CCD) combined with Derringer's desirability function (DF). The limits of quantification (LOQs) were estimated to be 1.0 μg/kg for 2,4-D, carbendazim, thiabendazole, and prochloraz, and 1.5 μg/kg for iprodione in food matrices. The mean recoveries were in the range of 70.4-113.9% with relative standard deviations (RSDs) of less than 16.9% at three spiking levels. The measurement uncertainty of the analytical method was determined using the bottom-up approach, which yielded an average value of 7.6%. Carbendazim was most frequently found in real samples analyzed using the developed method. Consequently, the analytical method can serve as an advantageous and rapid tool for determination of five preservative pesticides in fruits and vegetables.
Collapse
Affiliation(s)
- Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Chao Dai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
| | - Zhiqiang Kong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Yan He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
| | - Ya Tao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing/Laboratory of Agro-Products Quality Safety Risk Assessment, Ministry of Agriculture, Beijing 100193, P.R. China
| |
Collapse
|
32
|
Eissa S, Zourob M. Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim. Anal Chem 2017; 89:3138-3145. [PMID: 28264568 DOI: 10.1021/acs.analchem.6b04914] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article reports a novel aptamer-based impedimetric detection of carbendazim, a commonly used benzimidazole fungicide in agriculture. High affinity and specificity DNA aptamers against carbendazim were successfully selected using systematic evolution of ligand by exponential enrichment (SELEX). The dissociation constants (Kds) of the selected DNA aptamers after 10 in vitro selection cycles were characterized using fluorescence-based assays showing values in the nanomolar range. The aptamer which showed the highest degree of affinity and conformation change was used to fabricate an electrochemical aptasensor via self-assembly of thiol-modified aptamer on gold electrodes. The aptasensor exploits the specific recognition of carbendazim by the aptamer immobilized on the gold surface which leads to conformational changes in the aptamer structure. This conformational change alters the access of a ferrocyanide/ferricyanide redox couple to the aptasensor surface. The aptasensor response is thus measured by following the increase in the electron transfer resistance of the redox couple using Faradaic electrochemical impedance spectroscopy. This method allowed a selective and sensitive label-free detection of carbendazim within a range of 10 pg/mL-10 ng/mL with a limit of detection of 8.2 pg/mL. The aptasensor did not show cross reactivity with other commonly used pesticides such as fenamiphos, isoproturon, atrazine, linuron, thiamethoxam, trifluralin, carbaryl, and methyl parathion. Moreover, the aptasensor has been applied in different spiked food matrixes showing high recovery percentages. We believe that the proposed aptasensor is a promising alternative to the currently used methods for carbendazim monitoring.
Collapse
Affiliation(s)
- Shimaa Eissa
- Department of Chemistry, Alfaisal University , Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University , Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia.,King Faisal Specialist Hospital and Research Center , Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| |
Collapse
|
33
|
Muhammad N, Li W, Subhani Q, Wang F, Zhao YG, Zhu Y. Dual application of synthesized SnO2nanoparticles in ion chromatography for sensitive fluorescence determination of ketoprofen in human serum, urine, and canal water samples. NEW J CHEM 2017. [DOI: 10.1039/c7nj01757j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Systematic layout of dual application of SnO2NPs in ion chromatography for selective determination of non-fluorescent KP in complex samples.
Collapse
Affiliation(s)
- Nadeem Muhammad
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Weixia Li
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Qamar Subhani
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Fenglian Wang
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Yong-Gang Zhao
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Yan Zhu
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| |
Collapse
|
34
|
Ya Y, Jiang C, Mo L, Li T, Xie L, He J, Tang L, Ning D, Yan F. Electrochemical Determination of Carbendazim in Food Samples Using an Electrochemically Reduced Nitrogen-Doped Graphene Oxide-Modified Glassy Carbon Electrode. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0708-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Highly sensitive quantitation of pesticides in fruit juice samples by modeling four-way data gathered with high-performance liquid chromatography with fluorescence excitation-emission detection. Talanta 2016; 154:208-18. [DOI: 10.1016/j.talanta.2016.03.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 02/01/2023]
|
36
|
Petroni JM, Lucca BG, Fogliato DK, Ferreira VS. Sensitive Approach for Voltammetric Determination of Carbendazim Based on the Use of an Anionic Surfactant. ELECTROANAL 2016. [DOI: 10.1002/elan.201501069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Razzino CA, Sgobbi LF, Canevari TC, Cancino J, Machado SA. Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material. Food Chem 2015; 170:360-5. [DOI: 10.1016/j.foodchem.2014.08.085] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/30/2022]
|
38
|
Fuentes E, Cid C, Báez ME. Determination of imidacloprid in water samples via photochemically induced fluorescence and second-order multivariate calibration. Talanta 2015; 134:8-15. [DOI: 10.1016/j.talanta.2014.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 02/04/2023]
|
39
|
Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV–vis spectrophotometry. Talanta 2015; 134:24-29. [DOI: 10.1016/j.talanta.2014.10.056] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022]
|
40
|
Analysis of insecticide thiacloprid by ion chromatography combined with online photochemical derivatisation and fluorescence detection in water samples. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2013.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|