1
|
Brunet C, Marek RF, Stanier CO, Hornbuckle KC. Concentrations of Volatile Methyl Siloxanes in New York City Reflect Emissions from Personal Care and Industrial Use. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8835-8845. [PMID: 38722766 PMCID: PMC11112754 DOI: 10.1021/acs.est.3c10752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m-3), D4 (57 ng m-3), D5 (230 ng m-3), D6 (11 ng m-3), L5 (2.5 ng m-3), and L7 (1.3 ng m-3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.
Collapse
Affiliation(s)
- Christopher
E. Brunet
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City Iowa 52242, United States
| | - Rachel F. Marek
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City Iowa 52242, United States
| | - Charles O. Stanier
- Department
of Chemical and Biochemical Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City Iowa 52242, United States
| | - Keri C. Hornbuckle
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City Iowa 52242, United States
| |
Collapse
|
2
|
Wang WL, Zhang Y, Sun DM, Chen ZY, Qian M, Zhou Y, Feng XS, Zhang XY. Volatile Methylsiloxanes in Complex Samples: Recent Updates on Pretreatment and Analysis Methods. Crit Rev Anal Chem 2023:1-21. [PMID: 37603425 DOI: 10.1080/10408347.2023.2245050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Volatile methylsiloxanes (VMSs) are massively produced chemicals having applications in industry and home because of their physical and chemical characteristics. They are used in personal care products such as cosmetics, household coatings, cleaners, skin care products, and others. Resultantly, large number of VMSs are discharged into air where they can be subjected to atmospheric migrations over long distances causing toxic and estrogenic effects, persistence, and bioaccumulations. Many institutions have taken measures to control VMSs. They require accurate, rapid, and sensitive pretreatment and analysis methods for diverse samples. Herein, the pretreatment and determination methods of VMSs as reported in recent years are reviewed and summarized. Pretreatments include commonly methods such as membrane-assisted solvent extraction, liquid-liquid extraction, and others, while novel methods are solid phase extraction, solid phase microextraction, diverse liquid phase microextraction and others. Analyses are made through gas chromatography-based methods. In addition, the advantages, and disadvantages of techniques are compared, and the prospects of pretreatment and analysis methods are discussed.
Collapse
Affiliation(s)
- Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zu-Yi Chen
- School of Pharmacy, China Medical University, Shenyang, China
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Quaid T, Reza T. COSMO Prediction of Siloxane Compounds Absorption on Type 3 and Type 5 Deep Eutectic Solvents. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
4
|
Gabriel MF, Felgueiras F, Batista R, Ribeiro C, Ramos E, Mourão Z, de Oliveira Fernandes E. Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto. ENVIRONMENTAL RESEARCH 2021; 198:110477. [PMID: 33197420 DOI: 10.1016/j.envres.2020.110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Exposure to air pollution in early years can exacerbate the risk of noncommunicable diseases throughout childhood and the entire life course. This study aimed to assess temperature, relative humidity (RH), carbon dioxide (CO2) and monoxide (CO), particulate matter (PM2.5, PM10), ultrafine particles, nitrogen dioxide (NO2), ozone (O3), formaldehyde, acetaldehyde and volatile organic compounds (VOC) levels in the two rooms where infant twins spend more time at home (30 dwellings, Northern Portugal). Findings showed that, in general, the worst indoor environmental quality (IEQ) settings were found in bedrooms. In fact, although most of the bedrooms surveyed presented adequate comfort conditions in terms of temperature and RH, several children are sleeping in a bedroom with improper ventilation and/or with a significant degree of air pollution. In particular, mean concentrations higher than recommended limits were found for CO2, PM2.5, PM10 and total VOC. Additionally, terpenes and decamethylcyclopentasiloxane were identified as main components of emissions from indoor sources. Overall, findings revealed that factors related to behaviors of the occupants, namely related to a conscientious use of cleaning products, tobacco and other consumer products (air-fresheners, incenses/candles and insecticides) and promotion of ventilation are essential for the improvement of air quality in households and for the promotion of children's health.
Collapse
Affiliation(s)
- Marta Fonseca Gabriel
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal.
| | - Fátima Felgueiras
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | - Raúl Batista
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | - Cláudia Ribeiro
- EPIUnit, Institute of Public Health, University of Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal; Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elisabete Ramos
- EPIUnit, Institute of Public Health, University of Porto, Rua Das Taipas 135, 4050-600, Porto, Portugal; Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Zenaida Mourão
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, 4200-465, Porto, Portugal
| | | |
Collapse
|
5
|
Horii Y, Ohtsuka N, Minomo K, Takemine S, Motegi M, Hara M. Distribution characteristics of methylsiloxanes in atmospheric environment of Saitama, Japan: Diurnal and seasonal variations and emission source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142399. [PMID: 33254939 DOI: 10.1016/j.scitotenv.2020.142399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
The large production volume of methylsiloxanes (MSs), combined with their high mobility/volatility and persistence, is a matter of concern from the atmospheric pollution perspective. Therefore, we evaluated of the concentrations and emission sources of MSs, including 7 cyclic methylsiloxanes (D3-D9; CMSs, the number refers to the number of Si-O bonds) and 13 linear methylsiloxanes (L3-L15; LMSs) in ambient air collected from Saitama, Japan. This is a first study regarding the evaluation of 20 methylsiloxanes in the Japanese atmosphere. We improved the air sampling methodology by determination the stability of D5 during a 7-d air sampling and arbitrary sample storage period using polystyrene-divinyl benzene copolymer sorbent (Sep-Pak plus PS-2). We analyzed air samples for MSs seasonally collected from nine locations in Saitama, including urban, suburban, rural, and mountainous areas. The mean CMS and LMS concentrations were 358 ng m-3 and 13.4 ng m-3, respectively. The D5 concentrations were distributed widely, with high concentrations in urban/suburban populous areas and dispersed at low concentrations in surrounding areas (north and mountainous areas). We analyzed 7-d air samples collected every week over a year and found apparent seasonal and periodic trends in the CMS concentrations. In the diurnal sampling campaign, we observed periodic fluctuations in ambient CMSs, with an inverse relationship with the atmospheric boundary layer development during the day. Backward trajectories and the prevailing wind direction during the sampling period indicated that the specific profiles of D4 observed in fall/winter weeks and north of Saitama could be ascribed to northwestward air-mass advection. We employed a novel approach in estimating CMSs emission sources and source apportionment by using non-negative matrix factorization (NMF). The concentration matrix was divided successfully into two factors (emission sources) namely, personal care and household products and industrial activities.
Collapse
Affiliation(s)
- Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan.
| | - Nobutoshi Ohtsuka
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Kotaro Minomo
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Shusuke Takemine
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Mamoru Motegi
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Masayuki Hara
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| |
Collapse
|
6
|
Warner NA, Nikiforov V, Krogseth IS, Bjørneby SM, Kierkegaard A, Bohlin-Nizzetto P. Reducing sampling artifacts in active air sampling methodology for remote monitoring and atmospheric fate assessment of cyclic volatile methylsiloxanes. CHEMOSPHERE 2020; 255:126967. [PMID: 32408127 DOI: 10.1016/j.chemosphere.2020.126967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Active sampling methodology for atmospheric monitoring of cyclic volatile methylsiloxanes (cVMS) was improved to reduce sampling artifacts. A new sorbent, ABN Express (ABN), was evaluated for storage stability and measurement accuracy. Storage stability of cVMS on ABN showed less than 1% degradation of the individual 13C-labelled octamethylcyclotetrasiloxane (13C4-D4), decamethylcyclopentasiloxane (13C5-D5) and dodecamethylcyclohexasiloxane (13C6-D6) after 14 days storage at room temperature and at -20 °C whereas significant degradation was observed on ENV+ sorbent at room temperature (37-62 %) and -20 °C (9-16 %). 13C4-D4 formed on ENV+ spiked with 13C5-D5, and both 13C4-D4 and 13C5-D5 formed on ENV+ spiked with 13C6-D6. However, this was not observed on the ABN sorbent. Performance of ABN was compared to ENV+ through an 8-month Arctic sampling campaign at the Zeppelin Observatory (Ny Ålesund, Svalbard). Good agreement between ABN and ENV+ was observed for D4 in the spring/summer months. However, D5 and D6 was found to be consistently higher on the ABN sorbent during this time period with D6 showing the greatest deviation. During the winter months, larger deviations were observed between ABN and ENV+ sorbents with a factor of 4 times higher atmospheric concentrations of both D5 and D6 found on ABN; indicating sorbent related degradation on ENV+. Our findings show that the ABN sorbent provides greater stability and accuracy for atmospheric monitoring of cVMS. Implications of these improvements towards atmospheric fate processes will be discussed.
Collapse
Affiliation(s)
- Nicholas A Warner
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296, Tromsø, Norway; Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Hansine Hansens veg 18, NO-9037, Tromsø, Norway.
| | - Vladimir Nikiforov
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296, Tromsø, Norway
| | - Ingjerd S Krogseth
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296, Tromsø, Norway
| | - Stine M Bjørneby
- NILU-Norwegian Institute for Air Research, NO-2027, Kjeller, Norway
| | - Amelie Kierkegaard
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|
7
|
Li Q, Lv X, Wang X, Hu J, Wang X, Ma J. Typical indoor concentrations and mass flow of cyclic volatile methylsiloxanes (cVMSs) in Dalian, China. CHEMOSPHERE 2020; 248:126020. [PMID: 32041064 DOI: 10.1016/j.chemosphere.2020.126020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Cyclic volatile methylsiloxaes (cVMSs), namely hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6), were studied for a typical indoor environment of male and female dormitories in the campus of Dalian Maritime University (DMU) in China. An empty, frit-fitted SPE cartridge was placed on top of an Isolute ENV + cartridge, sampling cVMSs in particulate and gas phases, respectively. The highest concentration of D3, D4, D5, and D6 was 190, 460, 37,000, and 670 ng m-3, respectively. All cVMSs, especially D5, were higher in female dormitories than that in male dormitories. Emission rate from different sources of cVMSs in dormitories was calculated from a survey of the use of personal care products (PCPs) by students living in the dormitory during the sampling period. The mean emission rate (ER, mg·d-1) of D4 and D5 in male dormitories was 0.12 ± 0.01 and 0.49 ± 0.03 mg d-1, respectively, and that in female dormitories was 0.21 ± 0.05 and 46 ± 17 mg d-1, respectively. Then, we modified an existing mass balance model to predict the indoor air levels of D4 and D5 in both male and female dormitories based on the usage of PCPs. There was a good agreement for D4 and D5 concentrations in female dormitories between modeled and measured concentrations with the ratio of predicted to measured values to be 1.5 and 1.2, respectively, which indicated that use of PCPs was the main source of cVMSs in university dormitories.
Collapse
Affiliation(s)
- Qingbo Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Xiaoning Lv
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaofeng Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Jiaochan Hu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Li Q, Wang X, Wang X, Lan Y, Hu J. Tube-type passive sampling of cyclic volatile methyl siloxanes (cVMSs) and benzene series simultaneously in indoor air: uptake rate determination and field application. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:973-980. [PMID: 32044895 DOI: 10.1039/c9em00445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMSs) and benzene series compounds have attracted increasing attention because they are associated with various adverse health effects. In this study, we developed and validated a novel passive air sampling method (PAS), using Tenax-TA as the sorbent, to measure the concentrations of cVMSs (D4, D5, and D6) and benzene series compounds simultaneously in indoor air. The uptake rates (R), which were calibrated side-by-side by an active air sampling method (Tenax-TA-AAS), ranged from 0.10 to 0.56 mL min-1 depending on chemicals, and the R of the TD tube with Tenax-TA was controlled by the sampler material-side and not the air-side. The passive sampling efficiency (PSE) of styrene and m,p-xylene was close to 1. Based on Pearson correlation analysis, a negative correlation was found between the molecular weight of compounds and their uptake rates. Furthermore, the calibrated Tenax-TA-PAS method was used to quantify cVMSs and benzene series compounds in a living room and an office environment in the urban area of Dalian, China. The concentrations of toluene were the highest in both the living room (10.4 μg m-3) and office (7.02 μg m-3) among the target compounds.
Collapse
Affiliation(s)
- Qingbo Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | | | | | | | | |
Collapse
|
9
|
Dugheri S, Mucci N, Bonari A, Marrubini G, Cappelli G, Ubiali D, Campagna M, Montalti M, Arcangeli G. Solid phase microextraction techniques used for gas chromatography: a review. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2018.00579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the last decade, the development and adoption of greener and sustainable microextraction techniques have been proved to be an effective alternative to classical sample preparation procedures. In this review, 10 commercially available solid-phase microextraction systems are presented, with special attention to the appraisal of their analytical, bioanalytical, and environmental engineering. This review provides an overview of the challenges and achievements in the application of fully automated miniaturized sample preparation methods in analytical laboratories. Both theoretical and practical aspects of these environment-friendly preparation approaches are discussed. The application of chemometrics in method development is also discussed. We are convinced that green analytical chemistry will be really useful in the years ahead. The application of cheap, fast, automated, “clever”, and environmentally safe procedures to environmental, clinical, and food analysis will improve significantly the quality of the analytical data.
Collapse
Affiliation(s)
- Stefano Dugheri
- 1 Industrial Hygiene and Toxicology Laboratory, Careggi University Hospital, Florence, Italy
| | - Nicola Mucci
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Bonari
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Cappelli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Ubiali
- 3 Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marcello Campagna
- 4 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manfredi Montalti
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Fromme H, Witte M, Fembacher L, Gruber L, Hagl T, Smolic S, Fiedler D, Sysoltseva M, Schober W. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven. ENVIRONMENT INTERNATIONAL 2019; 126:145-152. [PMID: 30798195 DOI: 10.1016/j.envint.2019.01.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Linear and cyclic volatile methylsiloxanes (l-VMS and c-VMS) are man-made chemicals with no natural source. They have been widely used in cosmetics, personal care products, coatings and many other products. As a consequence of their wide use, VMS can be found in different environmental media, as well as in humans. We bought 14 new silicone baking moulds and 3 metallic moulds from the market and used them in different baking experiments. Four of the silicone baking moulds were produced in Germany, two in Italy, four in China, and for the other moulds were no information available. The metal forms were all produced in Germany. VMS were measured in the indoor air throughout the baking process and at the edge and in the center of the finished cakes using a GC/MS system. Additionally, the particle number concentration (PNC) and particle size distribution were measured in the indoor air. The highest median concentrations of VMS were observed immediately following baking: 301 μg/m3 of D7, 212 μg/m3 of D6, and 130 μg/m3 of D8. The silicone moulds containing the highest concentrations of c-VMS corresponded with distinctly higher concentrations of the compounds in indoor air. Using a mould for more than one baking cycle reduced the indoor air concentrations substantially. Samples collected from the edge of the cake had higher concentrations relative to samples from the center, with a mean initial concentration of 6.6 mg/kg of D15, 3.9 mg/kg of D9, 3.7 mg/kg of D12, and 4.8 mg/kg of D18. D3 to D5 were measured only at very low concentrations. Before starting the experiment, an average PNC of 7300 particles/cm3 was observed in the room's air, while a PNC of 140,000 particles/cm3 was observed around the electric stove while it was baking, but this PNC slowly decreased after the oven was switched off. Baking with 4 of the moulds exceeded the German indoor precaution guide value for c-VMS, but the health hazard guide value was not reached during every experiment. Compared to other exposure routes, c-VMS contamination of cake from silicone moulds seems to be low, as demonstrated by the low concentrations of D4 and D6 measured. For less volatile c-VMS > D6 the results of the study indicate that food might play a more important role for daily intake. As a general rule, silicone moulds should be used only after precleaning and while strictly following the temperature suggestions of the producers.
Collapse
Affiliation(s)
- Hermann Fromme
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany; Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich, Ziemssenstrasse 1, D-80336, Munich, Germany.
| | - Matthias Witte
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Ludwig Fembacher
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Ludwig Gruber
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Tanja Hagl
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Sonja Smolic
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Dominik Fiedler
- Fraunhofer Institute Process Engineering and Packaging IVV, Dept. Product Safety and Analysis, Giggenhauser Strasse 35, D-85354 Freising, Germany
| | - Marina Sysoltseva
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| |
Collapse
|
11
|
Guo J, Zhou Y, Zhang B, Zhang J. Distribution and evaluation of the fate of cyclic volatile methyl siloxanes in the largest lake of southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:87-95. [PMID: 30530222 DOI: 10.1016/j.scitotenv.2018.11.454] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMS) used in personal care products are released to aquatic environments through wastewater effluent. cVMS are persistent, toxic, bioaccumulative, and have potential to cause ecological harm. In this study, the environmental behavior of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) were evaluated in the largest lake of southwest China, Dian Lake. Air, water and sediment samples were measured for three cVMS compounds in the winter (January) and summer (July) of 2017. In air, D5 exhibited the highest measured mean concentration among the three cVMS, which were 18.4 ± 8.0 ng·m-3 in winter and 5.78 ± 3.61 ng·m-3 in summer. In water and sediment, D6 was the cVMS with the highest measured mean concentration. The mean concentrations in water of D6 were 20.8 ± 5.8 ng·L-1 in winter and 20.4 ± 5.8 ng·L-1 in summer. The mean concentrations in sediment of D6 were 281 ± 45.8 ng·g-1 dw in winter and 270 ± 31.3 ng·g-1 dw in summer. A fugacity-based mass balance chemical fate model for lakes (QWASI) was used for Dian Lake to compare measurements and explore the behavior of cVMS. D6 was predicted to have the highest water column and sediment concentrations. Modeling results showed that most of the D5 and D6 partitioned into sediment and could persist for several years. Persistence was significantly influenced by the high rate of sediment burial. In an analysis of the impact of physicochemical properties and environmental parameters, KOC was identified as a key parameter for predicting cVMS behavior. This study illustrates the importance of cVMS in sediments and the potential aquatic risk that they may pose.
Collapse
Affiliation(s)
- Junyu Guo
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhou
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Boya Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Janechek NJ, Marek RF, Bryngelson N, Singh A, Bullard RL, Brune WH, Stanier CO. Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane. ATMOSPHERIC CHEMISTRY AND PHYSICS 2019; 19:1649-1664. [PMID: 31889955 PMCID: PMC6936766 DOI: 10.5194/acp-19-1649-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMS) are high-production chemicals present in many personal care products. They are volatile, hydrophobic, and relatively long-lived due to slow oxidation kinetics. Evidence from chamber and ambient studies indicates that oxidation products may be found in the condensed aerosol phase. In this work, we use an oxidation flow reactor to produce ~ 100 μgm-3 of organosilicon aerosol from OH oxidation of decamethyl-cyclopentasiloxane (D5) with aerosol mass fractions (i.e., yields) of 0.2-0.5. The aerosols were assessed for concentration, size distribution, morphology, sensitivity to seed aerosol, hygroscopicity, volatility and chemical composition through a combination of aerosol size distribution measurement, tandem differential mobility analysis, and electron microscopy. Similar aerosols were produced when vapor from solid antiperspirant was used as the reaction precursor. Aerosol yield was sensitive to chamber OH and to seed aerosol, suggesting sensitivity of lower-volatility species and recovered yields to oxidation conditions and chamber operation. The D5 oxidation aerosol products were relatively non-hygroscopic, with an average hygroscopicity kappa of ~ 0.01, and nearly non-volatile up to 190 °C temperature. Parameters for exploratory treatment as a semi-volatile organic aerosol in atmospheric models are provided.
Collapse
Affiliation(s)
- Nathan J. Janechek
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
| | - Rachel F. Marek
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
| | - Nathan Bryngelson
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
| | - Ashish Singh
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
| | - Robert L. Bullard
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
| | - William H. Brune
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - Charles O. Stanier
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Shen M, Zhang Y, Hu D, Fan J, Zeng G. A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30847-30862. [PMID: 30187417 DOI: 10.1007/s11356-018-3000-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of siloxanes is a major barrier to use of biogas as renewable energy source, and removal of siloxanes from biogas before combustion is needed. The siloxane can be transformed into silicon dioxide (SiO2) through the combustion process in engine, which will be deposited on the spark plug, cylinder, and impeller to form the silica layer, causing the wear and damage of the engine parts, and shorten the life of the engine and affect the utilization efficiency of the biogas. This paper reviewed some methods and technologies for siloxanes removal from biogas. There are three commercial available technologies to remove siloxanes: adsorption, absorption, and cryocondensation. Other newer technologies with better prospects for development also have made a research progress, including membrane, catalysts, biotrickling filters. This work introduces the source and characterization of siloxanes in biogas, reviews the scientific progress of siloxanes removal, and discusses the development direction and further research of removal siloxanes.
Collapse
Affiliation(s)
- Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Duofei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jinshi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
14
|
Janechek NJ, Hansen KM, Stanier CO. Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:8357-8370. [PMID: 30740128 PMCID: PMC6368090 DOI: 10.5194/acp-17-8357-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMSs) are important components in personal care products that transport and react in the atmosphere. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and their gas-phase oxidation products have been incorporated into the Community Multiscale Air Quality (CMAQ) model. Gas-phase oxidation products, as the precursor to secondary organic aerosol from this compound class, were included to quantify the maximum potential for aerosol formation from gas-phase reactions with OH. Four 1-month periods were modeled to quantify typical concentrations, seasonal variability, spatial patterns, and vertical profiles. Typical model concentrations showed parent compounds were highly dependent on population density as cities had monthly averaged peak D5 concentrations up to 432ngm-3. Peak oxidized D5 concentrations were significantly less, up to 9ngm-3, and were located downwind of major urban areas. Model results were compared to available measurements and previous simulation results. Seasonal variation was analyzed and differences in seasonal influences were observed between urban and rural locations. Parent compound concentrations in urban and peri-urban locations were sensitive to transport factors, while parent compounds in rural areas and oxidized product concentrations were influenced by large-scale seasonal variability in OH.
Collapse
Affiliation(s)
- Nathan J. Janechek
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
- IIHR Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Kaj M. Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Charles O. Stanier
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
- IIHR Hydroscience and Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Krogseth IS, Whelan MJ, Christensen GN, Breivik K, Evenset A, Warner NA. Understanding of Cyclic Volatile Methyl Siloxane Fate in a High Latitude Lake Is Constrained by Uncertainty in Organic Carbon-Water Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:401-409. [PMID: 27997187 DOI: 10.1021/acs.est.6b04828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMS) are emitted to aquatic environments with wastewater effluents. Here, we evaluate the environmental behavior of three cVMS compounds (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6)) in a high latitude lake (Storvannet, 70°N 23°E), experiencing intermittent wastewater emissions and high latitude environmental conditions (low temperatures and seasonal ice cover). Measured cVMS concentrations in lake water were below detection limits in both March and June 2014. However, mean concentrations in sediments were 207 ± 30, 3775 ± 973 and 848 ± 211 ng g-1 organic carbon for D4, D5 and D6, respectively. To rationalize measurements, a fugacity-based model for lakes (QWASI) was parametrized for Storvannet. The key removal process for cVMS from the lake was predicted to be advection due to the low hydraulic retention time of the lake, followed by volatilization. Predicted cVMS behavior was highly sensitive to the partition coefficient between organic carbon and water (KOC) and its temperature dependence. Predictions indicated lower overall persistence with decreasing temperature due to enhanced partitioning from sediments to water. Inverse modeling to predict steady-state emissions from cVMS concentrations in sediment provided unrealistically high emissions, when evaluated against measured concentrations in sewage. However, high concentrations of cVMS in sediment and low concentrations in water could be explained via a hypothetical dynamic emission scenario consistent with combined sewer overflows. The study illustrates the importance of considering compound-specific behavior of emerging contaminants that may differ from legacy organic contaminants.
Collapse
Affiliation(s)
- Ingjerd Sunde Krogseth
- NILU - Norwegian Institute for Air Research, The Fram Centre , P.O. Box 6606 Langnes, 9296 Tromsø, Norway
| | - Michael John Whelan
- Department of Geography, University of Leicester , Leicester LE1 7RH, United Kingdom
| | | | - Knut Breivik
- NILU - Norwegian Institute for Air Research , P.O. Box 100, 2027 Kjeller, Norway
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Anita Evenset
- Akvaplan-niva AS, The Fram Centre , P.O. Box 6606 Langnes, 9296 Tromsø, Norway
| | - Nicholas Alexander Warner
- NILU - Norwegian Institute for Air Research, The Fram Centre , P.O. Box 6606 Langnes, 9296 Tromsø, Norway
| |
Collapse
|
16
|
Tran TM, Kannan K. Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:138-44. [PMID: 25540848 DOI: 10.1016/j.scitotenv.2014.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 05/06/2023]
Abstract
Cyclic and linear siloxanes are used in a wide variety of household and consumer products. Nevertheless, very few studies have reported the occurrence of these compounds in indoor air or inhalation exposure to these compounds. In this study, five cyclic (D3-D7) and nine linear siloxanes (L3-L11) were determined in 60 indoor air samples collected in Albany, New York, USA. The mean concentrations of individual siloxanes in particulate and vapor phases ranged from <12 μg g(-1) (for octamethyltrisiloxane [L3], decamethyltetrasiloxane [L4]) to 2420 μg g(-1) (for decamethylcyclopentasiloxane [D5]) and from 1.05 ng m(-3) to 543 ng m(-3), respectively. The mean concentrations of individual siloxanes in combined particulate and vapor phases of bulk indoor air ranged from 1.41 ng m(-3) (for L4) to 721 ng m(-3) (for D5). Cyclic siloxanes hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), D5, dodecamethylcyclohexasiloxane (D6), and octadecamethylcycloheptasiloxane (D7) were found in all indoor air samples. The mean concentrations of total siloxanes (i.e., sum of cyclic and linear siloxanes) ranged from 249 ng m(-3) in laboratories to 6210 ng m(-3) in salons, with an overall mean concentration of 1470 ng m(-3) in bulk indoor air samples. The calculated mean daily inhalation exposure doses of total siloxanes (sum of 14 siloxanes) for infants, toddlers, children, teenagers, and adults were 3.18, 1.59, 0.76, 0.34, and 0.27 μg/kg-bw/day, respectively.
Collapse
Affiliation(s)
- Tri Manh Tran
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States; Faculty of Chemistry, Hanoi University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, United States; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
17
|
Affiliation(s)
- Christoph Rücker
- Institute for Sustainable and Environmental Chemistry, Leuphana University Lüneburg , Scharnhorststrasse 1, D-21335 Lüneburg, Germany
| | | |
Collapse
|
18
|
Bzdek BR, Horan AJ, Pennington MR, Janechek NJ, Baek J, Stanier CO, Johnston MV. Silicon is a frequent component of atmospheric nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11137-45. [PMID: 25203137 DOI: 10.1021/es5026933] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles are the largest fraction of aerosol loading by number. Knowledge of the chemical components present in nanoparticulate matter is needed to understand nanoparticle health and climatic impacts. In this work, we present field measurements using the Nano Aerosol Mass Spectrometer (NAMS), which provides quantitative elemental composition of nanoparticles around 20 nm diameter. NAMS measurements indicate that the element silicon (Si) is a frequent component of nanoparticles. Nanoparticulate Si is most abundant in locations heavily impacted by anthropogenic activities. Wind direction correlations suggest the sources of Si are diffuse, and diurnal trends suggest nanoparticulate Si may result from photochemical processing of gas phase Si-containing compounds, such as cyclic siloxanes. Atmospheric modeling of oxidized cyclic siloxanes is consistent with a diffuse photochemical source of aerosol Si. More broadly, these observations indicate a previously overlooked anthropogenic source of nanoaerosol mass. Further investigation is needed to fully resolve its atmospheric role.
Collapse
Affiliation(s)
- Bryan R Bzdek
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Katsoyiannis A, Anda EE, Cincinelli A, Martellini T, Leva P, Goetsch A, Sandanger TM, Huber S. Indoor air characterization of various microenvironments in the Arctic. The case of Tromsø, Norway. ENVIRONMENTAL RESEARCH 2014; 134:1-7. [PMID: 25042029 DOI: 10.1016/j.envres.2014.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 05/25/2023]
Abstract
The present pilot study monitored for the first time volatile organic compounds (VOCs) and aerosols in domestic and occupational microenvironments in the Arctic Region. Differences between the two categories of samples are noted with domestic environments exhibiting higher concentrations of VOCs (total VOCs ranging between 106 and 584 μg m(-3)), while total particulate matter was highest in workplace non-office environments (ranging between 132 and 284 μg m(-3)). The terpenes were the most abundant class of VOCs, while a variety of other compounds exhibited 100% frequency of occurrence (i.e. naphthalene, D5-volatile methyl siloxane). Compared to results from other studies/regions, the concentrations of VOCs are considered as relatively low. Based on the results and the knowledge of the typical characteristics of the Arctic lifestyle, some important sources are identified. As this is the first study that deals with indoor air quality in the coldest region globally, it is expected that it will trigger the interest of Authorities to proceed to more detailed studies.
Collapse
Affiliation(s)
- Athanasios Katsoyiannis
- Norwegian Institute for Air Research (NILU) at FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway.
| | - Erik Eik Anda
- Department of Community Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Alessandra Cincinelli
- Department of Chemistry, University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Tania Martellini
- Department of Chemistry, University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Paolo Leva
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Chemical Assessment and Testing Unit, Via E. Fermi 1, I-21020 Ispra (VA), Italy
| | - Arntraut Goetsch
- Norwegian Institute for Air Research (NILU) at FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | - Torkjel M Sandanger
- Norwegian Institute for Air Research (NILU) at FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway; Department of Community Medicine, UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sandra Huber
- Norwegian Institute for Air Research (NILU) at FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| |
Collapse
|
20
|
Ahrens L, Harner T, Shoeib M. Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9374-81. [PMID: 25072102 DOI: 10.1021/es502081j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cyclic and linear volatile methylsiloxanes (cVMSs and lVMSs, respectively) were measured in ambient air over a period of over one year in Toronto, Canada. Air samples were collected using passive air samplers (PAS) consisting of sorbent-impregnated polyurethane foam (SIP) disks in parallel with high volume active air samplers (HV-AAS). The average difference between the SIP-PAS derived concentrations in air for the individual VMSs and those measured using HV-AAS was within a factor of 2. The air concentrations (HV-AAS) ranged 22-351 ng m(-3) and 1.3-15 ng m(-3) for ΣcVMSs (D3, D4, D5, D6) and ΣlVMSs (L3, L4, L5), respectively, with decamethylcyclopentasiloxane (D5) as the dominant compound (∼75% of the ΣVMSs). Air masses arriving from north to northwest (i.e., less populated areas) were significantly less contaminated with VMSs compared to air arriving from the south that are impacted by major urban and industrial areas in Canada and the U.S. (p < 0.05). In addition, air concentrations of ΣcVMSs were lower during major snowfall events (on average, 73 ng m(-3)) in comparison to the other sampling periods (121 ng m(-3)). Ambient temperature had a small influence on the seasonal trend of VMS concentrations in air, except for dodecamethylcyclohexasiloxane (D6), which was positively correlated with the ambient temperature (p < 0.001).
Collapse
Affiliation(s)
- Lutz Ahrens
- Environment Canada, Air Quality Processes Research Section, Toronto, Ontario Canada , M3H 5T4
| | | | | |
Collapse
|