1
|
de Souza HM, de Almeida RF, Lopes AP, Hauser-Davis RA. Review: Fish bile, a highly versatile biomarker for different environmental pollutants. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109845. [PMID: 38280442 DOI: 10.1016/j.cbpc.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Ecotoxicological assessments encompass a broad spectrum of biochemical endpoints and ecological factors, allowing for comprehensive assessments concerning pollutant exposure levels and their effects on both fish populations and surrounding ecosystems. While these evaluations offer invaluable insights into the overall health and dynamics of aquatic environments, they often provide an integrated perspective, making it challenging to pinpoint the precise sources and individual-level responses to environmental contaminants. In contrast, biliary pollutant excretion assessments represent a focused approach aimed at understanding how fish at the individual level respond to environmental stressors. In this sense, the analysis of pollutant profiles in fish bile not only serves as a valuable exposure indicator, but also provides critical information concerning the uptake, metabolism, and elimination of specific contaminants. Therefore, by investigating unique and dynamic fish responses to various pollutants, biliary assessments can contribute significantly to the refinement of ecotoxicological studies. This review aims to discuss the multifaceted utility of bile as a potent biomarker for various environmental pollutants in fish in targeted monitoring strategies, such as polycyclic aromatic hydrocarbons, metals, pesticides, pharmaceuticals, estrogenic compounds, resin acids, hepatotoxins and per- and polyfluorinated substances. The main caveats of this type of assessment are also discussed, as well as future directions of fish bile studies.
Collapse
Affiliation(s)
- Heloise Martins de Souza
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil; Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Regina Fonsêca de Almeida
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ CEP 22453-900, Brazil
| | - Amanda Pontes Lopes
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil; Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
2
|
Zhou L, Li M, Zhong Z, Chen H, Wang X, Wang M, Xu Z, Cao L, Lian C, Zhang H, Wang H, Sun Y, Li C. Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105845. [PMID: 33984608 DOI: 10.1016/j.aquatox.2021.105845] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Greater interest in commercial deep-sea mining has been accompanied by mounting environmental concerns, including metal contamination resulting from mining activities. However, little is known about the toxic effects of metal exposure on deep-sea life. Given its ability to accumulate metals from the surrounding environment, its wide distribution at both vents and seeps, and its high abundance, the deep-sea mussel Bathymodiolus platifrons could serve as an ideal model to investigate the toxicological responses of deep-sea organisms to metal exposure. Here, we evaluated metal accumulation, traditional metal-related biomarkers, namely acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase, catalase, reduced glutathione, metallothioneins, and malondialdehyde, as well as metabolic profiles in the gills of B. platifrons after a 7-day exposure to copper (100 μg/L), cadmium (500 μg/L), or copper-plus-cadmium treatments (100 μg/L Cu and 500 μg/L Cd). Metal exposure concentrations selected in this study can be found in deep-sea hydrothermal environments. Metal exposure resulted in significant metal accumulation in the gills of the mussel, indicating that B. platifrons has promise for use as an indicator of deep-sea metal pollution levels. Traditional biomarkers (AKP, ACP, and measured antioxidants) revealed cellular injury and oxidative stress in mussels following metal exposure. Metabolic responses in the three treatment groups indicated that metal exposure perturbed osmoregulation, energy metabolism, and nucleotide metabolism in mussels, in a response marked by differentially altered levels of amino acids, hypotaurine, betaine, succinate, glucose 6-phosphate, fructose 6-phosphate, guanosine, guanosine 5'-monophosphate, and inosine. Nevertheless, several uniquely altered metabolites were found in each treatment exposure group, suggesting dissimilar modes of toxicity between the two metal types. In the Cd-exposed group, the monosaccharide D-allose, which is involved in suppressing mitochondrial ROS production, was downregulated, a response consistent with oxidative stress in Cd-exposed B. platifrons. In the Cu-exposed group, the detected alterations in dopamine, dopamine-related, and serotonin-related metabolites together suggest disturbed neurotransmission in Cu-exposed B. platifrons. In the Cu-plus-Cd group, we detected a decline in fatty acid levels, implying that exposure to both metals jointly exerted a negative influence on the physiological functioning of the mussel. To the best of our knowledge, this is the first study to investigate changes in metabolite profiles in Bathymodiolus mussels exposed to metal. The findings reported here advance our understanding of the adverse impact of metal exposure on deep-sea life and can inform deep-sea mining assessments through the use of multiple biomarkers.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaocheng Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng Xu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
3
|
Nagamatsu PC, Vargas DÁR, Prodocimo MM, Opuskevitch I, Ferreira FCAS, Zanchin N, de Oliveira Ribeiro CA, de Souza C. Synthetic fish metallothionein design as a potential tool for monitoring toxic metals in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9517-9528. [PMID: 33146826 DOI: 10.1007/s11356-020-11427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The diversity of aquatic ecosystems impacted by toxic metals is widely distributed throughout the world. The application of metallothionein (MT) as an early warning sign of metal exposure in freshwater fish is important in biomonitoring, but a more accessible, sensitive, safe, and efficient new methodological strategy is necessary. On this way, a fish MT synthetic gene from Oreochromis aureos was expressed in Escherichia coli to produce polyclonal antibodies against the protein. In the validation assays, these antibodies were able to detect hepatic MT from freshwater fishes Oreochromis niloticus, Pimelodus maculatus, Prochilodus lineatus, and Salminus brasiliensis showing a potential tool for toxic metals biomarker in biomonitoring of aquatic ecosystems. The current results showed the applicability of this molecule in quantitative immunoassays as a sensor for monitoring aquatic environments impacted by toxic metals. Due to the lack of methods focusing on metal pollution diagnostics in aquatic ecosystems, the current proposal revealed a promising tool to applications in biomonitoring programs of water resources, mainly in Brazil where the mining activity is very developed.
Collapse
Affiliation(s)
- Paola Caroline Nagamatsu
- Laboratorio de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa postal 19031, Cep, Curitiba, PR, 81531-970, Brazil
| | - Dámaso Ángel Rubio Vargas
- Laboratorio de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa postal 19031, Cep, Curitiba, PR, 81531-970, Brazil
| | - Maritana Mela Prodocimo
- Laboratorio de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa postal 19031, Cep, Curitiba, PR, 81531-970, Brazil
| | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT-Rua José Izidoro Biazetto, no. 18, Bloco A, CEP, Curitiba, PR, 81200-240, Brazil
| | - Fernando C A S Ferreira
- Copel GeT-SOS/DNGT-Rua José Izidoro Biazetto, no. 18, Bloco A, CEP, Curitiba, PR, 81200-240, Brazil
| | - Nilson Zanchin
- Instituto Carlos Chagas, Fiocruz-Pr, R. Prof. Algacyr Munhoz Mader 3775, Curitiba, PR, 81350-010, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratorio de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa postal 19031, Cep, Curitiba, PR, 81531-970, Brazil
| | - Claudemir de Souza
- Laboratorio de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Caixa postal 19031, Cep, Curitiba, PR, 81531-970, Brazil.
| |
Collapse
|
4
|
Hauser-Davis RA, Lavradas RT, Monteiro F, Rocha RCC, Bastos FF, Araújo GF, Sales Júnior SF, Bordon IC, Correia FV, Saggioro EM, Saint'Pierre TD, Godoy JM. Biochemical metal accumulation effects and metalloprotein metal detoxification in environmentally exposed tropical Perna perna mussels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111589. [PMID: 33396112 DOI: 10.1016/j.ecoenv.2020.111589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Marine bivalves have been widely applied as environmental contamination bioindicators, although studies concerning tropical species are less available compared to temperate climate species. Assessments regarding Perna perna mytilid mussels, in particular, are scarce, even though this is an extremely important species in economic terms in tropical countries, such as Brazil. To this end, Perna perna mytilids were sampled from two tropical bays in Southeastern Brazil, one anthropogenically impacted and one previously considered a reference site for metal contamination. Gill metallothionein (MT), reduced glutathione (GSH), carboxylesterase (CarbE) and lipid peroxidation (LPO) were determined by UV-vis spectrophotometry, and metal and metalloid contents were determined by inductively coupled plasma mass spectrometry (ICP-MS). Metalloprotein metal detoxification routes in heat-stable cellular gill fractions were assessed by size exclusion high performance chromatography (SEC-HPLC) coupled to an ICP-MS. Several associations between metals and oxidative stress endpoints were observed at all four sampling sites through a Principal Component Analysis. As, Cd, Ni and Se contents, in particular, seem to directly affect CarbE activity. MT is implicated in playing a dual role in both metal detoxification and radical oxygen species scavenging. Differential SEC-HPLC-ICP-MS metal-binding profiles, and, thus, detoxification mechanisms, were observed, with probable As-, Cu- and Ni-GSH complexation and binding to low molecular weight proteins. Perna perna mussels were proven adequate tropical bioindicators, and further monitoring efforts are recommended, due to lack of data regarding biochemical metal effects in tropical species. Integrated assessments, as performed herein demonstrate, are invaluable in evaluating contaminated aquatic environments, resulting in more accurate ecological risk assessments.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, Brazil.
| | - Raquel T Lavradas
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, Brasil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro, Brazil
| | - Fernanda Monteiro
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, Brasil
| | - Rafael Christian C Rocha
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, Brasil
| | - Frederico F Bastos
- Instituto de Biologia Roberto Alcântara Gomes, Departamento de Bioquímica, UERJ, Av. Manoel de Abreu 444, Maracanã, Rio de Janeiro, Brazil
| | - Gabriel F Araújo
- Programa de Pós-graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Sidney F Sales Júnior
- Programa de Pós-graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Isabella C Bordon
- Instituto de Ciencias Biomédicas, Universidade de São Paulo, Av. Lineu Prestes, 1524, 05508-000 São Paulo, Brazil
| | - Fábio V Correia
- UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, Rio de Janeiro, Brazil
| | - Enrico M Saggioro
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública (ENSP), Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, Brazil
| | - Tatiana D Saint'Pierre
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, Brasil
| | - José M Godoy
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Gávea, Rio de Janeiro, Brasil
| |
Collapse
|
5
|
Pavelicova K, Vanickova L, Haddad Y, Nejdl L, Zitka J, Kociova S, Mravec F, Vaculovic T, Macka M, Vaculovicova M, Adam V. Metallothionein dimerization evidenced by QD-based Förster resonance energy transfer and capillary electrophoresis. Int J Biol Macromol 2020; 170:53-60. [PMID: 33340626 DOI: 10.1016/j.ijbiomac.2020.12.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Herein, we report a new simple and easy-to-use approach for the characterization of protein oligomerization based on fluorescence resonance energy transfer (FRET) and capillary electrophoresis with LED-induced detection. The FRET pair consisted of quantum dots (QDs) used as an emission tunable donor (emission wavelength of 450 nm) and a cyanine dye (Cy3), providing optimal optical properties as an acceptor. Nonoxidative dimerization of mammalian metallothionein (MT) was investigated using the donor and acceptor covalently conjugated to MT. The main functions of MTs within an organism include the transport and storage of essential metal ions and detoxification of toxic ions. Upon storage under aerobic conditions, MTs form dimers (as well as higher oligomers), which may play an essential role as mediators in oxidoreduction signaling pathways. Due to metal bridging by Cd2+ ions between molecules of metallothionein, the QDs and Cy3 were close enough, enabling a FRET signal. The FRET efficiency was calculated to be in the range of 11-77%. The formation of MT dimers in the presence of Cd2+ ions was confirmed by MALDI-MS analyses. Finally, the process of oligomerization resulting in FRET was monitored by CE, and oligomerization of MT was confirmed.
Collapse
Affiliation(s)
- Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Lucie Vanickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Jan Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Silvia Kociova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; School of Natural Sciences, Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
6
|
Farrokhzadeh S, Razmi H, Jannat B. Application of marble powder as a potential green adsorbent for miniaturized solid phase extraction of polycyclic aromatic hydrocarbons from water samples. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1655054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Samaneh Farrokhzadeh
- Analytical Chemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Habib Razmi
- Analytical Chemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Behrooz Jannat
- Food and Drug Administration, Halal Research Center of Islamic Republic of Iran, Tehran, Iran
| |
Collapse
|
7
|
Enrichment and Identification of Metallothionein by Functionalized Nano-Magnetic Particles and Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61096-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Le Croizier G, Lacroix C, Artigaud S, Le Floch S, Raffray J, Penicaud V, Coquillé V, Autier J, Rouget ML, Le Bayon N, Laë R, Tito De Morais L. Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:462-476. [PMID: 29414371 DOI: 10.1016/j.envpol.2018.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France.
| | - Camille Lacroix
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 rue Alain Colas, CS 41836, Brest 29218-Cedex 2, France
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 rue Alain Colas, CS 41836, Brest 29218-Cedex 2, France
| | - Jean Raffray
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| | - Virginie Penicaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| | - Valérie Coquillé
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| | - Julien Autier
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| | - Marie-Laure Rouget
- Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale (UBO), CNRS UMS 3113, 29280 Plouzané, France
| | - Nicolas Le Bayon
- Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins, LEMAR UMR 6539, Ifremer, Centre de Brest, Laboratoire PFOM/ARN, BP 70, 29280 Plouzané, France
| | - Raymond Laë
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| | - Luis Tito De Morais
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER, BP 70, 29280 Plouzané, France
| |
Collapse
|
9
|
Determination of Metallothionein Isoforms in Fish by Cadmium Saturation Combined with Anion Exchange HPLC-ICP-MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3523-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Lavradas RT, Rocha RCC, Bordon ICAC, Saint'Pierre TD, Godoy JM, Hauser-Davis RA. Differential metallothionein, reduced glutathione and metal levels in Perna perna mussels in two environmentally impacted tropical bays in southeastern Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:75-84. [PMID: 26994306 DOI: 10.1016/j.ecoenv.2016.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Mussel farming is an important economic activity in Brazil, and these organisms are consumed by the majority of the population in most coastal zones in the country. However, despite the increasing pollution of aquatic ecosystems in Brazil, little is known about the biochemical activity in mussels in response to metal exposure. In this context, the aim of the present study was to investigate metal and metalloid exposure effects in Perna perna mussels, by determining metal levels, the induction of metallothionein (MT) synthesis, and oxidative stress, in the form of reduced glutathione (GSH) in 3 contaminated areas from the Guanabara Bay in comparison to a reference site, Ilha Grande Bay, both in summer and winter. Metal and metalloid concentrations were also compared to Brazilian and international guidelines, to verify potential health risks to human consumers. Mussels from all sampling sites were shown to be improper for human consumption due to metal contamination, including Ilha Grande Bay, which has previously been considered a reference site. Several statistically significant correlations and seasonal differences were observed between MT, GSH and metals and metalloids in both analyzed tissues. A Discriminant Canonical Analysis indicated that the digestive gland is a better bioindicator for environmental contamination by metals and metalloids in this species and offers further proof that MT variations observed are due to metal exposure and not oxidative stress, since GSH influence for both muscle tissue and the digestive glands was non-significant in this analysis. These results show that P. perna mussels are an adequate sentinel species for metal contamination with significant effects on oxidative stress and metal exposure biomarkers. To the best of our knowledge, this is the first study to report metals, metalloids, MT and GSH levels in the muscle tissue of this species.
Collapse
Affiliation(s)
- Raquel T Lavradas
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - Rafael C C Rocha
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - Isabella C A C Bordon
- São Paulo State University (UNESP), Campus do Litoral Paulista, Praça Infante Dom Henrique s/n°, Parque Bitaru, CEP 11330-900 São Vicente, SP, Brazil
| | - Tatiana D Saint'Pierre
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - José M Godoy
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Chemistry Department, Rua Marquês de São Vicente, 225, Gávea, CEP 22453-900 Rio de Janeiro, RJ, Brazil
| | - Rachel A Hauser-Davis
- Federal University of the State of Rio de Janeiro - UNIRIO, Neotropical Biodiversity Post-Graduate Program, Av. Pasteur, 458, Urca, CEP 22290-240 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Lavradas RT, Rocha RCC, Saint' Pierre TD, Godoy JM, Hauser-Davis RA. Investigation of thermostable metalloproteins in Perna perna mussels from differentially contaminated areas in Southeastern Brazil by bioanalytical techniques. J Trace Elem Med Biol 2016; 34:70-8. [PMID: 26854248 DOI: 10.1016/j.jtemb.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/25/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Metallomic studies regarding environmental contamination by metals are of value in elucidating metal uptake, trafficking, accumulation and metabolism in biological systems. Many proven bioindicator species, such as bivalves, have not yet, however, been well-characterized regarding their metalloprotein expression in response to environmental contaminants. In this context, the aim of the present study was to investigate metalloprotein expressions in the thermostable protein fraction of muscle tissue and digestive glands from mussels (Perna perna) from three differentially metal-contaminated sites in Southeastern Brazil in comparison with a reference site. The thermostable protein fractions were analyzed by SDS-PAGE and SEC-HPLC-ICP-MS. Metal content was also determined in both the crude and the purified extracts. Several inter-organ differences were observed, which is to be expected, while inter-site differences regarding thermostable protein content were also verified, indicating accumulation of these elements in muscle tissue and digestive glands and disruption of homeostasis of essential elements, with detoxification attempts by metal-bound proteins, since all metalloproteins present in both matrices eluted bound to at least one non-essential metal. These results are also noteworthy with regard to the adopted reference site, that also seems to be contaminated by toxic metals.
Collapse
Affiliation(s)
- Raquel Teixeira Lavradas
- Pontifícia Universidade Católica-Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ CEP: 22453-900, Brazil
| | - Rafael Christian Chávez Rocha
- Pontifícia Universidade Católica-Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ CEP: 22453-900, Brazil
| | - Tatiana Dillenburg Saint' Pierre
- Pontifícia Universidade Católica-Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ CEP: 22453-900, Brazil
| | - José Marcus Godoy
- Pontifícia Universidade Católica-Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ CEP: 22453-900, Brazil
| | - Rachel Ann Hauser-Davis
- Pontifícia Universidade Católica-Rio de Janeiro (PUC-Rio), Departamento de Química, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ CEP: 22453-900, Brazil.
| |
Collapse
|