1
|
Ullah M, Ullah S, Zhengxin L, Khan M, Nazir R, Qassem TA, Mushtaq H, Hasan DF, Aldossari SA, Mahmood N, Hussain S, Alam K. Fabrication of Highly Sensitive and Selective Nitrite Colorimetric Sensor Based on the Enhanced Peroxidase Mimetic Activity of Using Acetic Acid Capped Zinc Oxide Nanosheets. J Fluoresc 2024:10.1007/s10895-024-03830-6. [PMID: 38967859 DOI: 10.1007/s10895-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Nitrite ions (NO2-), as one of the leading type-A inorganic-anion, showing significant-effects in the aquatic environment and also to humans health. Whereas, the higher uptake causes detrimental threat to human health leading to various chronic diseases, thus demanding efficient, reliable and convenient method for its monitoring. For this purpose, in the present research study we have fabricated the mimetic nonozyme like catalyst based colorimetric nitrite sensor. The acetic acid capped Zinc Oxide (ZnO) nanosheets (NSs) were introduce as per-oxidase mimetic like catalyst which shows high efficiency towards the oxidative catalysis of colorless tetramethylbenzidine (TMB) to oxidized-TMB (blue color) in the presence of Hydrogen-peroxide (H2O2). The present nitrite ions will stimulate the as formed oxidized-TMB (TMBox), and will caused diazotization reaction (diazotized-TMBox), which will not only decreases the peak intensity of UV-visible peak of TMBox at 652 nm but will also produces another peak at 446 nm called as diazotized-TMBox peak, proving the catalytic reaction between the nitrite ions and TMBox. Further, the prepared colorimetric sensor exhibits better sensitivity with a wider range of concentration (1 × 10-3-4.50 × 10-1 µM), lowest limit of detection (LOD) of 0.22 ± 0.05 nM and small limit of quantification (LOQ) 0.78 ± 0.05 nM having R2 value of 0.998. Further, the colorimetric sensor also manifest strong selectivity towards NO2- as compared to other interference in drinking water system. Resultantly, the prepared sensor with outstanding repeatability, stability, reproducibility, re-usability and its practicability in real water samples also exploit its diverse applications in food safety supervision and environmental monitoring.
Collapse
Affiliation(s)
- Mohib Ullah
- School of Material Science and Engineering, Henan university of Technology, Zhengzhou, 450001, China
| | - Sami Ullah
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Li Zhengxin
- School of Material Science and Engineering, Henan university of Technology, Zhengzhou, 450001, China.
| | - Muslim Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Ruqia Nazir
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Talal Aziz Qassem
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | | | - Dheyaa Flayih Hasan
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Samar A Aldossari
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nasir Mahmood
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shehbaz Hussain
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Khurshid Alam
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Chen H, Wang X, Lv M, She Y, Zhang Z, Cao X. Preparation of metal-organic framework @molecularly imprinted polymers for extracting N-nitrosamines in salted vegetables. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123942. [PMID: 38007915 DOI: 10.1016/j.jchromb.2023.123942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
In this paper, the novel metal-organic framework @molecularly imprinted polymers were prepared and applied in extracting N-nitrosamines from salted vegetables. The imprinted polymers were coated on the surface of MIL-101 using multi-dummy template molecules (5-nonanol, benzhydrol and N-formylpyrrolidine). The characterization and adsorbing experiments showed that the hybrid imprinted polymers presented spherical particles with typically core-shell structure, and exhibited high adsorption capacity (maximum capacity: 46.85 mg/g) and fast equilibrium rate (only 5 min) for N-nitrosamines. Various parameters (sample loading solvent, pH, washing solvent, elution solvent and elution volume) affecting solid-phase extraction were optimized. Under the optimum conditions, the solid-phase extraction process based on the hybrid polymers combined with high performance liquid chromatography-ultraviolet detection method was established and applied to analyze N-nitrosamines in different salted vegetables. The results showed that the developed method produced the linear relationship between the peak areas versus the N-nitrosamines concentrations of 0.2-10 µg/g with limit of detections from 20.6 to 76.1 ng/g. The spiked recovery of N-nitrosamines in the salted vegetable samples was in the range of 66-100.5 % with relative standard deviation from 0.1 to 3.4 %. Those results demonstrated that the established method was sensitive and efficient for directly enriching and analyzing trace N-nitrosamines in salted vegetables.
Collapse
Affiliation(s)
- Haiyan Chen
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Xinyu Wang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Meijin Lv
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture of China, Beijing 100081, PR China
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
3
|
Sun X, Wang Z, Zhang H, Si K, Wang X, Zhang X. Honeycomb-like 3D ordered macroporous SiO x/C nanoarchitectures with carbon coating for high-performance lithium storage. J Colloid Interface Sci 2023; 651:394-403. [PMID: 37549524 DOI: 10.1016/j.jcis.2023.07.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
SiOx anodes are garnering significant interest in lithium-ion batteries (LIBs) due to theirs low voltage plateau and high capacity. However, critical drawbacks, including high expansion rate and low electronic conductivity, severely limit their practical applications. While 0D, 1D, and 2D scale nanostructures have been proven to mitigate these issues, these materials tend to accumulate after prolonged cycling, leading to adverse effects on the mass transfer processes within the electrode. Herein, we have developed a honeycomb-like SiOx/C nanoarchitecture with carbon coating based on a 3D ordered macroporous (3DOM) structure. The 3D interconnected pore windows facilitate the diffusion and transport of lithium ions (Li+) in the electrolyte, and the extremely thin walls (<15 nm) provide a shorter transport path for Li+ in the solid. The carbon cladding buffers volume expansion and enhances electronic conductivity. The as-prepared anode demonstrates a high reversible capacity of 1068 mAh/g and an initial coulombic efficiency of 70.7 %. It maintains a capacity of 644 mAh/g (capacity retention of 84.63 %) even at a high current of 1.0 A/g after 700 cycles. The unique honeycomb-like structure offers enormous insights into the study of energy storage in 3D materials.
Collapse
Affiliation(s)
- Xinxin Sun
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhiyuan Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Haohui Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Kaize Si
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiaomei Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| | - Xu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
4
|
Xu R, Tan H, Guo M, Zuo S, Sun X. Ultra-Fast Synthesis of Thiol-Functionalized Organosilica (OS-SH) for Adsorption of Hg(II) from Aqueous Solution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wang X, Tian Y, Lian L, Zhang H, Zhu B, Gao W, Lou D. Determination of Organophosphate Esters in Water Samples Using Gas Chromatography– Mass Spectrometry (GC–MS) and Magnetic Solid-Phase Extraction (SPE) Based on Multi-Walled Carbon Nanotubes (MWCNTs). LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ux1167h2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A method based on gas chromatography–mass spectrometry (GC–MS), coupled with magnetic solid-phase extraction (SPE) with multi-walled carbon-nanotube (MWCNT)-coated iron oxide (Fe3O4) as the adsorbent, was developed for analyzing four organophosphate esters in ambient water samples. The magnetic, MWCNT composites were prepared by hydrothermal synthesis and characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and superconducting quantum interference device magnetometry (SQUID). The extraction and desorption conditions, such as adsorbent dosage, adsorption time, eluent type, and eluent volume, were studied. The adsorbent was used to extract analytes within 50 min. The limit of detection (LOD) was between 0.038–1 μg/L, and the limit of quantitation (LOQ) was between 0.10–3.59 μg/L. The method was applied to analyze organophosphate esters in environmental water samples. A 72.5–89.1% recovery was obtained by analyzing spiked samples with low-, medium-, and high-concentration analytes. The relative standard deviations (RSDs) were less than 10%. This method displayed better sensitivity and accuracy; therefore, it could be successfully used to detect organophosphate esters in environmental water samples.
Collapse
Affiliation(s)
| | | | - Lili Lian
- Jilin Institute of Chemical Technology
| | - Hao Zhang
- Jilin Institute of Chemical Technology
| | - Bo Zhu
- Jilin Institute of Chemical Technology
| | | | - Dawei Lou
- Jilin Institute of Chemical Technology
| |
Collapse
|
6
|
Recent progress on hollow porous molecular imprinted polymers as sorbents of environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Ruiye Yan, Fu X, Wang Z, Wang G, Zhang X, Wang Y, Li Z, Hou J. Encapsulation of Molecularly Imprinted Polymer Particles in Microcapsule by Facile Pickering Emulsion Polymerization. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
9
|
Tan N, Chen C, Ji K, Liao S, Liu Y, Hu L, He L, Ding Z. Preparation and Properties of Hollow Magnetic Liquid Crystal Molecularly Imprinted Polymers as Silybin Sustained‐release Carriers. ChemistrySelect 2021. [DOI: 10.1002/slct.202101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ni Tan
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Can Chen
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Kang Ji
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Sen Liao
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Yaqing Liu
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Lin Hu
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Leqing He
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| | - Zui Ding
- School of Chemistry and Chemical Engineering University of South China 28 Hengqi Road Hengyang Hunan 421001 China
| |
Collapse
|
10
|
Hydrophilic magnetic molecularly imprinted nanobeads for efficient enrichment and high performance liquid chromatographic detection of 17beta-estradiol in environmental water samples. Talanta 2020; 220:121367. [DOI: 10.1016/j.talanta.2020.121367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
|
11
|
Abu-Alsoud GF, Hawboldt KA, Bottaro CS. Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models. J Chromatogr A 2020; 1629:461463. [PMID: 32841770 DOI: 10.1016/j.chroma.2020.461463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Cross-reactivity is an important feature of molecularly imprinted polymers (MIPs), and is central to successful use of a pseudo-template in molecular imprinting. The adsorption and cross-reactivity of a molecularly imprinted polymer (MIP) designed for recognition of phenols from water was assessed using four different isotherm models (Langmuir (LI), Freundlich (FI), Langmuir-Freundlich (L-FI), and Brunauer, Emmett, and Teller (BET)). The L-FI model succeeded in explaining the cross-reactivity behavior through the total number of binding sites, the affinity constants and heterogeneity indices of the small phenols (phenol (ph), 2-methylphenol (2-MP), 3-methylphenol (3-MP), 2-chlorophenol (2-CP), 2,4-dimethylphenol (DMP), 2,4-dichlorophenol (DCP), 4-chloro-3-methylphenol (CMP)) with evidence that the phenols compete for binding sites based on their hydrophobicity as well as π-π, π-σ and dipole-dipole intermolecular forces. The recognition of the large phenols (2,4,6-trichlorophenol (TCP), pentachlorophenol (PCP), 4-teroctylphenol (4-OP), 4-nonylphenol (4-NP), which have much higher binding affinities than the smaller phenolic compounds, was explained with the BET isotherm model that predicts that multiple layers adsorb to the adsorbed monolayer. The adsorption behavior with MIPs is also shown to be superior to corresponding non-imprinted polymers and applicability of MIPs for trace analysis is highlighted.
Collapse
Affiliation(s)
- Ghadeer F Abu-Alsoud
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Kelly A Hawboldt
- Department of Process Engineering, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Christina S Bottaro
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
12
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Yan R, Wang Z, Qiu T, Li X. One‐step building of molecularly imprinted polymer microcapsules with multicore structure by Pickering emulsion polymerization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruiye Yan
- Academic Affairs OfficeHebei University of Engineering Handan China
| | - Zehu Wang
- College of Materials Science and EngineeringHebei University of Engineering Handan China
| | - Teng Qiu
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical Technology Beijing China
| | - Xiaoyu Li
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical Technology Beijing China
| |
Collapse
|
14
|
Liu Y, Yang Q, Chen X, Song Y, Wu Q, Yang Y, He L. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips. Talanta 2019; 204:238-247. [DOI: 10.1016/j.talanta.2019.05.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022]
|
15
|
Shah N, Gul S, Mazhar Ul-Islam. Core-Shell Molecularly Imprinted Polymer Nanocomposites for Biomedical and Environmental Applications. Curr Pharm Des 2019; 25:3633-3644. [PMID: 31626581 DOI: 10.2174/1381612825666191009153259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Core-shell polymers represent a class of composite particles comprising of minimum two dissimilar constituents, one at the center known as a core which is occupied by the other called shell. Core-shell molecularly imprinting polymers (CSMIPs) are composites prepared via printing a template molecule (analyte) in the coreshell assembly followed by their elimination to provide the everlasting cavities specific to the template molecules. Various other types of CSMIPs with a partial shell, hollow-core and empty-shell are also prepared. Numerous methods have been reported for synthesizing the CSMIPs. CSMIPs composites could develop the ability to identify template molecules, increase the relative adsorption selectivity and offer higher adsorption capacity. Keen features are measured that permits these polymers to be utilized in numerous applications. It has been developed as a modern technique with the probability for an extensive range of uses in selective adsorption, biomedical fields, food processing, environmental applications, in utilizing the plant's extracts for further applications, and sensors. This review covers the approaches of developing the CSMIPs synthetic schemes, and their application with special emphasis on uses in the biomedical field, food care subjects, plant extracts analysis and in environmental studies.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Saba Gul
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
16
|
Yuan Y, Wang M, Jia N, Zhai C, Han Y, Yan H. Graphene/multi-walled carbon nanotubes as an adsorbent for pipette-tip solid-phase extraction for the determination of 17β-estradiol in milk products. J Chromatogr A 2019; 1600:73-79. [DOI: 10.1016/j.chroma.2019.04.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/27/2022]
|
17
|
Wichaita W, Polpanich D, Tangboriboonrat P. Review on Synthesis of Colloidal Hollow Particles and Their Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02330] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waraporn Wichaita
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Duangporn Polpanich
- NANOTEC, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| |
Collapse
|
18
|
Pu H, Huang Z, Sun DW, Fu H. Recent advances in the detection of 17β-estradiol in food matrices: A review. Crit Rev Food Sci Nutr 2019; 59:2144-2157. [PMID: 31084362 DOI: 10.1080/10408398.2019.1611539] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pollution of endocrine disrupting chemicals has become a global issue. As one of the hormonally active compounds, 17β-estradiol produces the strongest estrogenic effect when it enters the organism exogenously including food intakes, bringing potential harmfulness such as malfunction of the endocrine system. Therefore, in order to assure food safety and avoid potential risks of 17β-estradiol to humans, it is of great significance to develop rapid, sensitive and selective approaches for the detection of 17β-estradiol in food matrices. In this review, the harmfulness and main sources of 17β-estradiol are firstly introduced, followed by the description of the principles and applications of different approaches for 17β-estradiol detection including high performance liquid chromatography, electrochemistry, Raman spectroscopy, fluorescence and colorimetry. Particularly, applications in detecting 17β-estradiol in food matrices over the years of 2010-2018 are discussed. Finally, advantages and limitations of these detection methods are highlighted and perspectives on future developments in the detection methods for 17β-estradiol are also proposed. Although many detection approaches can achieve trace or ultratrace detection of 17β-estradiol, further studies should be focused on the development of in-situ and real-time methods to monitor and evaluate 17β-estradiol for food safety.
Collapse
Affiliation(s)
- Hongbin Pu
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China
| | - Zhibin Huang
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China
| | - Da-Wen Sun
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China.,d Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland
| | - Haohua Fu
- e Tang Renshen Group Co., Ltd , Zhuzhou , China
| |
Collapse
|
19
|
Fan H, Wang J, Meng Q, Jin Z. Monodisperse hollow-shell structured molecularly imprinted polymers for photocontrolled extraction α-cyclodextrin from complex samples. Food Chem 2019; 281:1-7. [DOI: 10.1016/j.foodchem.2018.12.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
|
20
|
Li GR, Xu MY, Li JK, Yang Y. A study on the preparation and application of a core-shell surface imprinted uranyl magnetic chelating adsorbent. RSC Adv 2018; 8:37401-37409. [PMID: 35557815 PMCID: PMC9089315 DOI: 10.1039/c8ra06992a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
A core-shell surface imprinted uranyl magnetic chelating adsorbent (UMCA) was synthesized by combining the sol-gel process with the surface molecular imprinting technique (SMIT). A specific salophen and uranyl-salophen were designed and synthesized. Then, the synthesized uranyl-salophen complex was used as a template (in which uranyl is the target analyte), 3-aminopropyltriethoxysilane as a functional monomer and tetraethylorthosilicate as a cross-linker. The obtained UMCA was characterized by a variety of modern analytical and detection techniques. The adsorbent can be used for the solid-phase extraction of uranyl with good selectivity, high adsorption capacity, magnetic separation characteristics and good reusability. The chelating sorbent was successfully applied for the separation of uranyl, followed by multiphase photocatalytic resonance fluorescence method determination in several environmental water samples with a relative standard deviation of <5.48% and spiked recoveries of 92.5% to 103.0%. The adsorption mechanism was preliminarily discussed.
Collapse
Affiliation(s)
- Gui-Rong Li
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| | - Meng-Yuan Xu
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| | - Jie-Kang Li
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| | - Yang Yang
- College of Public Health, University of South China Hengyang 421001 PR China +86 734 8281771 +86 734 8281391
| |
Collapse
|
21
|
Chen F, Wang J, Lu R, Chen H, Xie X. Fast and high-efficiency magnetic surface imprinting based on microwave-accelerated reversible addition fragmentation chain transfer polymerization for the selective extraction of estrogen residues in milk. J Chromatogr A 2018; 1562:19-26. [DOI: 10.1016/j.chroma.2018.05.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
|
22
|
Pereira AC, Braga GB, Oliveira AEF, Silva RC, Borges KB. Synthesis and characterization of molecularly imprinted polymer for ethinylestradiol. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0557-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Babamiri B, Salimi A, Hallaj R, Hasanzadeh M. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine. Biosens Bioelectron 2018; 107:272-279. [DOI: 10.1016/j.bios.2018.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
|
24
|
Magnetic solid–phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples. J Chromatogr A 2018; 1534:1-9. [DOI: 10.1016/j.chroma.2017.12.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
|
25
|
Fu X, Song B, Chen X, Wang A, Wang C. Highly-Controllable Imprinted Polymer Nanoshell on the Surface of Silica Nanoparticles for Selective Adsorption of 17<i>β</i>-Estradiol. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jeas.2018.84011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sun Y, Wang Y, Li J, Ding C, Lin Y, Sun W, Luo C. An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 2017; 174:809-818. [PMID: 28738658 DOI: 10.1016/j.talanta.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022]
Abstract
In this work, an ultrasensitive chemiluminescence (CL) aptasensor was prepared for thrombin detection based on iron porphyrin catalyzing luminol - hydrogen peroxide luminescence under alkaline conditions, and iron porphyrin was desorbed from chitosan modified magnetic oxide graphene composite (CS@Fe3O4@GO). Firstly, CS@Fe3O4@GO was prepared. CS@Fe3O4@GO has advantages of the good biocompatibility and positively charged on its surface of CS, the large specific surface area of GO and the easy separation characteristics of Fe3O4. GO, Fe3O4 and CS@Fe3O4@GO were confirmed by transmission electron microscopy (TEM), scanning electron microscope (SEM), fourier transform infrared (FTIR) and X-ray powder diffraction (XRD). Then, thrombin aptamer (T-Apt) and hemin (HM, an iron porphyrin) were sequentially modified on the surface of CS@Fe3O4@GO to form CS@Fe3O4@GO@T-Apt@HM. The immobilization properties of CS@Fe3O4@GO to T-Apt and adsorption properties of CS@Fe3O4@GO@T-Apt to HM were sequentially researched through the curves of kinetics and the curves of thermodynamics. When thrombin existed in solutions, HM was desorbed from the surface of CS@Fe3O4@GO@T-Apt@HM owing to the strong specific recognition ability between thrombin and T-Apt, causing the changes of CL signal. Under optimized CL conditions, thrombin could be measured with the linear concentration range of 5.0×10-15-2.5×10-10mol/L. The detection limit was 1.5×10-15mol/L (3δ) while the relative standard deviation (RSD) was 3.2%. Finally, the CS@Fe3O4@GO@T-Apt@HM-CL aptasensor was used for the determination of thrombin in practical serum samples and recoveries ranged from 95% to 103%. Those satisfactory results revealed potential application of the CS@Fe3O4@GO@T-Apt@HM-CL aptasensor for thrombin detection in monitoring and diagnosis of human blood diseases.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chaofan Ding
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yanna Lin
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Weiyan Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
27
|
Shiba K, Tamura R, Imamura G, Yoshikawa G. Data-driven nanomechanical sensing: specific information extraction from a complex system. Sci Rep 2017. [PMID: 28623343 PMCID: PMC5473933 DOI: 10.1038/s41598-017-03875-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Smells are known to be composed of thousands of chemicals with various concentrations, and thus, the extraction of specific information from such a complex system is still challenging. Herein, we report for the first time that the nanomechanical sensing combined with machine learning realizes the specific information extraction, e.g. alcohol content quantification as a proof-of-concept, from the smells of liquors. A newly developed nanomechanical sensor platform, a Membrane-type Surface stress Sensor (MSS), was utilized. Each MSS channel was coated with functional nanoparticles, covering diverse analytes. The smells of 35 liquid samples including water, teas, liquors, and water/EtOH mixtures were measured using the functionalized MSS array. We selected characteristic features from the measured responses and kernel ridge regression was used to predict the alcohol content of the samples, resulting in successful alcohol content quantification. Moreover, the present approach provided a guideline to improve the quantification accuracy; hydrophobic coating materials worked more effectively than hydrophilic ones. On the basis of the guideline, we experimentally demonstrated that additional materials, such as hydrophobic polymers, led to much better prediction accuracy. The applicability of this data-driven nanomechanical sensing is not limited to the alcohol content quantification but to various fields including food, security, environment, and medicine.
Collapse
Affiliation(s)
- Kota Shiba
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Ryo Tamura
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. .,Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Gaku Imamura
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Genki Yoshikawa
- World Premier International Research Center Initiative (WPI), International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1 Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
28
|
Tang X, Li F, Jia J, Yang C, Liu W, Jin B, Wang X, Gao R, He D, Guo P. Synthesis of magnetic molecularly imprinted polymers with excellent biocompatibility for the selective separation and inhibition of testosterone in prostate cancer cells. Int J Nanomedicine 2017; 12:2979-2993. [PMID: 28442907 PMCID: PMC5396939 DOI: 10.2147/ijn.s133009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Androgen plays an important role in the progression of prostate cancer. In the present study, novel magnetic molecularly imprinted polymers (MMIPs) with good biocompatibility were produced for the selective separation and inhibition of testosterone in prostate cancer cells. MATERIALS AND METHODS MMIPs were prepared by using magnetic nanospheres, gelatin, and testosterone as the supporting materials, functional monomer, and the template molecule, respectively. The characterization of the resultant products was investigated by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. To test whether MMIPs can remove testosterone in biologic samples, human LNCaP (androgen-dependent) and C4-2 (androgen-independent) prostate cancer cells were selected as cell models. The translocation of androgen receptor (AR) was detected by immunofluorescence assay, and the expression of PSA mRNA was detected by real-time quantitative polymerase chain reaction analysis. Cell flow cytometry analysis was performed to detect cell cycle arrest. RESULTS The synthesized nanomaterials (MMIPs) possessed high crystallinity, satisfactory superparamagnetic properties, and uniform imprinted shell, and exhibited high adsorption capacity, fast kinetics, and high selectivity for testosterone. Moreover, the obtained imprinted nanomaterials could selectively enrich and detect testosterone in the LNCaP cell samples as a solid-phase extractant coupled with high-performance liquid chromatography. In addition, the MMIPs could freely enter prostate cancer cells and suppress the translocation of AR into the cell nucleus. We further found that MMIPs inhibited upregulation of AR downstream target genes in LNCaP and C4-2 cells; also, MMIPs inhibited cell growth and induced obvious cell cycle arrest in androgen-dependent LNCaP cells, but had no obvious effect on androgen-independent C4-2 cells. CONCLUSION Our results indicate that the obtained imprinted nanomaterials can specifically and effectively bind testosterone and recover it from prostate cancer cells. Moreover, the MMIPs can freely enter prostate cancer cells and block the activation of testosterone-AR pathway. Thus, the MMIPs may be a new option for antiandrogen therapy in prostate cancer.
Collapse
Affiliation(s)
- Xiaoshuang Tang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Chao Yang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Wei Liu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Ben Jin
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Ruixia Gao
- Institute of Analytical Science, School of Science, Xi’an Jiaotong University
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
- Key laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, Shaanxi, People’s Republic of China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University
- Key laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
29
|
Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens Bioelectron 2017; 91:606-615. [PMID: 28103516 DOI: 10.1016/j.bios.2017.01.018] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/01/2022]
Abstract
Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given.
Collapse
Affiliation(s)
- Jon Ashley
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Krishna Kant
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Vinayaka Aaydha Chidambara
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Denmark
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Denmark
| | - Yi Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
30
|
Hu Y, Huang W, Tong Y, Xia Q, Tian M. Boronate-affinity hollow molecularly imprinted polymers for the selective extraction of nucleosides. NEW J CHEM 2017. [DOI: 10.1039/c7nj00148g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Preparation of a boronate-affinity hollow molecularly imprinted polymer and its application as an SPE adsorbent for the selective enrichment of nucleosides.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Wei Huang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Qinfei Xia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
| |
Collapse
|
31
|
Kumar P, Kim KH, Bansal V, Kumar S, Dilbaghi N, Kim YH. Modern progress and future challenges in nanocarriers for probe applications. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Wang J, Meng Z, Xue M, Qiu L, Dong X, Xu Z, He X, Liu X, Li J. Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples. NEW J CHEM 2017. [DOI: 10.1039/c6nj02910h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvents modulate the adsorption selectivity and adsorption capacity of a molecularly imprinted polymer to target compounds.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
- School of Petroleum and Environmental Engineering
| | - Zihui Meng
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Min Xue
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Lili Qiu
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xiao Dong
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Zhibin Xu
- School of Chemical Engineering & Environment
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xuan He
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- P. R. China
| | - Xueyong Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- P. R. China
| | - Jinshan Li
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang 621900
- P. R. China
| |
Collapse
|
33
|
Long Z, Xu W, Peng Y, Lu Y, Luo Q, Qiu H. Highly selective coextraction of rhodamine B and dibenzyl phthalate based on high-density dual-template imprinted shells on silica microparticles. J Sep Sci 2016; 40:506-513. [DOI: 10.1002/jssc.201601071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Zerong Long
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
- School of Chinese Pharmacy; Xinjiang Medical University; Urumqi P.R. China
| | - Weiwei Xu
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
| | - Yumei Peng
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
- School of Chinese Pharmacy; Xinjiang Medical University; Urumqi P.R. China
| | - Yi Lu
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
| | - Qian Luo
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
| | - Hongdeng Qiu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics; Chinese Academy of Science; Lanzhou 730000 P.R. China
| |
Collapse
|
34
|
Castillo-García M, Aguilar-Caballos M, Gómez-Hens A. Nanomaterials as tools in chromatographic methods. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Long Z, Xu W, Lu Y, Qiu H. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:230-238. [DOI: 10.1016/j.jchromb.2016.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 02/04/2023]
|
36
|
Yang T, Feng S, Lu Y, Yin C, Wang J. Dual-template magnetic molecularly imprinted particles with multi-hollow structure for the detection of dicofol and chlorpyrifos-methyl. J Sep Sci 2016; 39:2388-95. [DOI: 10.1002/jssc.201600258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Yang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi China
- Xinjiang Product Quality Supervision and Inspection Research Institute; Urumqi China
| | - Shun Feng
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi China
| | - Yi Lu
- Xinjiang Product Quality Supervision and Inspection Research Institute; Urumqi China
| | - Chao Yin
- Xinjiang Product Quality Supervision and Inspection Research Institute; Urumqi China
| | - Jide Wang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi China
| |
Collapse
|
37
|
Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices — A review. Microchem J 2016. [DOI: 10.1016/j.microc.2015.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin. Talanta 2016; 150:46-53. [DOI: 10.1016/j.talanta.2015.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/23/2022]
|
39
|
Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem 2016; 194:1040-7. [DOI: 10.1016/j.foodchem.2015.08.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/21/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
40
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
41
|
Du C, Hu X, Guan P, Gao X, Song R, Li J, Qian L, Zhang N, Guo L. Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. J Mater Chem B 2016; 4:1510-1519. [DOI: 10.1039/c5tb02633d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-imprinted microspheres were prepared using raspberry-like microspheres for selectively recognizing IHH.
Collapse
Affiliation(s)
- Chunbao Du
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaoling Hu
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Ping Guan
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xumian Gao
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Renyuan Song
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Ji Li
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Liwei Qian
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Nan Zhang
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Longxia Guo
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
42
|
Chen F, Zhao W, Zhang J, Kong J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys Chem Chem Phys 2016; 18:718-25. [DOI: 10.1039/c5cp04218f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel design of magnetic two-dimensional molecularly imprinted polymers on Fe3O4@GO for the high recognition and separation of proteins.
Collapse
Affiliation(s)
- Fangfang Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Weifeng Zhao
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Jingjing Zhang
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| |
Collapse
|
43
|
|
44
|
Surface molecularly imprinted polymers for solid-phase extraction of (–)-epigallocatechin gallate from toothpaste. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Water-compatible magnetic imprinted nanoparticles served as solid-phase extraction sorbents for selective determination of trace 17beta-estradiol in environmental water samples by liquid chromatography. J Chromatogr A 2015; 1396:7-16. [PMID: 25890441 DOI: 10.1016/j.chroma.2015.03.083] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/21/2022]
Abstract
Endocrine disrupting compounds (EDCs) are a potential risk for wildlife and humans for their existence in water. The efficient extraction and clean-up steps are required before detection of low concentration levels of EDCs. In this work, a novel water-compatible magnetic molecularly imprinted nanoparticles is synthesized for the selective extraction of 17β-estradiol (E2) in environmental water samples. The preparation is carried out by introducing aldehyde groups to the surface of amino-functionalized magnetic nanoparticles through a simple one-step modification, followed by copolymerization of functional monomer gelatin and template E2 via surface imprinting technique. The gelatin with abundant active groups could not only act as functional monomer reacting with template, but also assemble covalently at the surface of magnetic nanoparticles. At the same time, gelatin would improve the water-compatibility of imprinted materials for attaining high extraction efficiency. To obtain high imprinting effect, the preparation conditions are optimized in detail using Central composite design-response surface methodology. The resultant polymers have uniform spherical shape with a shell thickness of about 8nm, stable crystalline form, and super-paramagnetic property. Meanwhile, the obtained polymers have high capacity of 12.87mgg(-1) and satisfactory selectivity to template molecule. To testify the feasibility of the magnetic imprinted polymers in sample pretreatment, a method for determination of trace E2 in environmental water samples was set up by combination of solid-phase extraction (SPE) using the prepared polymers as sorbents and HPLC for rapid isolation and determination of E2. The limit of detection of proposed method is 0.04ngmL(-1), the intra- and inter-day relative standard deviations (RSDs) are less than 4.6% and 5.7%, respectively. The recoveries of E2 from environmental water samples are in the range from 88.3% to 99.1% with the RSDs less than 7.2%.
Collapse
|
46
|
Xie X, Pan X, Han S, Wang S. Development and characterization of magnetic molecularly imprinted polymers for the selective enrichment of endocrine disrupting chemicals in water and milk samples. Anal Bioanal Chem 2015; 407:1735-44. [DOI: 10.1007/s00216-014-8425-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 11/28/2022]
|
47
|
Thermosensitive molecularly imprinted polymers on porous carriers: Preparation, characterization and properties as novel adsorbents for bisphenol A. Talanta 2014; 130:182-91. [DOI: 10.1016/j.talanta.2014.06.055] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/22/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022]
|
48
|
Gao L, Wang J, Li X, Yan Y, Li C, Pan J. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition. Anal Bioanal Chem 2014; 406:7213-20. [PMID: 25200071 DOI: 10.1007/s00216-014-8126-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
In this study, we report here a general protocol for making core-shell magnetic Fe3O4/SiO2-MPS/MIPs (MPS = 3-(methacryloxyl) propyl trimethoxysilane, MIPs = molecularly imprinted polymers, Fe3O4/SiO2-MPS as core, MIPs as shell) via a surface molecular imprinting technique for optical detection of trace λ-cyhalothrin. The fluorescent molecularly imprinted polymer shell was first prepared by copolymerization of acrylamide with a small quantity of allyl fluorescein in the presence of λ-cyhalothrin to form recognition sites without doping. The magnetic Fe3O4/SiO2-MPS/MIPs exhibited paramagnetism, high fluorescence intensity, and highly selective recognition. Using fluorescence quenching as a detecting tool, Fe3O4/SiO2-MPS/MIPs were successfully applied to selectively and sensitively detect λ-cyhalothrin, and a linear relationship could be obtained covering a wide concentration range of 0-50 nM with a correlation coefficient of 0.9962 described by the Stern-Volmer equation. The experimental results of practical detection revealed that magnetic Fe3O4/SiO2-MPS/MIPs as an attractive recognition element was satisfactory for determination of trace λ-cyhalothrin in honey samples. This study, therefore, demonstrated the potential of MIPs for detection of λ-cyhalothrin in food.
Collapse
Affiliation(s)
- Lin Gao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | | | | | | | | | | |
Collapse
|
49
|
Zhang Z, Li J, Song X, Ma J, Chen L. Hg2+ion-imprinted polymers sorbents based on dithizone–Hg2+chelation for mercury speciation analysis in environmental and biological samples. RSC Adv 2014. [DOI: 10.1039/c4ra08163c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel Hg2+ion-imprinted polymers were synthesized using the chelate of dithizone and Hg2+as template for mercury speciation analysis.
Collapse
Affiliation(s)
- Zhong Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
| | - Xingliang Song
- School of Chemistry & Chemical Engineering
- Linyi University
- Linyi 276005, China
| | - Jiping Ma
- Key Lab of Environmental Engineering in Shandong Province
- School of Environment & Municipal Engineering
- Qingdao Technological University
- Qingdao 266033, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003, China
| |
Collapse
|