1
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
2
|
Aptamer functionalized and reduced graphene oxide hybridized porous polymers SPE coupled with LC-MS for adsorption and detection of human α-thrombin. Anal Bioanal Chem 2021; 414:1553-1561. [PMID: 34779902 DOI: 10.1007/s00216-021-03776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
In this study, reduced graphene oxide (rGO) hybridized high internal phase emulsions were developed and polymerized as porous carriers for aptamer (5'/5AmMC6/-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3') modification to enrich human α-thrombin from serum. The structure and properties of the materials were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscope (FT-IR), and X-ray photoelectron spectra (XPS). The adsorption ability and selectivity were studied and the thrombin was detected with liquid chromatography-mass spectrometry (LC-MS). The adsorption of thrombin onto the sorbent was achieved within 30 min and the desorption was realized using 5.0 mL of acetonitrile/water (80/20, v/v). The thrombin was quantified by LC-MS according to its characteristic peptide sequence of ELLESYIDGR.
Collapse
|
3
|
Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoob G, Kazemi Oskuee R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol Appl Biochem 2021; 69:1517-1534. [PMID: 34269486 DOI: 10.1002/bab.2224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Simply synthetized gold nanoparticles have been highly used in medicine and biotechnology as a result of their biocompatibility, conductivity, and being easily functionalized with biomolecules such as aptamer. Aptamer-conjugated gold nanoparticle structures synergically possess characteristics of both aptamer and gold nanoparticles including high binding affinity, high biocompatibility, enhanced target selectivity, and long circulatory half-life. Aptamer-conjugated gold nanoparticles have extensively gained considerable attention for designing of biosensing systems due to their interesting optical and electrochemical features. Moreover, biosensors based on aptamer-gold nanoparticles are easy to use, with fast response, and inexpensive which make them ideal in individualized medicine, disease markers detection, food safety, and so forth. Moreover, due to high selectivity and biocompatibility of aptamer-gold nanoparticles, these biosensing platforms are ideal tools for targeted drug delivery systems. The application of this nanostructure as diagnostic and therapeutic tool has been developed for detection of cancer in the early stage by detecting cancer biomarkers, pathogens, proteins, toxins, antibiotics, adenosine triphosphate, and other small molecules. This review obviously demonstrates that this nanostructure effectively is applicable in the field of biomedicine and possesses potential of commercialization aims.
Collapse
Affiliation(s)
- Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Advances in aptamer-based nanomaterials for separation and analysis of non-genetic biomarkers in biofluids. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
An ultrasensitive, homogeneous fluorescence quenching immunoassay integrating separation and detection of aflatoxin M 1 based on magnetic graphene composites. Mikrochim Acta 2021; 188:59. [PMID: 33507410 DOI: 10.1007/s00604-021-04715-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/17/2021] [Indexed: 01/24/2023]
Abstract
A homogeneous fluorescence quenching immunoassay is described for simultaneous separation and detection of aflatoxin M1 (AFM1) in milk. The novel assay relies on monoclonal antibody (mAb) functionalized Fe3O4 decorated reduced-graphene oxide (rGO-Fe3O4-mAb) as both capture probe and energy acceptor, combined with tetramethylrhodamine cadaverine-labeled aflatoxin B1 (AFB1-TRCA) as the energy donor. In the assay, AFB1-TRCA binds to rGO-Fe3O4-mAb in the absence of AFM1, quenching the fluorescence of TRCA by resonance energy transfer. Significantly, the immunoassay integrates sample preparation and detection into a single step, by using magnetic graphene composites to avoid washing and centrifugation steps, and the assay can be completed within 10 min. Under optimized conditions, the visual and quantitative detection limits of the assay for AFM1 were 50 and 3.8 ng L-1, respectively, which were significantly lower than those obtained by fluorescence polarization immunoassay using the same immunoreagents. Owing to its operation and highly sensitivity, the proposed assay provides a powerful tool for the detection of AFM1.
Collapse
|
6
|
YANG JW, WANG CY, LUO L, GUO L, XIE JW. Applications and Prospects of Oligonucleotide Aptamers in Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Radko S, Ptitsyn K, Novikova S, Kiseleva Y, Moysa A, Kurbatov L, Mannanova M, Zgoda V, Ponomarenko E, Lisitsa A, Archakov A. Evaluation of Aptamers as Affinity Reagents for an Enhancement of SRM-Based Detection of Low-Abundance Proteins in Blood Plasma. Biomedicines 2020; 8:E133. [PMID: 32456365 PMCID: PMC7277749 DOI: 10.3390/biomedicines8050133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Selected reaction monitoring (SRM) is a mass spectrometric technique characterized by the exceptionally high selectivity and sensitivity of protein detection. However, even with this technique, the quantitative detection of low- and ultralow-abundance proteins in blood plasma, which is of great importance for the search and verification of novel protein disease markers, is a challenging task due to the immense dynamic range of protein abundance levels. One approach used to overcome this problem is the immunoaffinity enrichment of target proteins for SRM analysis, employing monoclonal antibodies. Aptamers appear as a promising alternative to antibodies for affinity enrichment. Here, using recombinant protein SMAD4 as a model target added at known concentrations to human blood plasma and SRM as a detection method, we investigated a relationship between the initial amount of the target protein and its amount in the fraction enriched with SMAD4 by an anti-SMAD4 DNA-aptamer immobilized on magnetic beads. It was found that the aptamer-based enrichment provided a 30-fold increase in the sensitivity of SRM detection of SMAD4. These results indicate that the aptamer-based affinity enrichment of target proteins can be successfully employed to improve quantitative detection of low-abundance proteins by SRM in undepleted human blood plasma.
Collapse
Affiliation(s)
- Sergey Radko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Konstantin Ptitsyn
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Yana Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow 117485, Russia;
| | - Alexander Moysa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Leonid Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Maria Mannanova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Elena Ponomarenko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Andrey Lisitsa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Alexander Archakov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| |
Collapse
|
8
|
Li D, Song Q, Li T, Shu C, Ji S, Su C, Su Y, Ding L. An LC-MS/MS method for protein detection based on a mass barcode and dual-target recognition strategy. RSC Adv 2020; 10:16094-16100. [PMID: 35493641 PMCID: PMC9052937 DOI: 10.1039/d0ra01783c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
A mass barcode mediated signal amplification strategy was developed and applied to the determination of protein. A new compound, N'-((2-aminopyridin-3-yl)methylene)-5-(1,2-dithiolan-3-yl)pentanehydrazide (TAPA), was synthesized from the linker and the signal barcode, and used as the bonding barcode. For the realization of signal transduction, TAPAs and the target catcher aptamers, were both modified on gold nanoparticles (AuNPs) to establish the relationship between TAPAs and the target. Owing to the fact that the amount of TAPAs was much greater than the target, the signal of the target was not only transduced to the signal of the mass barcodes, but also amplified greatly. Thrombin, an important biomarker for coagulation abnormality diseases, was selected as a model analyte. Two kinds of thrombin recognition aptamers, aptamer 29 (apt29) and aptamer 15 (apt15), were modified onto the magnetic beads (MBs) and AuNPs, respectively. The modified AuNPs were further functionalized with lots of TAPA and formed apt15-AuNPs-TAPA. MBs-apt29 and apt15-AuNPs-TAPA could both recognize the target thrombin and form the sandwich complex (MBs-apt29/thrombin/apt15-AuNPs-TAPA). After the complex was separated by an extra magnetic field, NaClO oxidant solution was added to release the signal barcodes, 2-Amino-3-pyridinecarboxaldehyde (APA), which were then collected after centrifuging and analyzed by LC-MS/MS. Under optimized conditions, the mass response intensity was proportional to thrombin concentration in the range of 0.05-10 nM, with a 0.007 nM detection limit. This method was applied to the determination of thrombin in spiked serum samples, and the average recoveries ranged from 89.6% to 110.4%, which confirmed the applicability of this method.
Collapse
Affiliation(s)
- Duo Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Qinxin Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Tengfei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Shunli Ji
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| | - Chang Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University Nanjing 211166 China
| | - Yuwen Su
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University Nanjing 211166 China
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University No. 24, Tongjiaxiang Nanjing 210009 China
- Department of Pharmaceutical Analysis, China Pharmaceutical University No. 639, Longmian Road Nanjing 210009 China
| |
Collapse
|
9
|
Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis 2019; 40:2438-2461. [PMID: 31056767 DOI: 10.1002/elps.201900111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre-concentration, removal of interferences (purification), and pre-processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)-assisted sample preparation and pre-concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size-controlled synthesis, large surface-to-volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ-potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Ptitsyn KG, Novikova SE, Kiseleva YY, Moysa AA, Kurbatov LK, Farafonova TE, Radko SP, Zgoda VG, Archakov AI. [Use of DNA-aptamers for enrichment of low abundant proteins in cellular extracts for quntitative detection by selected reaction monitoring]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:5-9. [PMID: 29460828 DOI: 10.18097/pbmc20186401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The relationship between the amount of a target protein in a complex biological sample and its amount measured by selected reaction monitoring (SRM) mass spectrometry upon the affinity enrichment of target protein with aptamers immobilized on a solid phase was studied. Human thrombin added in known concentrations to cellular extracts derived from bacterial cells was used as model target protein. It has been demonstrated that the affinity enrichment of thrombin in cellular extracts by means of the thrombin-binding aptamer immobilized on the surface of magnetic microbeads results in an approximately 10-fold increase of the concentration of target protein and a 100-fold decrease of the low limit of a target protein concentration range where its quantitative detection by SRM is possible without an interference from other peptides present in a tryptic digest.
Collapse
Affiliation(s)
- K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Y Y Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - A A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Feng X, Deng C, Gao M, Yan G, Zhang X. Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides. Talanta 2018; 179:377-385. [DOI: 10.1016/j.talanta.2017.11.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/30/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
|
13
|
Madni A, Noreen S, Maqbool I, Rehman F, Batool A, Kashif PM, Rehman M, Tahir N, Khan MI. Graphene-based nanocomposites: synthesis and their theranostic applications. J Drug Target 2018; 26:858-883. [DOI: 10.1080/1061186x.2018.1437920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Noreen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irsah Maqbool
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faizza Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Batool
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Mubashar Rehman
- Department of Pharmacy, The University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Imran Khan
- College of Pharmacy Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Xu Y, Tan S, Liang Q, Ding M. One-Step Facile Synthesis of Aptamer-Modified Graphene Oxide for Highly Specific Enrichment of Human A-Thrombin in Plasma. SENSORS 2017; 17:s17091986. [PMID: 28902155 PMCID: PMC5621013 DOI: 10.3390/s17091986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Abstract
The enrichment of low-abundance proteins in complex biological samples plays an important role in clinical diagnostics and biomedical research. This work reports a novel one-step method for the synthesis of aptamer-modified graphene oxide (GO/Apt) nanocomposites, without introducing the use of gold, for the rapid and specific separation and enrichment of human α-thrombin from buffer solutions with highly concentrated interferences. The obtained GO/Apt nanocomposites had remarkable aptamer immobilization, up to 44.8 nmol/mg. Furthermore, GO/Apt nanocomposites exhibited significant specific enrichment efficiency for human α-thrombin (>90%), even under the presence of 3000-fold interference proteins, which was better than the performance of other nanomaterials. Finally, the GO/Apt nanocomposites were applied in the specific capturing of human α-thrombin in highly concentrated human plasma solutions with negligible nonspecific binding of other proteins, which demonstrated their prospects in rare protein analysis and biosensing applications.
Collapse
Affiliation(s)
- Yuan Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Li Q, Lian L, Wang X, Wang R, Tian Y, Guo X, Lou D. Analysis of microcystins using high-performance liquid chromatography and magnetic solid-phase extraction with silica-coated magnetite with cetylpyridinium chloride. J Sep Sci 2017; 40:1644-1650. [DOI: 10.1002/jssc.201601407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Qiuying Li
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| | - Lili Lian
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| | - Xiyue Wang
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| | - Runnan Wang
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| | - Yuanyuan Tian
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| | - Xiaoyang Guo
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| | - Dawei Lou
- Department of Analytical Chemistry; Jilin Institute of Chemical Technology; Jilin P.R. China
| |
Collapse
|
16
|
Dong YP, Zhou Y, Wang J, Zhu JJ. Electrogenerated Chemiluminescence Resonance Energy Transfer between Ru(bpy)3(2+) Electrogenerated Chemiluminescence and Gold Nanoparticles/Graphene Oxide Nanocomposites with Graphene Oxide as Coreactant and Its Sensing Application. Anal Chem 2016; 88:5469-75. [PMID: 27101322 DOI: 10.1021/acs.analchem.6b00921] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present work, strong anodic electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) was observed at a graphene oxide modified glassy carbon electrode (GO/GCE) in the absence of coreactants. The electrocatalytical effect of GO on the oxidation of Ru(bpy)3(2+) suggested that GO itself can act as the coreactant of Ru(bpy)3(2+) ECL, which can be used to fabricate the ECL biosensor. Thiol group terminated adenosine triphosphate (ATP) aptamer was immobilized on the GO film via DNA hybridization. When gold nanoparticles/graphene oxide (AuNPs/GO) nanocomposites were modified on the aptamer through the S-Au bond to form a sandwich-like structure, the ECL resonance energy transfer (ECL-RET) could occur between Ru(bpy)3(2+) and AuNPs/GO nanocomposites, resulting in an apparent decrease of ECL signal. After the ECL sensor was incubated in ATP solution, the AuNPs/GO nanocomposites were released from the electrode due to the specific interaction between aptamer and ATP, leading to the increased ECL signal. On the basis of these results, an ECL aptasensor was fabricated and could be used in the sensitive and selective detection of ATP in the range of 0.02-200 pM with a detection limit of 6.7 fM (S/N = 3). The proposed ECL aptasensor can be applied in the detection of ATP in real samples with satisfactory results.
Collapse
Affiliation(s)
- Yong-Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology , Maanshan 243002, China
| | - Ying Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology , Maanshan 243002, China
| | - Jiao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology , Maanshan 243002, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| |
Collapse
|
17
|
Chen X, Hai X, Wang J. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: A review. Anal Chim Acta 2016; 922:1-10. [PMID: 27154826 DOI: 10.1016/j.aca.2016.03.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
The distinctive/unique electrical, chemical and optical properties make graphene/graphene oxide-based materials popular in the field of analytical chemistry. Its large surface offers excellent capacity to anchor target analyte, making it an powerful sorbent in the adsorption and preconcentration of trace level analyte of interest in the field of sample preparation. The large delocalized π-electron system of graphene framework provides strong affinity to species containing aromatic rings, such as proteins, and the abundant active sites on its surface offers the chance to modulate adsorption tendency towards specific protein via functional modification/decoration. This review provides an overview of the current research on graphene/graphene oxide-based materials as attractive and powerful adsorption media in the separation/isolation and preconcentration of protein species from biological sample matrixes. These practices are aiming at providing protein sample of high purity for further investigations and applications, or to achieve certain extent of enrichment prior to quantitative assay. In addition, the challenges and future perspectives in the related research fields have been discussed.
Collapse
Affiliation(s)
- Xuwei Chen
- Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xin Hai
- Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
18
|
Abdelhamid HN, Wu HF. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 2016; 408:4485-502. [DOI: 10.1007/s00216-016-9374-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
19
|
Wang J, Liu Q, Liang Y, Jiang G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 2016; 408:2861-73. [DOI: 10.1007/s00216-015-9255-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
|
20
|
Li L, Wu R, Yan G, Gao M, Deng C, Zhang X. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold-nanoparticle-based depletion. Anal Bioanal Chem 2015; 408:441-8. [DOI: 10.1007/s00216-015-9136-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
|
21
|
Abstract
In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.
Collapse
Affiliation(s)
- Shixing Chen
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China.
| | | | | | | |
Collapse
|
22
|
Xiong Y, Deng C, Zhang X, Yang P. Designed synthesis of aptamer-immobilized magnetic mesoporous silica/Au nanocomposites for highly selective enrichment and detection of insulin. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8451-6. [PMID: 25854412 DOI: 10.1021/acsami.5b00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We designed and synthesized aptamer-immobilized magnetic mesoporous silica/Au nanocomposites (MMANs) for highly selective detection of unlabeled insulin in complex biological media using MALDI-TOF MS. The aptamer was easily anchored onto the gold nanoparticles in the mesochannels of MMANs with high capacity for highly efficient and specific enrichment of insulin. With the benefit from the size-exclusion effect of the mesoporous silica shell with a narrow pore size distribution (∼2.9 nm), insulin could be selectively detected despite interference from seven untargeted proteins with different size dimensions. This method exhibited an excellent response for insulin in the range 2-1000 ng mL(-1). Moreover, good recoveries in the detection of insulin in 20-fold diluted human serum were achieved. We anticipate that this novel method could be extended to other biomarkers of interest and potentially applied in disease diagnostics.
Collapse
Affiliation(s)
- Ya Xiong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
23
|
Cho YT, Su H, Wu WJ, Wu DC, Hou MF, Kuo CH, Shiea J. Biomarker Characterization by MALDI-TOF/MS. Adv Clin Chem 2015; 69:209-54. [PMID: 25934363 DOI: 10.1016/bs.acc.2015.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometric techniques frequently used in clinical diagnosis, such as gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, ambient ionization mass spectrometry, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF/MS), are discussed. Due to its ability to rapidly detect large biomolecules in trace amounts, MALDI-TOF/MS is an ideal tool for characterizing disease biomarkers in biologic samples. Clinical applications of MS for the identification and characterization of microorganisms, DNA fragments, tissues, and biofluids are introduced. Approaches for using MALDI-TOF/MS to detect various disease biomarkers including peptides, proteins, and lipids in biological fluids are further discussed. Finally, various sample pretreatment methods which improve the detection efficiency of disease biomarkers are introduced.
Collapse
Affiliation(s)
- Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Bao T, Wen W, Zhang X, Wang S. An exonuclease-assisted amplification electrochemical aptasensor of thrombin coupling "signal on/off" strategy. Anal Chim Acta 2014; 860:70-6. [PMID: 25682249 DOI: 10.1016/j.aca.2014.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023]
Abstract
In this work, a dual-signaling electrochemical aptasensor based on exonuclease-catalyzed target recycling was developed for thrombin detection. The proposed aptasensor coupled "signal-on" and "signal-off" strategies. As to the construction of the aptasensor, ferrocene (Fc) labeled thrombin binding aptamer (TBA) could perfectly hybridize with the methylene blue (MB) modified thiolated capture DNA to form double-stranded structure, hence emerged two different electrochemical signals. In the presence of thrombin, TBA could form a G-quadruplex structure with thrombin, leading to the dissociation of TBA from the duplex DNA and capture DNA formed hairpin structure. Exonuclease could selectively digest single-stranded TBA in G-quadruplex structure and released thrombin to realize target recycling. As a consequence, the electrochemical signal of MB enhanced significantly, which realized "signal on" strategy, meanwhile, the deoxidization peak current of Fc decreased distinctly, which realized "signal off" strategy. The employment of exonuclease and superposition of two signals significantly improved the sensitivity of the aptasensor. In this way, an aptasensor with high sensitivity, good stability and selectivity for quantitative detection of thrombin was constructed, which exhibited a good linear range from 5 pM to 50 nM with a detection limit of 0.9 pM (defined as S/N=3). In addition, this design strategy could be applied to the detection of other proteins and small molecules.
Collapse
Affiliation(s)
- Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|