1
|
Cedeño-Muñoz JS, Aransiola SA, Reddy KV, Ranjit P, Victor-Ekwebelem MO, Oyedele OJ, Pérez-Almeida IB, Maddela NR, Rodríguez-Díaz JM. Antibiotic resistant bacteria and antibiotic resistance genes as contaminants of emerging concern: Occurrences, impacts, mitigations and future guidelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175906. [PMID: 39226958 DOI: 10.1016/j.scitotenv.2024.175906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Jeffrey Saúl Cedeño-Muñoz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Sesan Abiodun Aransiola
- Department of Microbiology, Faculty of Science, University of Abuja, PMB 117, Abuja, Nigeria
| | - Kondakindi Venkateswar Reddy
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | - Pabbati Ranjit
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | | | - Olusegun Julius Oyedele
- Bioresources Development Centre, National Biotechnology Development Agency, Ogbomoso, Nigeria
| | - Iris B Pérez-Almeida
- Center for Sustainable Development Studies (CEDS), Ecotec University, Samborondón, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| |
Collapse
|
2
|
Trincado L, Cortés P, Pokrant E, Navarrete MJ, Lapierre L, Maturana M, Flores A, Maddaleno A, Cornejo J. Simultaneous analysis of antimicrobial residues and contaminants in poultry droppings by HPLC-MS/MS: a tool for environmental and food safety monitoring. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1430-1442. [PMID: 39177665 DOI: 10.1080/19440049.2024.2393334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Animal waste is a potential pollution hazard as it can harbour contaminants, such as antimicrobial residues, mycotoxins, and pesticides, becoming a risk to the public, animal, and environmental health. To assess this risk, 15 experimental broiler chickens orally received contaminants to evaluate excretion levels. An analytical method was previously developed to detect 18 substances in poultry droppings using high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Contaminants including tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, chlortetracycline, 4-epi-chlortetracycline, tylosin, erythromycin, enrofloxacin, ciprofloxacin, flumequine, florfenicol, sulfachloropyridazine, sulfadiazine, 2,4-dichlorophenoxyacetic acid, zearalenone, alpha- and beta-zearalenol, were extracted with EDTA-McIlvain and acetonitrile. This method showed a p-value < 0.05, RSD < 25%, and R2 > 0.95 in the calibration curves linearity for all analytes. The limit of quantification, selectivity, decision limit for confirmation, matrix effect, precision, and recovery parameters were validated according to European Union document 2021/808/EC, technical report CEN/TR 16059, SANTE/11813/2017 and according to the Veterinary International Conference on Harmonization: VICH GL2 and GL49. This method confirmed the detection of most analytes 12-36 h post-administration and simultaneously detected and quantified mixed contaminants. Thereby, poultry droppings are a potential matrix for spreading contaminants in animal production before slaughter and their control will minimize environmental impacts and mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Lina Trincado
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Paula Cortés
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Ekaterina Pokrant
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - María José Navarrete
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Lisette Lapierre
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Matías Maturana
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Andrés Flores
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Javiera Cornejo
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Manna T, Chandra Guchhait K, Jana D, Dey S, Karmakar M, Hazra S, Manna M, Jana P, Panda AK, Ghosh C. Wastewater-based surveillance of Vibrio cholerae: Molecular insights on biofilm regulatory diguanylate cyclases, virulence factors and antibiotic resistance patterns. Microb Pathog 2024; 196:106995. [PMID: 39368563 DOI: 10.1016/j.micpath.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Debarati Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India; Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subrata Hazra
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Mousumi Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradip Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
4
|
Swinkels AF, Berendsen BJA, Fischer EAJ, Zomer AL, Wagenaar JA. Extended period of selection for antimicrobial resistance due to recirculation of persistent antimicrobials in broilers. J Antimicrob Chemother 2024; 79:2186-2193. [PMID: 38953288 PMCID: PMC11368422 DOI: 10.1093/jac/dkae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVES Antimicrobials can select for antimicrobial-resistant bacteria. After treatment the active compound is excreted through urine and faeces. As some antimicrobials are chemically stable, recirculation of subinhibitory concentrations of antimicrobials may occur due to coprophagic behaviour of animals such as chickens. METHODS The persistence of three antimicrobials over time and their potential effects on antimicrobial resistance were determined in four groups of broilers. Groups were left untreated (control) or were treated with amoxicillin (unstable), doxycycline or enrofloxacin (stable). Antimicrobials were extracted from the faecal samples and were measured by LC-MS/MS. We determined the resistome genotypically using shotgun metagenomics and phenotypically by using Escherichia coli as indicator microorganism. RESULTS Up to 37 days after treatment, doxycycline and enrofloxacin had concentrations in faeces equal to or higher than the minimal selective concentration (MSC), in contrast to the amoxicillin treatment. The amoxicillin treatment showed a significant difference (P ≤ 0.01 and P ≤ 0.0001) in the genotypic resistance only directly after treatment. On the other hand, the doxycycline treatment showed approximately 52% increase in phenotypic resistance and a significant difference (P ≤ 0.05 and P ≤ 0.0001) in genotypic resistance throughout the trial. Furthermore, enrofloxacin treatment resulted in a complete non-WT E. coli population but the quantity of resistance genes was similar to the control group, likely because resistance is mediated by point mutations. CONCLUSIONS Based on our findings, we suggest that persistence of antimicrobials should be taken into consideration in the assessment of priority classification of antimicrobials in livestock.
Collapse
Affiliation(s)
- Aram F Swinkels
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bjorn J A Berendsen
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| |
Collapse
|
5
|
Singh A, Pratap SG, Raj A. Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47505-47529. [PMID: 39028459 DOI: 10.1007/s11356-024-34355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.
Collapse
Affiliation(s)
- Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Shalini G Pratap
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
6
|
van Dongen KCW, de Lange E, van Asseldonk LLM, Zoet L, van der Fels-Klerx HJ. Safety and transfer of veterinary drugs from substrate to black soldier fly larvae. Animal 2024; 18:101214. [PMID: 38970990 DOI: 10.1016/j.animal.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024] Open
Abstract
There is an increasing interest in edible insects in Europe for feed and food purposes. Quantitative information on the transfer of chemical hazards from substrates to larvae is needed to evaluate food and feed safety aspects. This evaluation is especially needed when organic substrates or residual streams such as manure will be applied as substrate, contributing to a circular food system. This study investigated the transfer of veterinary drugs from spiked substrate to black soldier fly larvae (Hermetia illucens). Veterinary drugs that are commonly administered to chicken, fattening pigs, and cattle and regularly detected in manure were included: three different antibiotics (enrofloxacin, oxytetracycline, sulfamethoxazole), three coccidiostats (narasin, salinomycin, toltrazuril) and one antiparasitic drug (eprinomectin). The chemicals were spiked to insect substrate to reach final concentrations of 0.5 and 5 mg/kg for the antibiotics and the antiparasitic drug, and 5 and 50 mg/kg for the coccidiostats. Black soldier fly larvae were reared for 1 week on the spiked substrates, and the transfer of the veterinary drugs to the larvae and frass was quantified using liquid chromatography coupled with tandem mass spectrometry. Only oxytetracycline and eprinomectin reduced the average weight and/or survival of the black soldier fly larvae. The transfer of the veterinary drugs to the larvae was on average 19.2% for oxytetracycline, 12% for enrofloxacin, 9.5% for narasin, 8.1% for eprinomectin, 3.9% for salinomycin, 4.2% for toltrazuril, and 0.2% for sulfamethoxazole, relative to concentrations in the substrate. Mass-balance calculations revealed that the larvae seem to metabolise veterinary drugs, and indeed, metabolites of enrofloxacin, sulfamethoxazole, and toltrazuril were detected in the larvae and frass. In conclusion, insect-rearing substrates should be evaluated for the presence of veterinary drug residues to ensure feed (and food) safety, as well as because of possible effects on insect growth.
Collapse
Affiliation(s)
- K C W van Dongen
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands.
| | - E de Lange
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - L L M van Asseldonk
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - L Zoet
- Bestico B.V, Veilingweg 6, 2651 BE Berkel en Rodenrijs, the Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| |
Collapse
|
7
|
van der Fels-Klerx HJ, van Asselt ED, Berendsen B, Focker MF. Framework for evaluation of food safety in the circular food system. NPJ Sci Food 2024; 8:36. [PMID: 38898076 PMCID: PMC11186827 DOI: 10.1038/s41538-024-00276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
In order to minimise food waste, side streams from feed and food production are increasingly being (re-) used in food supply chains. Such reuse contributes to the desire to implement circularity in food and agricultural systems. However, the reuse of side products in circular food systems may impact food safety, for instance, contaminant residues present at low levels in biomass may accumulate when reusing streams. In order to assess potential food safety issues related to circular food systems, a framework has been developed in this study. Based on this framework, appropriate actions can be taken to prevent from human health risks. The framework consists of three steps: 1. Describing the changes in the food supply chain as a result of the circularity transition; 2. Identifying potential food safety hazards related to the change; and 3. Prioritising food safety hazards related to the circularity transition. For the prioritisation, both the presence of the hazards in final foods and the effects of the hazards on human health need to be assessed. Persistence of the hazard in the environment and potential transfer from the environment to the final food product are relevant elements to include. The framework was tested in three case studies, showing that it allows for a prioritisation between hazards. Based on the case study results, circularity not so much influences the health effects of the hazards, but rather their presence depending on the persistence and transfer of food safety hazards in a circular system.
Collapse
Affiliation(s)
| | - E D van Asselt
- Wageningen Food Safety Research, Wageningen, Netherlands
| | - B Berendsen
- Wageningen Food Safety Research, Wageningen, Netherlands
| | - M F Focker
- Wageningen Food Safety Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Patyra E, Osiński Z, Kwiatek K. Residues of veterinary antibiotics in solid natural and organic fertilizers-method development and sample analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33956-w. [PMID: 38886273 DOI: 10.1007/s11356-024-33956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Livestock excrement is used around the world as natural fertilizers or, after processing, as organic fertilizers for crops and grasslands. But due to the presence of veterinary antibiotics in them, they may pose a threat not only to the natural environment, mainly to soil microorganisms, but also to human and animal health. This article describes a method for detecting 21 antibacterial substances in solid natural and organic fertilizers. Antibiotics from fertilizers were extracted with a mixture of acetonitrile and McIlvain-Na2EDTA buffer, twice. The extracts were purified by solid phase extraction technique on Strata-X cartridges and analyzed with the use UHPLC-MS/MS technique. The method was validated in accordance with EU Commission Implementing Regulation 2021/808; the obtained recovery ranged from 93.6 to 116.6% (depending on the analytes), and the linearity ranged from 50 to 1000 µg/kg. The developed method was used to analyze 73 samples of solid natural and organic fertilizers. Our research has shown that over 38% of natural fertilizers were contaminated with antibiotics, mainly doxycycline in concentrations reaching several dozen milligrams per kilogram of fertilizers. In the case of processed organic fertilizers, the presence of antibiotics was found in over 37% of the analyzed samples. The research results showed that the developed and validated analytical method may be useful for assessing the presence and content of antibacterial substances in solid natural and organic fertilizers.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstufs, National Veterinary Research Institute, Pulawy, Poland.
| | - Zbigniew Osiński
- Department of Hygiene of Animal Feedingstufs, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstufs, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
9
|
Santamarina-García G, Amores G, Gandarias N, Hernández I, Virto M. Cross-sectional, commercial testing, and chromatographic study of the occurrence of antibiotic residues throughout an artisanal raw milk cheese production chain. Food Chem 2024; 442:138445. [PMID: 38244440 DOI: 10.1016/j.foodchem.2024.138445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
This study investigated antibiotic utilization in artisanal dairies and residue occurrence throughout the raw milk cheese production chain using commercial testing (Charm KIS and Eclipse Farm3G) and UHPLC-QqQ-MS/MS and LC-QqQ-MS/MS. The cross-sectional survey results revealed gaps in the producers' knowledge of antibiotic use. Commercial testing detected antibiotic levels close to the LOD in 12.5 % of the samples, mainly in raw milk and whey, with 10.0 % testing positive, specifically in fresh and ripened cheeses, indicating that antibiotics are concentrated during cheese-making. Chromatographically, several antibiotics were identified in the faeces of healthy animals, with chlortetracycline (15.7 ± 34.5 µg/kg) and sulfamethazine (7.69 ± 16.5 µg/kg) predominating. However, only tylosin was identified in raw milk (3.28 ± 7.44 µg/kg) and whey (2.91 ± 6.55 µg/kg), and none were found in fresh or ripened cheeses. The discrepancy between commercial and analytical approaches is attributed to compounds or metabolites not covered chromatographically.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Prevention, Promotion and Health Care Area, Lactiker-Nutrition and Health Line, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Prevention, Promotion and Health Care Area, Lactiker-Nutrition and Health Line, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Nagore Gandarias
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Prevention, Promotion and Health Care Area, Lactiker-Nutrition and Health Line, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Prevention, Promotion and Health Care Area, Lactiker-Nutrition and Health Line, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
10
|
Massaccesi L, Albini E, Massacci FR, Giusepponi D, Paoletti F, Sdogati S, Morena F, Agnelli A, Leccese A, Magistrali CF, Galarini R. Impact of Soil Fertilization with Pig Slurry on Antibiotic Residues and Resistance Genes: A Longitudinal Study. Antibiotics (Basel) 2024; 13:486. [PMID: 38927154 PMCID: PMC11200711 DOI: 10.3390/antibiotics13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The impact of soil fertilization with animal manure on the spread and persistence of antibiotic resistance in the environment is far from being fully understood. To add knowledge about persistence and correlations between antibiotic residues and antibiotic resistance genes (ARGs) in fertilized soil, a longitudinal soil mesocosm study was conducted. Soil samples were collected from the mesocosms immediately before spreading and then afterward at fifteen time points during a 320-day observation period. Eight ARGs (ermB, sul1, tetA, tetG, tetM, cfr, fexA, and optrA) and the class 1 integron-integrase gene, intI1, were determined in both pig slurry and soil, as well as residues of 36 antibiotics. Soil chemical and biochemical parameters were also measured. Twelve antibiotics were detected in the slurry in the range of 3 µg kg-1-3605 µg kg-1, with doxycycline, lincomycin, and tiamulin being the most abundant, whereas ermB, sul1, and tetM were the predominant ARGs. Before spreading, neither antibiotic residues nor ARGs were detectable in the soil; afterwards, their concentrations mirrored those in the slurry, with a gradual decline over the duration of the experiment. After about three months, the effect of the amendment was almost over, and no further evolution was observed.
Collapse
Affiliation(s)
- Luisa Massaccesi
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), 06128 Perugia, Italy;
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Stefano Sdogati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy;
| | - Alberto Agnelli
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Angelo Leccese
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| |
Collapse
|
11
|
Šandor K, Perak Junaković E, Terzić S, Žarković I, Vujnović A, Fajdić D, Pehnec M, Sinković S, Ćaleta I, Andrišić M. A Green HPLC Approach to Florfenicol Analysis in Pig Urine. Pharmaceuticals (Basel) 2024; 17:495. [PMID: 38675455 PMCID: PMC11053663 DOI: 10.3390/ph17040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Florfenicol (FF) is a broad-spectrum antibiotic used to treat gastrointestinal and respiratory infections in domestic animals. Considering FF's rapid elimination via urine after drug treatment, its use increases concerns about environmental contamination. The objective of the study was to establish a sustainable chromatographic method for simple analysis of FF in pig urine to investigate the urinary excretion of FF after a single intramuscular administration of 20 mg FF/kg body weight. The urine sample was prepared using a centrifuge and regenerated cellulose filter, and the diluted sample was analyzed. The method was validated in terms of linearity, the limit of detection (0.005 µg/mL) and quantitation (0.016 µg/mL), repeatability and matrix effect (%RSD ranged up to 2.5), accuracy (varied between 98% and 102%), and stability. The concentration-time profile of pig urine samples collected within 48 h post-drug administration showed that 63% of FF's dose was excreted. The developed method and previously published methods used to qualify FF in the urine of animal origin were evaluated by the National Environmental Method Index (NEMI), Green Analytical Procedure Index (GAPI) and Analytical GREENness Metric Approach (AGREE). The greenness profiles of published methods revealed problems with high solvents and energy consumption, while the established method was shown to be more environmentally friendly.
Collapse
Affiliation(s)
- Ksenija Šandor
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Eleonora Perak Junaković
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Svjetlana Terzić
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Irena Žarković
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Anja Vujnović
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Dominika Fajdić
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Mirta Pehnec
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Sonja Sinković
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| | - Irena Ćaleta
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, 10000 Zagreb, Croatia;
| | - Miroslav Andrišić
- Laboratory for Analysis of Veterinary Medicinal Products, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (K.Š.); (S.T.); (I.Ž.); (A.V.); (D.F.); (M.P.); (S.S.); (M.A.)
| |
Collapse
|
12
|
Patyra E, Osiński Z, Kwiatek K. The Identification and Quantification of 21 Antibacterial Substances by LC-MS/MS in Natural and Organic Liquid Fertilizer Samples. Molecules 2024; 29:1644. [PMID: 38611923 PMCID: PMC11013321 DOI: 10.3390/molecules29071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotics in animal production are widely used around the world for therapeutic and preventive purposes, and in some countries, they still serve as antibiotic growth stimulants. Regardless of the purpose of using antibiotics in livestock, they may be present in animal tissues and organs as well as in body fluids and excretions (feces and urine). Farm animal excrement in unprocessed form (natural fertilizers) or processed form (organic fertilizers) is applied to agricultural fields because it improves soil fertility. Antibiotics present in fertilizers may therefore contaminate the soil, surface, groundwater, and plants, which may pose a threat to the environment, animals, and humans. Therefore, it is important to develop analytical methods that will allow for the control of the presence of antibacterial substances in natural and organic fertilizers. Therefore, in this study, an LC-MS/MS method was developed and validated for the determination of 21 antibacterial substances in natural and organic liquid fertilizers. The developed method was used to analyze 62 samples of natural and organic liquid fertilizers, showing that over 24% of the tested samples were contaminated with antibiotics, mainly from the group of tetracyclines and fluoroquinolones. Studies of post-fermentation sludge from biogas plants have shown that the processes of anaerobic methane fermentation, pH, and temperature changes taking place in bioreactors do not lead to the complete degradation of antibiotics present in the material used for biogas production. For this reason, monitoring studies of natural and organic fertilizers should be undertaken to limit the introduction of antibiotics into the natural environment.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Pulawy, Poland; (Z.O.); (K.K.)
| | | | | |
Collapse
|
13
|
Antos J, Piosik M, Ginter-Kramarczyk D, Zembrzuska J, Kruszelnicka I. Tetracyclines contamination in European aquatic environments: A comprehensive review of occurrence, fate, and removal techniques. CHEMOSPHERE 2024; 353:141519. [PMID: 38401860 DOI: 10.1016/j.chemosphere.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Tetracyclines are among the most commonly used antibiotics for the treatment of bacterial infections and the improvement of agricultural growth and feed efficiency. All compounds in the group of tetracyclines (tetracycline, chlorotetracycline, doxycycline, and oxytetracycline) are excreted in an unchanged form in urine at a rate of more than 70%. They enter the aquatic environment in altered and unaltered forms which affect aquatic micro- and macroorganisms. This study reviews the occurrence, fate, and removal techniques of tetracycline contamination in Europe. The average level of tetracycline contamination in water ranged from 0 to 20 ng/L. However, data regarding environmental contamination by tetracyclines are still insufficient. Despite the constant presence and impact of tetracyclines in the environment, there are no legal restrictions regarding the discharge of tetracyclines into the aquatic environment. To address these challenges, various removal techniques, including advanced oxidation, adsorption, and UV treatment, are being critically evaluated and compared. The summarized data contributes to a better understanding of the current state of Europe's waters and provides insight into potential strategies for future environmental management and policy development. Further research on the pollution and effects of tetracyclines in aquatic environments is therefore required.
Collapse
Affiliation(s)
- Joanna Antos
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Marianna Piosik
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
14
|
Wei L, Zhu D, Cheng Q, Gao Z, Wang H, Qiu J. Aptamer-Based fluorescent DNA biosensor in antibiotics detection. Food Res Int 2024; 179:114005. [PMID: 38342532 DOI: 10.1016/j.foodres.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.
Collapse
Affiliation(s)
- Luke Wei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Dingze Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiuyue Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Honglei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
15
|
Barola C, Brambilla G, Galarini R, Moretti S, Morabito S. Assessment of the combined inputs of antimicrobials from top soil improvers and irrigation waters on green leafy vegetable fields. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:313-324. [PMID: 38295296 DOI: 10.1080/19440049.2024.2306930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Sustainable food systems involve the recycling of biowaste and water. This study characterizes thirty-one top soil improvers of anthropogenic, animal, and green waste origin, along with eleven irrigation waters from rivers, channels, and civil wastewater treatment plants (cWWTPs) for the presence of antimicrobials. Liquid chromatography coupled with hybrid High-Resolution Mass Spectrometry (LC-HRMS/MS) was employed to identify forty-eight drugs belonging to the classes of sulfonamides (11), tetracyclines (7), fluoroquinolones (10), macrolides (12), amphenicols (3), pleuromutilins (2), diaminopyrimidines (1), rifamycins (1) and licosamides (1). Sludge from cWWTPs, animal manure, slurry, and poultry litter exhibited the highest loads for sulfonamides, tetracyclines, fluoroquinolones and macrolides (80, 470, 885, and 4,487 ng g-1 wet weight, respectively) with nor- and ciprofloxacin serving as markers for anthropogenic sources. In compost and digestate, antimicrobials were found to be almost always below the limits of quantification. Reused water from cWWTPs for irrigation in open-field lettuce production were contaminated in the range of 12-221 ng L-1 with sulfonamides, tetracyclines, and fluoroquinolones, compared to very few detected in channels and surface waters. The Antimicrobials Hazard Index (HI), based on the Predicted No Effect Concentration for Antimicrobial Resistance (PNECAMR), was significantly >100 in contaminated topsoil improvers from urban and animal sources. Accounting for worst-case inputs from topsoil improvers and irrigation water, as well as dilution factors in amended soil, fluoroquinolones only exhibited an HI around 1 in open fields for lettuce production. The origin of topsoil improvers plays a pivotal role in ensuring safe and sustainable leafy vegetable production, thereby mitigating the risk of Antimicrobial Resistance (AMR) onset in food-borne diseases and the transfer of AMR elements to the human gut flora.
Collapse
Affiliation(s)
- Carolina Barola
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Gianfranco Brambilla
- Food Borne Diseases and One Health Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Galarini
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Simone Moretti
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Stefano Morabito
- Food Borne Diseases and One Health Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Watanabe M, Goswami P, Kure K, Yamane I, Kobayashi S, Akiba M, Guruge KS. Characteristics of antimicrobial residues in manure composts from swine farms: Residual patterns, removal efficiencies, and relation to purchased quantities and composting methods in Japan. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132310. [PMID: 37598512 DOI: 10.1016/j.jhazmat.2023.132310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Present study provides first comprehensive results on the residual levels of 19 antimicrobial (AM) residues in 12 Japanese swine manure composting facilities that use open or enclosed types of treatment methods. Tilmicosin (14000 μg/kg d.w.) and tiamulin (15000 μg/kg d.w.) were present in the highest concentrations in manure composts. Morantel (MRT) had the highest detection frequency (100%) in compost, suggesting its ubiquitous usage and resistance to degradation during composting. Sulfamethoxazole had low detection frequencies and concentrations, likely due to limited partitioning to the solid phase. A positive correlation (p < 0.05) between purchasing quantities and residue levels in manure composts was detected for fluoroquinolones (FQs). The removal efficiencies of AMs in enclosed-type facilities were lower and more inconsistent than those in open-type facilities. Tetracyclines (TCs), lincomycin, and trimethoprim were easily removed from open-type facilities, whereas FQs and MRT persisted in both facilities. After discontinuing the usage of oxytetracycline (OTC), TCs concentrations reduced drastically in input materials, remained pseudo-persistent in composts for up to 4 months, suggesting a time lag for composting and were not detected (<10 µg/kg) after 4 months of OTC withdrawal. This study emphasizes on the effectiveness of manure composting methods in reducing AM residues in swine waste.
Collapse
Affiliation(s)
- Mafumi Watanabe
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Prasun Goswami
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Katsumasa Kure
- The Japanese Association of Swine Veterinarians (JASV), 1704-3 Nishi-Ooi, Tsukuba, Ibaraki 300-1260, Japan
| | - Itsuro Yamane
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Sota Kobayashi
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masato Akiba
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Keerthi S Guruge
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
17
|
K S, Vasanthrao R, Chattopadhyay I. Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance. Folia Microbiol (Praha) 2023; 68:657-675. [PMID: 37589876 DOI: 10.1007/s12223-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.
Collapse
Affiliation(s)
- Suganya K
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Ramavath Vasanthrao
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India.
| |
Collapse
|
18
|
Vergara-Luis I, Bocayá N, Irazola-Duñabeitia M, Zuloaga O, Lacuesta M, Olivares M, Prieto A. Multitarget and suspect screening of antimicrobials in soil and manure by means of QuEChERS - liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2023; 415:6291-6310. [PMID: 37610438 PMCID: PMC10558387 DOI: 10.1007/s00216-023-04905-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
The present work aimed to develop an accurate analytical method for the simultaneous analysis of twenty-four antimicrobials in soil:compost and animal manure samples by means of ultra-high performance liquid chromatography coupled to a triple-quadrupole mass spectrometer (UHPLC-QqQ). For this purpose, the effectiveness of two extraction techniques (i.e. focused ultrasound solid-liquid extraction (FUSLE) and QuEChERS (quick, easy, cheap, effective, rugged and safe)) was evaluated, and the clean-up step using solid-phase extraction (SPE) was also thoroughly studied. The method was successfully validated at 10 μg·kg-1, 25 μg·kg-1, and 50 μg·kg-1 showing adequate trueness (70-130%) and repeatability (RSD < 30%), with few exceptions. Procedural limits of quantification (LOQPRO) were determined for soil:compost (0.45 to 7.50 μg·kg-1) and manure (0.31 to 5.53 μg·kg-1) samples. Pefloxacin could not be validated at the lowest level since LOQPRO ≥ 10 μg·kg-1. Sulfamethazine (7.9 ± 0.8 µg·kg-1), danofloxacin (27.1 ± 1.4 µg·kg-1) and trimethoprim (4.9 ± 0.5 µg·kg-1) were detected in soil samples; and tetracycline (56.8 ± 2.8 µg·kg-1), among other antimicrobials, in the plants grown on the surface of the studied soil samples. Similarly, sulfonamides (SAs), tetracyclines (TCs) and fluoroquinolones (FQs) were detected in sheep manure in a range of 1.7 ± 0.3 to 93.3 ± 6.8 µg·kg-1. Soil and manure samples were also analysed through UHPLC coupled to a high-resolution mass-spectrometer (UHPLC-qOrbitrap) in order to extend the multitarget method to suspect screening of more than 22,281 suspects. A specific transformation product (TP) of sulfamethazine (formyl-sulfamethazine) was annotated at 2a level in manure samples, among others. This work contributes to the efforts that have been made in the last decade to develop analytical methods that allow multitarget analysis of a wide variety of antimicrobials, including TPs, which is a complex task due to the diverse physicochemical properties of the antimicrobials.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48490, Leioa, Basque Country, Spain.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - N Bocayá
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48490, Leioa, Basque Country, Spain
| | - M Irazola-Duñabeitia
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48490, Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48490, Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48490, Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48490, Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
19
|
El-Zamkan MA, Ahmed AS, Abdelhafeez HH, Mohamed HMA. Molecular characterization of Vibrio species isolated from dairy and water samples. Sci Rep 2023; 13:15368. [PMID: 37717062 PMCID: PMC10505214 DOI: 10.1038/s41598-023-42334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
Vibrio species can cause foodborne infections and lead to serious gastrointestinal illnesses. The purpose of this research was to detect the Vibrio cholerae and Vibrio parahaemolyticus in raw milk, dairy products, and water samples. Also, it investigated the virulence factors, antibiotic resistance and biofilm formation in isolated bacteria. Conventional and molecular approaches were used to identify the isolates in this study. Vibrio species were detected in 5% of the samples. Vibrio cholerae and Vibrio parahaemolyticus were isolated from 1.25 and 1.5%, respectively, of the total samples. Penicillin resistance was detected in all strains of Vibrio cholerae and Vibrio parahaemolyticus, with a MAR index ranging from 0.16 to 0.5. Four isolates were moderate biofilm producer and three of them were MDR. When Vibrio cholerae was screened for virulence genes, ctxAB, hlyA, and tcpA were found in 80, 60, and 80% of isolates, respectively. However, tdh + /trh + associated-virulence genes were found in 33.3% of Vibrio parahaemolyticus isolates.
Collapse
Affiliation(s)
- Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hanan H Abdelhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
20
|
Ashrafi R, Bruneaux M, Sundberg LR, Hoikkala V, Karvonen A. Multispecies coinfections and presence of antibiotics shape resistance and fitness costs in a pathogenic bacterium. Mol Ecol 2023; 32:4447-4460. [PMID: 37303030 DOI: 10.1111/mec.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Matthieu Bruneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
21
|
Wang Z, Cheng J, Dai G, Sun X, Yin X, Zhang Y. The Establishment of a Tobramycin-Responsive Whole-Cell Micro-Biosensor Based on an Artificial Ribozyme Switch. Life (Basel) 2023; 13:1553. [PMID: 37511928 PMCID: PMC10381313 DOI: 10.3390/life13071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a tobramycin concentration-dependent whole-cell micro-biosensor (tob-HHAz) was constructed by fusing a tobramycin aptamer with a hammerhead ribozyme (HHR) from Schistosoma mansoni. The biosensor was obtained by integrating all the modules into one complete RNA sequence, which was easily introduced into E. coli without suffering from harsh external environments. Three independent tobramycin-sensitive RNA structures were identified via high-throughput screening in vivo and were further verified in vitro to undergo the desired self-cleavage reaction. The computation prediction of the RNA structure was performed to help analyze the mechanisms of various conformations by performing a qualitative and rapid detection of tobramycin in practical samples; two sensors exhibited high responsiveness to spiked milk, with a detection limit of around 40 nM, which is below the EU's antibiotic maximum residual level. One of the structures provides a linear range from 30 to 650 nM with a minimum detection limit of 30 nM and showed relatively good selectivity in spiked urine. This study is the first in which in vivo screening was combined with computation analysis to optimize the pivotal structure of sensors. This strategy enables researchers to use artificial ribozyme-based biosensors not only for antibiotic detection but also as a generally applicable method for the further detection of substances in living cells.
Collapse
Affiliation(s)
- Zhenzhen Wang
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Jiawen Cheng
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Guimin Dai
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Xiaoqi Sun
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Xueli Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Zhang
- School of Life Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
22
|
Chio H, Guest EE, Hobman JL, Dottorini T, Hirst JD, Stekel DJ. Predicting bioactivity of antibiotic metabolites by molecular docking and dynamics. J Mol Graph Model 2023; 123:108508. [PMID: 37235902 DOI: 10.1016/j.jmgm.2023.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Antibiotics enter the environment through waste streams, where they can exert selective pressure for antimicrobial resistance in bacteria. However, many antibiotics are excreted as partly metabolized forms, or can be subject to partial breakdown in wastewater treatment, soil, or through natural processes in the environment. If a metabolite is bioactive, even at sub-lethal levels, and also stable in the environment, then it could provide selection pressure for resistance. (5S)-penicilloic acid of piperacillin has previously been found complexed to the binding pocket of penicillin binding protein 3 (PBP3) of Pseudomonas aeruginosa. Here, we predicted the affinities of all potentially relevant antibiotic metabolites of ten different penicillins to that target protein, using molecular docking and molecular dynamics simulations. Docking predicts that, in addition to penicilloic acid, pseudopenicillin derivatives of these penicillins, as well as 6-aminopenicillanic acid (6APA), could also bind to this target. MD simulations further confirmed that (5R)-pseudopenicillin and 6APA bind the target protein, in addition to (5S)-penicilloic acid. Thus, it is possible that these metabolites are bioactive, and, if stable in the environment, could be contaminants selective for antibiotic resistance. This could have considerable significance for environmental surveillance for antibiotics as a means to reduce antimicrobial resistance, because targeted mass spectrometry could be required for relevant metabolites as well as the native antibiotics.
Collapse
Affiliation(s)
- Hokin Chio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ellen E Guest
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Aukland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
23
|
Patyra E, Nebot C, Gavilán RE, Kwiatek K, Cepeda A. Prevalence of veterinary antibiotics in natural and organic fertilizers from animal food production and assessment of their potential ecological risk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3638-3644. [PMID: 36620960 DOI: 10.1002/jsfa.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Veterinary antibiotics are emerging contaminants and enter into soil principally by agricultural application of organic fertilizers. This article presents the results of the research obtained for the analyzed 70 samples of fertilizers (pig and poultry manure and slurry and digestate) for various classes of antibiotics. RESULTS Doxycycline, oxytetracycline, tetracycline, lincomycin, tiamulin and enrofloxacin were found in tested samples. Doxycycline was found as a dominant compound, and its highest concentration was 175 mg/kg in pig manure. This investigation indicated that fertilization with manure, especially animal feces, might be the primary source of antibiotics. Additionally, a risk assessment based on a risk quotient was carried out, which showed that the determined concentrations of antibiotics in fertilizers may pose a threat to soil microorganisms. CONCLUSIONS Results suggested that the ecological risk effects of antibiotic contamination on soil bases and their potential adverse risk on human health needs special attention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Pulawy, Poland
| | - Carolina Nebot
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Rosa Elvira Gavilán
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Pulawy, Poland
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
24
|
Cao H, Jiao Q, Cheng L, Song L, Xun M, Yang H. Occurrence and prevalence of antibiotic resistance genes in apple orchard after continual application of anaerobic fermentation residues of pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29229-29242. [PMID: 36409412 DOI: 10.1007/s11356-022-24320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Fermented organic fertilizers made from pig manure contaminated with antibiotics are widely used in fruit tree production. However, their effects on the residual antibiotics and the spread of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in apple orchards are still largely unknown. In the present study, we detected 100 ARGs and 10 MGEs that were transferred from pig manure to an apple orchard. Compared with the original pig manure, significantly greater concentrations of tetracycline, chlortetracycline, oxytetracycline, sulfadiazine, and salfamethyldiazine were observed in anaerobic fermentation residues of the pig manure. The total relative abundance levels of ARGs on the apple pericarp surface, in the orchard soil treated with biogas slurry, and in the orchard soil treated with biogas residue were 122.5, 5.2, 1.4 times higher than those in pristine soil, respectively, which were primarily attributed to the increase in the relative abundance of some ARG subtypes, including blaCTX-M, blaTEM, ermC, sul2, tetO, vgaB, and vgb. Long-term biogas slurry and biogas residue applications to orchard soil enriched bioaccumulation of 10 ARGs and 1 MGEs on the apple pericarp surface with 67.98 the highest factor. This research indicates that the application of anaerobic fermentation residues of pig manure promoted the spread of ARGs in the soil and fruits and increased the level of ARG pollution in the orchard. Results of this study highlight the importance of assessing the ecological safety of organic fertilizers from the perspective of ARGs and indicate that efforts should be devoted to further reducing ARG levels in pig manure before its application to farmland.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qian Jiao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Liangmei Cheng
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Linhui Song
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Mi Xun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
25
|
Vergara-Luis I, Báez-Millán JC, Baciero I, González-Gaya B, Olivares M, Zuloaga O, Prieto A. Comparison of conventional and dispersive solid phase extraction clean-up approaches for the simultaneous analysis of tetracyclines and sulfonamides in a variety of fresh vegetables. Talanta 2023; 254:124192. [PMID: 36527910 DOI: 10.1016/j.talanta.2022.124192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The extensive use of antibiotics in agriculture has led to the occurrence of residual drugs in different vegetables frequently consumed by humans. This could pose a potential threat to human health, not only because of the possible effects after ingestion but also because the transmission of antibiotic-resistant genes could occur. In this work, two accurate sample preparation procedures were developed and validated for the simultaneous analysis of sulfonamides (SAs) and tetracyclines (TCs) in four of the most widely consumed vegetables (lettuce, onion, tomato, and carrot) in Europe. The evaluated protocols were based on QuECHERS for extraction and subsequent clean-up by SPE (solid phase extraction) or dispersive SPE. Parameters affecting both extraction and clean-up were carefully evaluated and selected for accuracy of results and minimal matrix effect. Overall, apparent recoveries were above 70% for most of the target analytes with both analytical procedures, and adequate precision (RSD<30%) was obtained for all the matrices. The procedural limits of quantification (LOQPRO) values for SPE clean-up remained below 4.4 μg kg-1 for TCs in all vegetables except for chlortetracycline (CTC) in lettuce (11.3 μg kg-1) and 3.0 μg kg-1 for SAs, with the exception of sulfadiazine (SDZ) in onion (3.9 μg kg-1) and sulfathiazole (STZ) in carrot (5.0 μg kg-1). Lower LOQPRO values (0.1-3.7 μg kg-1) were obtained, in general, when dSPE clean-up was employed. Both methods were applied to twenty-five market vegetable samples from ecological and conventional agriculture and only sulfamethazine (SMZ) and sulfapyridine (SPD) were detected in lettuce at 1.2 μg kg-1 and 0.5 μg kg-1, respectively.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - J C Báez-Millán
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - I Baciero
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - B González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| |
Collapse
|
26
|
Paranhos AGDO, Pereira AR, Coelho LDN, Silva SDQ, de Aquino SF. Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42443-42455. [PMID: 36648713 DOI: 10.1007/s11356-023-25329-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH4 kg VS-1, resulting in 0.11 kWh kg PL-1 of electrical energy and 0.75 MJ kg PL-1 of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.
Collapse
Affiliation(s)
- Aline Gomes de Oliveira Paranhos
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil
| | - Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil
| | - Letícia Dias Nunes Coelho
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil
| | - Silvana de Queiroz Silva
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil.,Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil
| | - Sérgio Francisco de Aquino
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil. .,Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro Do Cruzeiro, S/N, Ouro Preto, MG, Brazil.
| |
Collapse
|
27
|
Astudillo D, Pokrant E, Bravo C, Ríos A, Navarrete MJ, Maddaleno A, Maturana M, Flores A, Guzmán M, Hidalgo H, Zayas C, Lapierre L, Cornejo J. Detection of antimicrobial residues in animal manure by a microbiological screening methodology: A non-invasive tool in animal production. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Identification and Quantification of 29 Active Substances by HPLC-ESI-MS/MS in Lyophilized Swine Manure Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010216. [PMID: 36615410 PMCID: PMC9822080 DOI: 10.3390/molecules28010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Veterinary drugs are frequently employed to treat and prevent diseases in food-producing animals to improve animal health and to avoid the introduction of microorganisms into the food chain. The analysis of the presence of pharmaceutical residues in animal manure could help to evaluate the legal and illegal practices during food production without harming the animals and to correctly manage manure when it is going to be applied as a fertilizer. This article describes a method for the simultaneous analysis of 29 active substances, mostly antibiotics and antiparasitic agents. Substances were extracted from lyophilized manure with a methanol:McIlvaine solution and analyzed with HPLC-ESI-MS/MS and a C18 HPLC column. The method was validated following European guidelines, the achieved trueness was between 63 and 128% (depending on the analytes), and the linearity was between 100 and 1500 µg/kg. The applicability of the method was demonstrated in 40 manure samples collected from pig farms where tetracycline was quantified in 7.5% of the samples. These results show the viability of this non-invasive method for the control of the legal and illegal administration of pharmaceuticals in food-producing animals.
Collapse
|
29
|
Biodigestion System Made of Polyethylene and Polystyrene Insulator for Dog Farm (on the Example of the Republic of Chile). LIFE (BASEL, SWITZERLAND) 2022; 12:life12122039. [PMID: 36556404 PMCID: PMC9785096 DOI: 10.3390/life12122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Anaerobic digestion is a system that can have a high environmental impact through the use of different wastes to obtain biogas and its consequent use for the generation of renewable energy. The objective of this study was to implement a polyethylene biodigester, using polystyrene for thermal insulation in a dog kennel, using canine feces collected in the same place during a period of 5 months to obtain biogas and energy. The results indicated that biogas production started on day 30 and stopped during the winter period with low temperatures; therefore, from day 54 onwards, equine manure was added to continue producing biogas. Although biogas was obtained, the biodigester did not function optimally, due to the fact that the materials used in its construction did not provide efficient insulation from the low external temperatures; the low C/N ratio of the canine feces, which led to a reduction in the processing of the methanogenic bacteria; and the low amount of feces collected for use. In general, the use of a biodigester can provide a tool for the biological processing and management of organic waste, yielding a cumulative source of renewable energy and ensuring environmental safety.
Collapse
|
30
|
Quantifying Antibiotic Distribution in Solid and Liquid Fractions of Manure Using a Two-Step, Multi-Residue Antibiotic Extraction. Antibiotics (Basel) 2022; 11:antibiotics11121735. [PMID: 36551392 PMCID: PMC9774962 DOI: 10.3390/antibiotics11121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotic distribution and analysis within liquid and solid fractions of manure are highly variable due to each compound’s respective physiochemical properties. This study developed and evaluated a uniform method extracting 10 antibiotics from 4 antibiotic classes (tetracycline, sulfonamides, macrolides, and β-lactam) from unprocessed manure, solid−liquid separated manure, and composted solids. Through systematic manipulation of previously published liquid chromatography tandem mass spectrometry methods; this study developed an extraction protocol with optimized recovery efficiencies for varied manure substrates. The method includes a two-step, liquid-solid extraction using 10 mL of 0.1 M EDTA-McIlviane buffer followed by 10 mL of methanol. Antibiotics recoveries from unprocessed manure, separated liquids, separated solids, and heat-treated solids using the two-step extraction method had relative standard deviations < 30% for all but ceftiofur. Total antibiotic recoveries were 67−131% for tetracyclines, 56% for sulfonamide, 49−53% for macrolides, and 1.3−66% for β-lactams. This is the first study to use one protocol to assess four classes of antibiotics in liquid and solid manure fractions. This study allowed for more precise risk assessment of antibiotic transport in manure waste stream applied to fields as a liquid or solid compost.
Collapse
|
31
|
Matamoros V, Casas ME, Pastor E, Tadić Đ, Cañameras N, Carazo N, Bayona JM. Effects of tetracycline, sulfonamide, fluoroquinolone, and lincosamide load in pig slurry on lettuce: Agricultural and human health implications. ENVIRONMENTAL RESEARCH 2022; 215:114237. [PMID: 36084673 DOI: 10.1016/j.envres.2022.114237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The application of pig slurry as fertilizer in agriculture provides nutrients, but it can also contain veterinary medicines, including antibiotic residues (ABs), which can have an ecotoxicological impact on agroecosystems. Furthermore, uptake, translocation, and accumulation of ABs in crops can mobilize them throughout the food chain. This greenhouse study aims to assess AB uptake from soil fertilized with pig slurry and its phenotypical effects on Lactuca sativa L. The plants were cropped in loamy clay soil dosed at 140 kg total N/ha and containing antibiotics (lincomycin, sulfadiazine, oxytetracycline, and enrofloxacin) at different concentration levels (0, 0.05, 0.5, 5, 50, and 500 mg/kg fresh weight, fw). Whereas sulfadiazine (11.8 ng/g fw) was detected in lettuce leaves at the intermediate doses (0.5 mg/kg), lincomycin and its transformation products (hydroxy/sulfate) were only detected at the 50 mg/kg fw dose. In addition, increased AB doses in the pig slurry resulted in decreased lettuce fresh weight and lipid and carbohydrate content and became lethal to lettuce at the highest AB concentrations (500 mg/kg fw). Nevertheless, even at higher doses, the AB content in lettuce following pig-slurry fertilization did not pose any direct significant human health risk (total hazard quotient<0.01). However, the promotion of antimicrobial resistance in humans due to the intake of these vegetables cannot be ruled out.
Collapse
Affiliation(s)
- V Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | - M Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - E Pastor
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Đ Tadić
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - N Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
32
|
Sanz C, Casadoi M, Tadic Đ, Pastor-López EJ, Navarro-Martin L, Parera J, Tugues J, Ortiz CA, Bayona JM, Piña B. Impact of organic soil amendments in antibiotic levels, antibiotic resistance gene loads, and microbiome composition in corn fields and crops. ENVIRONMENTAL RESEARCH 2022; 214:113760. [PMID: 35753374 DOI: 10.1016/j.envres.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The potential spreading of antibiotic resistance genes (ARG) into agricultural fields and crops represent a fundamental limitation on the use of organic fertilization in food production systems. We present here a study of the effect of spreading four types of organic soil amendments (raw pig slurry, liquid and solid fractions, and a digested derivative) on demonstrative plots in two consecutive productive cycles of corn harvest (Zea mays), using a mineral fertilizer as a control, following the application of organic amendments at 32-62 T per ha (150 kg total N/ha) and allowing 5-8 months between fertilization and harvest. A combination of qPCR and high-throughput 16S rDNA sequencing methods showed a small, but significant impact of the fertilizers in both ARG loads and microbiomes in soil samples, particularly after the second harvesting cycle. The slurry solid fraction showed the largest impact on both ARG loads and microbiome variation, whereas its digestion derivatives showed a much smaller impact. Soil samples with the highest ARG loads also presented increased levels of tetracyclines, indicating a potential dual hazard by ARG and antibiotic residues linked to some organic amendments. Unlike soils, no accumulation of ARG or antibiotics was observed in corn leaves (used as fodder) or grains, and no grain sample reached detection limits for neither parameter. These results support the use of organic soil amendments in corn crops, while proposing the reduction of the loads of ARGs and antibiotics from the fertilizers to greatly reduce their potential risk.
Collapse
Affiliation(s)
- Claudia Sanz
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain
| | - Marta Casadoi
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain
| | - Đorde Tadic
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain
| | | | | | - Joan Parera
- DACC, Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Gran Via de les Corts Catalanes, 612-614, E-08007, Barcelona, Spain
| | - Jordi Tugues
- DACC, Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Gran Via de les Corts Catalanes, 612-614, E-08007, Barcelona, Spain
| | - Carlos A Ortiz
- DACC, Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Gran Via de les Corts Catalanes, 612-614, E-08007, Barcelona, Spain
| | | | - Benjamin Piña
- IDAEA-CSIC, Jordi Girona, 18. E-08034, Barcelona, Spain.
| |
Collapse
|
33
|
Tian Y, Li J, Li X, Li J, Meng J. Sample pretreatment and analytical methodology for the determination of antibiotics in swine wastewater and activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83671-83685. [PMID: 35773613 DOI: 10.1007/s11356-022-21595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
An analytical method for the simultaneous extraction and determination of eight veterinary antibiotics in swine wastewater and activated sludge was developed and validated based on the instrumental determination by liquid chromatography tandem quadrupole mass spectrometry. Ultrasound-assisted extraction and solid-phase extraction were introduced into the pretreatment procedure of the two complex environmental matrices. The critical steps involved in the sample pretreatment procedure and the instrumental analysis conditions were optimized progressively. Recoveries of the optimized method were good with 75.3-118.2% in wastewater and 82.8-130.1% in sludge. The absolute deviations of methods were lower than 11.7%, presenting a high reproducibility and precision. The limits of quantification for the eight pharmaceuticals in wastewater and sludge were 5-15 ng·L-1 and 2-6 ng·g-1, showing high sensitivity of the methods. The developed method has been successfully applied to evaluate the actual concentration levels of tetracyclines, quinolones, and sulfonamides in actual swine wastewater (maximum detected concentration of 87.377 μg·L-1) and activated sludge (maximum detected concentration of 51242.3 ng·g-1).
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China.
| |
Collapse
|
34
|
Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E. Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912853. [PMID: 36232152 PMCID: PMC9564893 DOI: 10.3390/ijerph191912853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 05/07/2023]
Abstract
Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.
Collapse
|
35
|
Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics (Basel) 2022; 11:1362. [PMID: 36290020 PMCID: PMC9598832 DOI: 10.3390/antibiotics11101362] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi 17464, Saudi Arabia
| | | | | |
Collapse
|
36
|
Zhou W, Suo D, Fan X, Xiao Z, Zhang H, Zhou Z, Huo X, Chong Y. Occurrence and risk assessment of five kinds of antimicrobial in mattress on swine farm use ectopic fermentation systems in Zhejiang Province. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70591-70607. [PMID: 36114958 DOI: 10.1007/s11356-022-22891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Mattress is among the main products of ectopic fermentation system (EFS); however, the research on the data of antimicrobial residues in the mattress of EFS and risk assessments of mattress have not been conducted. This study involved a scale survey to assess the levels and distributions of 54 antimicrobial residues, including 4 tetracyclines, 19 quinolones, 22 sulfonamides, 3 amphenicols, and 6 macrolides in mattress on 12 swine farms that use ectopic fermentation systems (EFS) in Zhejiang Province. A total of 25 antimicrobials were detected in mattress, and the total residue amount of antimicrobial in mattress samples of each farm was 0.77-28.2 g/T. Chlortetracycline had the highest contribution rate, and the residue amount of antimicrobial in mattress is not entirely determined by the start-up time of EFS but is related to the use of feed containing antimicrobial, medication habits, the level of mattress management, and maintenance methods of EFS. The risk assessments of antimicrobial in the mattress were carried out. The results show that the risk of using mattress of EFS for soil is low.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 311119, China
| | - Decheng Suo
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 10008, China.
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 10008, China
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agricultural Product, Chinese Academy of Agricultural Science, Beijing, 10008, China
| | - Hangjun Zhang
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 311119, China
| | - Zhijin Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 311119, China
| | - Xuan Huo
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 311119, China
| | - Yang Chong
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 311119, China
| |
Collapse
|
37
|
Dias D, Hipólito D, Figueiredo A, Fonseca C, Caetano T, Mendo S. Unravelling the Diversity and Abundance of the Red Fox (Vulpes vulpes) Faecal Resistome and the Phenotypic Antibiotic Susceptibility of Indicator Bacteria. Animals (Basel) 2022; 12:ani12192572. [PMID: 36230313 PMCID: PMC9558537 DOI: 10.3390/ani12192572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Antimicrobial resistance was considered one of the major concerns of the twenty-first century by the World Health Organization in 2014. A holistic approach known as “One Health” recognizes the connections and interdependence between the health of people, domestic and wild animals, plants, and the ecosystem. The red fox is the most widespread wild canid in Europe that adapts easily and is distributed in natural environments and urban and peri-urban areas due to its increasing abundance. Foxes are reservoirs and disseminators of antibiotic resistance and zoonotic agents. They interact with watercourses, soils and livestock, and although they have no gastronomic interest, they are a game species, highlighting the potential risk of contamination between them and the hunters. Our main goal was to characterize antibiotic resistance in red foxes. Several clinically relevant antibiotic resistance genes were identified, as well as multidrug-resistant bacteria. Abstract The WHO considers that antimicrobial resistance (AMR) is among the ten greatest global public health risks of the 21st century. The expansion of human populations and anthropogenically related activities, accompanied by the fragmentation of natural habitats, has resulted in increased human–wildlife interaction. Natural ecosystems are therefore subjected to anthropogenic inputs, which affect the resistome of wild animals. Thus, urgent multisectoral action is needed to achieve the Sustainable Development Goals following the One Health approach. The present work falls within the scope of this approach and aims to characterize the AMR of the faecal microbiome of the red fox (Vulpes vulpes), an opportunistic and generalist synanthropic species whose abundance has been increasing in urban and peri-urban areas. A high number of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were screened and quantified using a high-throughput qPCR approach, and the antimicrobial susceptibility of cultivable E. coli and Enterococcus spp. were assessed interpreted with both ECOFFs and clinical breakpoints. The most abundant ARGs detected confer resistance to trimethoprim and tetracyclines, although the first were absent in one of the locations studied. Several ARGs considered to be threats to human health were identified in high relative abundances (blaTEM, ermB, aadA, tetM, tetW, tetL, drfA1 and drfA17), especially in the geographical area with greater anthropogenic influence. Although at a low percentage, resistant and multidrug-resistant (MDR) E. coli and Enterococcus spp. were isolated, including one MDR E. coli showing resistance to 12 antimicrobials from 6 different classes.
Collapse
Affiliation(s)
- Diana Dias
- CESAM and Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dário Hipólito
- CESAM and Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ana Figueiredo
- CESAM and Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Bioscience & CEES, University of Oslo, Blindernvn, 31, 0371 Oslo, Norway
| | - Carlos Fonseca
- CESAM and Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- ForestWISE—Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.C.); (S.M.)
| | - Sónia Mendo
- CESAM and Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.C.); (S.M.)
| |
Collapse
|
38
|
Marutescu LG, Jaga M, Postolache C, Barbuceanu F, Milita NM, Romascu LM, Schmitt H, de Roda Husman AM, Sefeedpari P, Glaeser S, Kämpfer P, Boerlin P, Topp E, Gradisteanu Pircalabioru G, Chifiriuc MC, Popa M. Insights into the impact of manure on the environmental antibiotic residues and resistance pool. Front Microbiol 2022; 13:965132. [PMID: 36187968 PMCID: PMC9522911 DOI: 10.3389/fmicb.2022.965132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent – cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Mihaela Jaga
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Florica Barbuceanu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Nicoleta Manuela Milita
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Luminita Maria Romascu
- Research Institute of University of Bucharest, Bucharest, Romania
- The Institute for Diagnostic and Animal Health (IDSA), Bucharest, Romania
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Heike Schmitt
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Stefanie Glaeser
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Peter Kämpfer
- Institute for Applied Microbiology Heinrich-Buff-Ring, Justus-Liebig University, Gießen, Germany
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Department of Biology, Agriculture and Agri-Food Canada, University of Western Ontario, London, ON, Canada
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- *Correspondence: Gratiela Gradisteanu Pircalabioru,
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- Mariana Carmen Chifiriuc,
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest, Bucharest, Romania
| |
Collapse
|
39
|
Matamoros V, Casas ME, Mansilla S, Tadić Đ, Cañameras N, Carazo N, Portugal J, Piña B, Díez S, Bayona JM. Occurrence of antibiotics in Lettuce (Lactuca sativa L.) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: Crop and human health implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129044. [PMID: 35525220 DOI: 10.1016/j.jhazmat.2022.129044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have demonstrated the crop uptake of antibiotics (ABs) from soils treated with AB-carrying fertilisers. However, there is a lack of plot-scale studies linking their effects at the agronomic and metabolomic/transcriptomic level to their impact on human health. This paper assesses the plant uptake of 23 ABs following two productive cycles of lettuce and radish cropped with sewage sludge, pig slurry, the organic fraction of municipal solid waste, or chemical fertilisation under plot-scale conditions (32 plots spanning 3-10 m2 each). AB uptake by plants depended on both the vegetable and the AB class and was higher in radish than in lettuce edible parts. Levels ranged from undetectable to up to 76 ng/g (fresh weight). Repetitive organic fertilisation resulted in an increase in the concentration of ABs in lettuce leaves, but not in radish roots. Significant metabolomic and transcriptomic changes were observed following soil fertilisation. Nevertheless, a human health risk assessment indicates that the occurrence of ABs in lettuce or radish edible parts does not pose any risk. To our knowledge, this is the first holistic plot-scale study demonstrating that the use of organic fertilisers containing ABs is safe for crop security and human health.
Collapse
Affiliation(s)
- V Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain.
| | - M Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - S Mansilla
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - Đ Tadić
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Cañameras
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - N Carazo
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J Portugal
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - B Piña
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - S Díez
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| | - J M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain; Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels, Spain
| |
Collapse
|
40
|
Focker M, van Asselt E, Berendsen B, van de Schans M, van Leeuwen S, Visser S, van der Fels-Klerx H. Review of food safety hazards in circular food systems in Europe. Food Res Int 2022; 158:111505. [DOI: 10.1016/j.foodres.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
|
41
|
Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 2022; 243:123292. [DOI: 10.1016/j.talanta.2022.123292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
|
42
|
van Asselt ED, Arrizabalaga-Larrañaga A, Focker M, Berendsen BJA, van de Schans MGM, van der Fels-Klerx HJ. Chemical food safety hazards in circular food systems: a review. Crit Rev Food Sci Nutr 2022; 63:10319-10331. [PMID: 35611891 DOI: 10.1080/10408398.2022.2078784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food production has increasingly become effective but not necessarily sustainable. Transitioning toward circular production systems aiming to minimize waste and reuse materials is one of the means to obtain a more sustainable food production system. However, such a circular food production system can also lead to the accumulation and recirculation of chemical hazards. A literature review was performed to identify potential chemical hazards related to the use of edible and non-edible resources in agriculture and horticulture, and edible plant and animal by-products in feed production. The review revealed that limited information was available on the chemical hazards that could occur when reusing crop residues in circular agriculture. Frequently mentioned hazards present in edible and non-edible resources are heavy metals, process and environmental contaminants, pesticides and pharmaceuticals. For feed, natural toxins and pharmaceutical residues are of potential concern. Studies, furthermore, indicated that plants are capable of taking up chemical hazards when grown on contaminated soil. The presence of chemical hazards in manure, sewage sludge, crop residues, and animal by-products may lead to accumulation in a circular food production system. Therefore, it is relevant to identify these hazards prior to application in food production and, if needed, take precautionary measures to prevent food safety risks.
Collapse
Affiliation(s)
- E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - M Focker
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - B J A Berendsen
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | | |
Collapse
|
43
|
Zilio M, Pigoli A, Rizzi B, Herrera A, Tambone F, Geromel G, Meers E, Schoumans O, Giordano A, Adani F. Using highly stabilized digestate and digestate-derived ammonium sulphate to replace synthetic fertilizers: The effects on soil, environment, and crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152919. [PMID: 34998783 DOI: 10.1016/j.scitotenv.2022.152919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/01/2022] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Recovered fertilizers (a highly stabilized digestate and ammonium sulphate) obtained from anaerobic digestion of sewage sludge, were used on plot trials with a maize crop, in a comparison with synthetic fertilizers. After three consecutive cropping seasons, the soils fertilized with the recovered fertilizers (RF), compared to those fertilized with synthetic fertilizers (SF), did not show significant differences either in their chemical characteristics or in the accumulation of inorganic and organic pollutants (POPs). The RF ensured an ammonia N availability in the soil equal to that of the soil fertilized with SF, during the whole period of the experiment. Furthermore, no risks of N leaching were detected, and the use of RF did not result in a greater emission of ammonia or greenhouse gases than the use of SF. The agronomic results obtained using RF were equivalent to those obtained with SF (fertilizer use efficiency of 85.3 ± 10 and 93.6 ± 4.4% for RF and SF respectively). The data show that utilising a very stable digestate can be a good strategy to produce a bio-based fertilizer with similar performance to that of a synthetic fertilizer, without environmental risks.
Collapse
Affiliation(s)
- Massimo Zilio
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| | - Ambrogio Pigoli
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Bruno Rizzi
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Axel Herrera
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Fulvia Tambone
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Gabriele Geromel
- Acqua & Sole Srl Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
| | - Erik Meers
- Dept. Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Oscar Schoumans
- Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Andrea Giordano
- Acqua & Sole Srl Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
44
|
Sanz C, Casado M, Navarro-Martin L, Cañameras N, Carazo N, Matamoros V, Bayona JM, Piña B. Implications of the use of organic fertilizers for antibiotic resistance gene distribution in agricultural soils and fresh food products. A plot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151973. [PMID: 34843769 DOI: 10.1016/j.scitotenv.2021.151973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In order to help designing agricultural practices that minimize the spread of ARG, we fertilized, sown, and harvested lettuces and radish plants in experimental land plots for two consecutive agricultural cycles using four types of fertilizers: mineral fertilization, sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) identified a small, but significant overlap (<10%) between soil's and fertilizer microbiomes. Clinically relevant ARG were found in higher loads (up to 100 fold) in fertilized soils than in the initial soil, particularly in those treated with organic fertilizers, and their loads grossly correlated to the amount of antibiotic residues found in the corresponding fertilizer. Similarly, low, but measurable ARG loads were found in lettuce (tetM, sul1) and radish (sul1), corresponding the lowest values to samples collected from minerally fertilized fields. Comparison of soil samples collected along the total period of the experiment indicated a relatively year-round stability of soil microbiomes in amended soils, whereas ARG loads appeared as unstable and transient. The results indicate that ARG loads in soils and foodstuffs were likely linked to the contribution of bacteria from organic fertilizer to the soil microbiomes, suggesting that an adequate waste management and good pharmacological and veterinarian practices may significantly reduce the presence of these ARGs in agricultural soils and plant products.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Laia Navarro-Martin
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Núria Cañameras
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels 08860, Spain
| | - Núria Carazo
- Department of Agri-Food Engineering and Biotechnology DEAB-UPC, Esteve Terrades 8, Building 4, Castelldefels 08860, Spain
| | - Victor Matamoros
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Josep Maria Bayona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| |
Collapse
|
45
|
Rakonjac N, van der Zee SEATM, Wipfler L, Roex E, Kros H. Emission estimation and prioritization of veterinary pharmaceuticals in manure slurries applied to soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152938. [PMID: 35016945 DOI: 10.1016/j.scitotenv.2022.152938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Veterinary pharmaceuticals (VPs) are emitted into the environment and transfer to groundwater and surface water is diffuse and complex, whereas actual information on the fate is frequently limited. For 17 VPs of potential concern in the Netherlands, we assessed sources and emission due to animal slurry applications to soil. Hence, we examined the use of VPs in four livestock sectors in the Netherlands for 2015-2018, and quantified animal excretion rates and dissipation during slurry storage. For almost all VPs, administrated quantities to the animals during the period 2015-2018 decreased. VP concentrations during a storage period of six months could decrease between 10 and 98% depending on the compound. Predicted concentrations of VPs in slurries after storage compared well with measured concentrations in the literature. Based on the storage model outcomes, we developed a residue indicator, that quantifies the potential for residues in applied slurry. This indicator agrees well with the most frequently detected VPs in the Dutch slurries, and is therefore useful to prioritize measures aiming at reducing VP emissions into the environment.
Collapse
Affiliation(s)
- Nikola Rakonjac
- Soil Physics and Land Management Group, Wageningen University, Wageningen, the Netherlands.
| | | | - Louise Wipfler
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Erwin Roex
- Ministry of Defence, Doorn, the Netherlands
| | - Hans Kros
- Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
46
|
Sudha S, Parthasarathi N, Prabha D, Velmurugan P, Sivakumar S, Anitha V, Shrestha A, Chinnathambi A, Alharb SA, Lakshmanaperumalsamy P. Oxytetracycline Degrading Potential of Lysinibacillus sp. Strain 3+I Isolated from Poultry Manure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2750009. [PMID: 35368761 PMCID: PMC8970894 DOI: 10.1155/2022/2750009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Oxytetracycline (OTC) which is a broad-spectrum veterinary tetracycline antibiotic is extensively used in poultry farms as a prophylactic, therapeutic, and growth stimulator. Upon administration, unmetabolized OTC is excreted from the animal body through droppings and accumulated in litter in the poultry industry. This study aimed at investigating the OTC degradation potential of an-OTC tolerant bacterial strain, isolated from poultry manure. The isolated strain's morphology, biochemical properties, and 16S ribosomal RNA (rRNA) gene sequence confirmed that it belonged to the Lysinibacillus genus. To measure the residual OTC concentration, a high-performance liquid chromatography method was used. OTC degradation rates were 2.579 mg L-1d-1 with Lysinibacillus strain 3+I and 1.149 mg L-1d-1 without Lysinibacillus strain 3+I. In the presence of strain 3+I, the half-life significantly reduced to 2.68 days, compared to 6.03 days without strain 3+I. The strain demonstrated 85% removal with the OTC concentration of 10 μg/ml. The influence of pH, temperature, carbon sources, and nitrogen source, which influence degradation, were also investigated. The optimum condition favouring degradation was pH 6 at a temperature of 30°C. In addition, Lysinibacillus sp. strain 3+I's ability to degrade OTC in poultry litter offers a promising approach to treat poultry manure and effluent containing OTC, preventing its contamination in the environment.
Collapse
Affiliation(s)
- Suruttaiyan Sudha
- Department of Environmental Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Duraisamy Prabha
- Department of Environmental Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, Tamil Nadu, India
| | - Subpiramaniyam Sivakumar
- Department of Bioenvironmental Energy, College of Natural Resources and Life Science, Pusan National University, Miryang-Si, Gyeongsangnam-do 50463, Republic of Korea
| | - Vijayakumar Anitha
- Department of Environmental Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Anupama Shrestha
- Department of Plant Protection, Himalayan College of Agricultural Sciences and Technology, P.O. Box 44600 Kalanki, Kathmandu, Nepal
- Research Institute of Agriculture and Applied Science, 2356 Tokha, Kathmandu, Nepal
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharb
- Department of Botany and Microbiology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
47
|
Osiński Z, Patyra E, Kwiatek K. HPLC-FLD-Based Method for the Detection of Sulfonamides in Organic Fertilizers Collected from Poland. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062031. [PMID: 35335395 PMCID: PMC8950728 DOI: 10.3390/molecules27062031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Antibacterial substances such as sulfonamides are widely used in veterinary medicine to treat many bacterial diseases. After their administration to animals, up to 90% of the initial dose of the antibiotic is excreted in the feces and/or urine, which can be applied to farmland as natural or organic fertilizers. In this work, an analytical method was developed with the use of HPLC-FLD for the detection and quantification of five sulfonamides (sulfaguanidine, sulfadiazine, sulfamerazine, sulamethazine and sulfamethoxazol) in poultry and pig feces, slurry and digestates. The method was validated according to EU requirements (Commission Decision 2002/657/EC and VICH GL49). Linearity, decision limit, detection capability, detection and quantification limits, recovery, precision, and selectivity were determined, and adequate results were obtained. Using the HPLC-FLD method for all analyzed matrices, recoveries were satisfactory (77.00–121.16%), with repeatability and reproducibility in the range of 4.36–17.34% to 7.94–18.55%, respectively. Decision limit (CCα) and detection capability (CCβ) were 33.87–67.63 and 53.36–92.00 µg/kg, respectively, and limit of detection (LOD) and limit of quantification (LOQ) were 13.53–23.30 and 26.02–40.38 µg/kg, respectively, depending on the analyte. The forty-four samples of natural and organic fertilizers were analyzed, and four samples showed sulfamethoxazole in the amount from range 158 to 11,070 µg/kg. The application of antibiotics including sulfonamides for farming animals is widespread and may lead to the development of antibiotic resistance and other environmental effects.
Collapse
|
48
|
Intestinal Exposure to Ceftiofur and Cefquinome after Intramuscular Treatment and the Impact of Ceftiofur on the Pig Fecal Microbiome and Resistome. Antibiotics (Basel) 2022; 11:antibiotics11030342. [PMID: 35326805 PMCID: PMC8944603 DOI: 10.3390/antibiotics11030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Optimization of antimicrobial treatment during a bacterial infection in livestock requires in-depth knowledge of the impact of antimicrobial therapy on the pathogen and commensal microbiota. Once administered antimicrobials and/or their metabolites are excreted either by the kidneys through urine and/or by the intestinal tract through feces, causing antimicrobial pressure and possibly the emergence of resistance in the gastro-intestinal tract. So far, the excretion of ceftiofur and cefquinome in the intestinal tract of pigs has not been described. The objective of this study was to investigate the excretion of ceftiofur and cefquinome in the different segments of the gut and feces after intramuscular administration. Therefore, 16 pigs were treated either with ceftiofur (n = 8) or cefquinome (n = 8), and feces were collected during the entire treatment period. The presence of ceftiofur and desfuroylceftiofuracetamide or cefquinome were quantified via liquid chromatography−tandem mass spectrometry. At the end of the treatment, pigs were euthanized, and samples from the duodenum, jejunum, ileum and cecum were analyzed. In feces, no active antimicrobial residues could be measured, except for one ceftiofur-treated pig. In the gut segments, the concentration of both antimicrobials increased from duodenum toward the ileum, with a maximum in the ileum (187.8 ± 101.7 ng·g−1 ceftiofur-related residues, 57.8 ± 37.5 ng·g−1 cefquinome) and sharply decreased in the cecum (below the limit of quantification for ceftiofur-related residues, 6.4 ± 4.2 ng·g−1 cefquinome). Additionally, long-read Nanopore sequencing and targeted quantitative polymerase chain reaction (qPCR) were performed in an attempt to clarify the discrepancy in fecal excretion of ceftiofur-related residues between pigs. In general, there was an increase in Prevotella, Bacteroides and Faecalibacterium and a decrease in Escherichia and Clostridium after ceftiofur administration (q-value < 0.05). The sequencing and qPCR could not provide an explanation for the unexpected excretion of ceftiofur-related residues in one pig out of eight. Overall, this study provides valuable information on the gut excretion of parenteral administered ceftiofur and cefquinome.
Collapse
|
49
|
Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol 2022; 24:3290-3306. [PMID: 35172395 DOI: 10.1111/1462-2920.15927] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
With increasing reports on antimicrobial resistance (AMR) in humans, animals and the environment, we are at risk of returning to a pre-antibiotic era. Therefore, AMR is recognized as one of the major global health threats of this century. Antibiotics are used extensively in farming systems to treat and prevent infections in food animals or to increase their growth. Besides the risk of a transfer of AMR between the human and the animal sector, there is another yet largely overlooked sector in the One Health triad. Human-dominated ecosystems such as agricultural soils are a major sink for antibiotics and AMR originating from livestock farming. This review summarizes current knowledge on the prevalence of AMR at the interface of animal and agricultural production and discusses the potential implications for human health. Soil resistomes are augmented by the application of manure from treated livestock. Subsequent transfer of AMR into plant microbiomes may likely play a critical role in human exposure to antibiotic resistance in the environment. Based on the knowledge that is currently available we advocate that more attention should be paid to the role of environmental resistomes in the AMR crisis.
Collapse
Affiliation(s)
- Niti B Jadeja
- Ashoka Trust for Research in Ecology and the Environment, PO, Royal Enclave, Srirampura, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318, Germany
| |
Collapse
|
50
|
Development and validation of a highly effective analytical method for the evaluation of the exposure of migratory birds to antibiotics and their metabolites by faeces analysis. Anal Bioanal Chem 2022; 414:3373-3386. [PMID: 35165780 PMCID: PMC9018661 DOI: 10.1007/s00216-022-03953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The widespread occurrence of antibiotics in the environment may exert a negative impact on wild organisms. In addition, they can become environmental reservoirs, through the ingestion of food or contaminated water, and vectors for antibiotic-resistant bacteria. This fact is even more important in migratory birds that can promote their dissemination across continents. In this work, a multiresidue analytical method suitable for the determination of five families of antibiotics and their main metabolites in waterbird faeces has been developed and validated. The target compounds include environmentally significant sulfonamides, macrolides, fluoroquinolones, tetracyclines and antifolates. Sample treatment involves ultrasound-assisted extraction with methanol and dispersive solid-phase extraction clean-up with C18. Analytical determination was carried out by liquid chromatography-tandem mass spectrometry. The most significant parameters affecting sample extraction and extract clean-up were optimised by means of experimental designs. Good linearity (R2 > 0.994), accuracy (from 41 to 127%), precision (relative standard deviation lower than 24%) and limits of quantification (lower than 2 ng g-1 (dry weight, dw)) were obtained for most of the compounds. The method was applied to the determination of the selected compounds in 27 faeces samples from three common migratory waterbird species. Nine antibiotics and three of their metabolites were detected in the analysed samples. Fluoroquinolones and macrolides were the antibiotics most frequently detected. The highest concentrations corresponded to norfloxacin (up to 199 ng g-1 dw).
Collapse
|