1
|
Zhang L, Jin H, Zhang Z, Bai T, Wei M, He B, Zhao R, Suo Z. Triple-helix molecular-switch-actuated rolling circle amplification and catalytic hairpin assembly multistage signal amplified fluorescent aptasensor for detection of aflatoxin B1. Anal Chim Acta 2024; 1323:343072. [PMID: 39182973 DOI: 10.1016/j.aca.2024.343072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Mycotoxins, a class of secondary metabolites produced by molds, are widely distributed in nature and are very common in food contamination. Aflatoxin B1 (AFB1) is a highly stable natural mycotoxin, and many agricultural products are easily contaminated by AFB1, it is important to establish a sensitive and efficient AFB1 detection method for food safety. The fluorescence aptamer sensor has shown satisfactory performance in AFB1 detection, but most of the fluorescence aptasensors are not sensitive enough, so improving the sensitivity of the aptasensor becomes the focus of this work. RESULTS Herein, an innovative fluorescent aptasensor for AFB1 detection which is based on catalytic hairpin assembly (CHA) and rolling circle amplification (RCA) driven by triple helix molecular switch (THMS) is proposed. A functional single-strand with an AFB1 aptamer, here called an APF, is first designed to lock onto the signal transduction probe (STP), which separates from THMS when target AFB1 is present. Subsequently, STP initiates the RCA reaction along the circular probe, syntheses macro-molecular mass products through repeated triggering sequences, triggers the CHA reaction to produce a large number of H1-H2 structures, which causes FAM to move away from BHQ-1 and recover its fluorescence signal. The fluorescence signal from FAM at 520 nm was collected as the signal output of aptasensor in this work. With high amplification efficiency of RCA and CHA of the fluorescence sensor, resulting in a low LOD value of 2.95 pg mL-1(S/N = 3). SIGNIFICANCE The successful establishment of the sensor designed in this work shows that the cascade amplification reaction is perfectly applied in the fluorescent aptamer sensor, and the signal amplification through the reaction between DNA strands is a simple and efficient method. In addition, it's also important to remember that the aptasensor can detect other targets only by changing the sequence of the aptamer, without redesigning other DNA sequences in the reaction system.
Collapse
Affiliation(s)
- Liuyi Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhen Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Tian Bai
- Henan Province Food Inspection Research Institute, Zhengzhou, 450008, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Huang Y, Cheng Z, Xu LP, Zhang X, Liu G. Lateral flow DNA biosensor for visual detection of nucleic acid with triple-helix DNA functionalized carbon nanotube. Anal Chim Acta 2023; 1276:341604. [PMID: 37573103 DOI: 10.1016/j.aca.2023.341604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
We describe a novel lateral flow DNA biosensor (LFDB) based on carbon nanotube (CNT) and triple helix DNA (THD). The carboxylated CNT was first conjugated with amine-modified auxiliary single-stranded DNA probe (P1) by dehydration reaction and used as signal probe. A main DNA probe (P0) was introduced to react with the P1 and formed the THD on the CNT surface. Because of the large spatial effect, P1 was in an inactive state and cannot hybridize with the capture DNA probe (P2) fixed on the LFDB test area. When the target DNA was present, P0 in the triple helix DNA hybridized with the target DNA due to the stronger base action, and the decomposition of the triple helix structure exposed P1. Therefore, P1 on CNT surface was activated to hybridize with P2. The CNT along with P1 was thus captured at the test area and accumulated to show a black line, which can be observed by naked eye for qualitative analysis and recorded with a portable grayscale reader for quantitative analysis. Single-stranded DNA was used as a target to prove the feasibility of the model. Under the best experimental conditions, the THD-CNT based LFDB was able to detect the lowest DNA concentration of 15 pM, which is 2.67 times better than that of the traditional duplex CNT-based LFDB. It should be noted that the LFDB based on THD functionalized CNT can differentiate between one-base-mismatched DNA and the complementary target DNA, can detected target DNA in 10% human serum, and can be employed as a versatile platform to detect various target (proteins, small molecular) by changing the sequence of P0. This biosensor platform has enormous potential in the point-of-care detection of a rich diversity of analytes for clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhihao Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, China.
| |
Collapse
|
3
|
Hemin-catalyzed SI-RAFT polymerization for thrombin detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Satish S, Dey A, Tharmavaram M, Khatri N, Rawtani D. Risk assessment of selected pharmaceuticals on wildlife with nanomaterials based aptasensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155622. [PMID: 35508236 DOI: 10.1016/j.scitotenv.2022.155622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals have improved human and veterinary health tremendously over the years. But the implications of the presence of pharmaceuticals in the environment on terrestrial, avian, and aquatic organisms are still not fully comprehended. The bioaccumulation and biomagnifications of these chemicals through the food chain have long-term effects on the wildlife. The detection and quantification of such pharmaceutical residues in the environment is a tedious process and quicker methods are needed. Aptasensors are one such quick and reliable method for the identification of pharmaceutical residues in the wildlife. Aptasensors are a class of biosensors that work on the principles of biological recognition of elements. The aptamers are unique biological recognition elements with high specificity and affinity to various targets. Their efficiency makes them a very promising candidate for such sensitive research. In this review, the pharmaceutical threats to wildlife and their detection techniques using aptasensors have been discussed.
Collapse
Affiliation(s)
- Swathi Satish
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Aayush Dey
- School of Doctoral Studies & Research (SDSR), National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Maithri Tharmavaram
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Nitasha Khatri
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Jivraj Mehta Bhavan, Gandhinagar, Gujarat, India
| | - Deepak Rawtani
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| |
Collapse
|
5
|
A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin. MATERIALS 2021; 14:ma14226927. [PMID: 34832326 PMCID: PMC8624160 DOI: 10.3390/ma14226927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
It is important to detect thrombin due to its physiological and pathological roles, where rapid and simple analytical approaches are needed. In this study, an aptasensor based on fluorescence attenuation kinetics for the detection of thrombin is presented, which incorporates the features of stilbene and aptamer. We designed and synthesized an aptasensor by one-step coupling of stilbene compound and aptamer, which employed the adaptive binding of the aptamer with thrombin to cause a change in stilbene fluorescence attenuation kinetics. The sensor realized detection of thrombin by monitoring the variation in apparent fluorescence attenuation rate constant (kapp), which could be further used for probing of enzyme–aptamer binding. In comprehensive studies, the developed aptasensor presented satisfactory performance on repeatability, specificity, and regeneration capacity, which realized rapid sensing (10 s) with a limit of detection (LOD) of 0.205 μM. The strategy was successful across seven variants of thrombin aptasensors, with tunable kapp depending on the SITS (4-Acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid disodium salt hydrate) grafting site. Analyte detection mode was demonstrated in diluted serum, requiring no separation or washing steps. The new sensing mode for thrombin detection paves a way for high-throughput kinetic-based sensors for exploiting aptamers targeted at clinically relevant proteins.
Collapse
|
6
|
Li G, Wei Y, Ma L, Mao Y, Xun R, Deng Y. A novel highly sensitive soy aptasensor for antigen β-conglycinin determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3059-3067. [PMID: 34137405 DOI: 10.1039/d1ay00701g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
β-Conglycinin, composed of three subunits (α', α and β), is the main allergen of soy protein which can cause severe allergic reactions, such as diarrhea, decreased growth performance and even death. Among them, the β subunit is more stable and difficult to remove, being one of the main nutritional inhibitors, which can be used to evaluate the concentration of β-conglycinin. However, there is no effective, accurate method for its β subunit rapid detection. Herein, we have successfully selected a high affinity β subunit aptamer (Kd = 6.9 nM) and developed a highly sensitive aptasensor. The aptasensor displayed high specificity and the β subunit at a concentration of 70-350 nM could be detected with a detection limit of 4.48 nM (3S/N). In addition, the recoveries of β subunit were more than 90%, demonstrating its practical properties for complicated conditions such as food quality control and disease diagnosis, without requiring expensive and sophisticated equipment.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | |
Collapse
|
7
|
Han Y, Zou R, Wang L, Chen C, Gong H, Cai C. An amine-functionalized metal-organic framework and triple-helix molecular beacons as a sensing platform for miRNA ratiometric detection. Talanta 2021; 228:122199. [PMID: 33773723 DOI: 10.1016/j.talanta.2021.122199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Herein, a metal-organic framework (UiO-66-NH2) with two functions (intrinsic fluorescence and fluorescence quenching ability) is designed to establish a ratiometric fluorescent platform for high-performance miRNA detection. The use of a fluorescent organic ligand endows the MOF material with a strong intrinsic fluorescence at 440 nm. In the presence of target miRNA, the fluorescence signal of the FAM is restored with the triple helix molecular beacons bind to the target. Using the IFAM/IMOF signal as the output, the prepared ratiometric probe was able to eliminate disturbance caused by the sensing environment. Under the optimal reaction conditions, including buffer pH of 7.4, temperature of 37 °C, and response time of 1 h, the best detection results can be obtained. The ratiometric fluorescence probe presented showed good sensitivity and selectivity for detecting miRNA-203 and the limit of detection was 400 pM with a wide linear range from 1 nM to 160 nM. In addition, this method was applied to diluted human serum and cell lysates, and good detection effect was realized.
Collapse
Affiliation(s)
- Yunpeng Han
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Rong Zou
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Lingyun Wang
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China; School of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Chunyan Chen
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Hang Gong
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
8
|
Tu C, Dai Y, Zhang Y, Wang W, Wu L. A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117415. [PMID: 31374352 DOI: 10.1016/j.saa.2019.117415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
A simple fluorescent strategy based on the formation of triple-helix molecular switch (THMS) between a signal transduction probe (STP) and an aptamer (Apt) was constructed for the determination of chloramphenicol (CAP). A weak fluorescence intensity was observed for STP solution due to the proximity of fluorophore and quencher through intramolecular DNA hybridization, causing the fluorescence quenching. The fluorescence intensity of the system was significantly enhanced after the addition of Apt. It was attributed to the formation of THMS between the Apt and STP through the Watson-Crick and Hoogsteen base pairing, resulting in the restoration of fluorescence because of the long distance between the fluorophore and quencher of STP. The fluorescence intensity of the system decreased due to the release of STP caused by the specific binding between Apt and CAP. The quantitative analysis of CAP could be achieved based on the decreased fluorescence intensity. The parameters affecting the performance of THMS including the Apt arm length, pH of buffer solution, Mg2+ concentration and the formation time of THMS were investigated in detail. Under the optimal conditions (Apt arm length of 9 bases, pH of 6.5, 2.5 × 103 μmol L-1 Mg2+, THMS formation time of 30 min), the decreased fluorescence intensity and the concentration of chloramphenicol were linear in the range of 5.0 × 10-3-2.0 × 10-1 μmol L-1 with the correlation coefficient of 0.9963. The limit of detection was 1.2 nmol L-1. Subsequently, the developed method was applied to the analysis of chloramphenicol in honey sample, and the recovery was between 84.5% and 103.0% with relative standard deviation less than 4.6%.
Collapse
Affiliation(s)
- Chunyan Tu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liang Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
9
|
Target-induced in-situ formation of fluorescent DNA-templated copper nanoparticles by a catalytic hairpin assembly: application to the determination of DNA and thrombin. Mikrochim Acta 2019; 186:760. [PMID: 31712919 DOI: 10.1007/s00604-019-3927-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022]
Abstract
A fluorometric method is described for nucleic acid signal amplification through target-induced catalytic hairpin assembly with DNA-templated copper nanoparticles (Cu NPs). The toehold-mediated self-assembly of three metastable hairpins is triggered in presence of target DNA. This leads to the formation of a three-way junction structure with protruding mononucleotides at the 3' terminus. The target DNA is released from the formed branched structure and triggers another assembly cycle. As a result, plenty of branched DNA becomes available for the synthesis of Cu NPs which have fluorescence excitation/emission maxima at 340/590 nm. At the same time, the branched structure protects the Cu NPs from digestion by exonuclease III. The unreacted hairpins are digested by exonuclease III, and this warrants a lower background signal. The method can detect ssDNA (24 nt) at low concentration (44 pM) and is selective over single-nucleotide polymorphism. On addition of an aptamer, the strategy can also be applied to the quantitation of thrombin at levels as low as 0.9 nM. Graphical abstractSchematic representation of target-induced catalytic hairpin assembly to form branched DNA template for the in situ synthesis of fluorescent Cu nanoparticles.
Collapse
|
10
|
Li J, Wang S, Jiang B, Xiang Y, Yuan R. Target-induced structure switching of aptamers facilitates strand displacement for DNAzyme recycling amplification detection of thrombin in human serum. Analyst 2019; 144:2430-2435. [PMID: 30816386 DOI: 10.1039/c9an00030e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To monitor the thrombin concentration under the condition of abnormal blood coagulation is of clinical significance for the diagnosis of various diseases. Here, on the basis of the aptamer structure switching induced by the target molecules and the signal amplification strategy via recycling of metal-ion dependent DNAzymes, we have established a sensitive and simple fluorescent aptasensor for detecting thrombin in human serum. The thrombin target specifically binds to the aptamer sequence and causes a corresponding conformational structure switching, which leads to the formation of a toehold sequence to facilitate the strand migration displacement reaction for the generation of functional metal-ion dependent DNAzymes. These DNAzymes further cleave the fluorescently quenched hairpin substrates cyclically to yield substantially amplified fluorescence recovery for sensitively detecting thrombin in the dynamic range from 0.01 nM to 50 nM. Such an aptasensor shows a detection limit of 6.9 pM and can achieve the monitoring of thrombin in diluted human serum with high selectivity, offering a universal sensing strategy for the construction of various sensitive and simple aptasensors to detect different biomarker molecules.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. NANOSCALE ADVANCES 2019; 1:2123-2138. [PMID: 36131986 PMCID: PMC9418768 DOI: 10.1039/c9na00153k] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 05/06/2023]
Abstract
Nanomaterials have been exploited extensively to fabricate various biosensors for clinical diagnostics and food & environmental monitoring. These materials in conjugation with highly specific aptamers (next-gen antibody mimics) have enhanced the selectivity, sensitivity and rapidness of the developed aptasensors for numerous targets ranging from small molecules such as heavy metal ions to complex matrices containing large entities like cells. In this review, we highlight the recent advancements in nanomaterial based aptasensors from the past five years also including the basics of conventionally used detection methodologies that paved the way for futuristic sensing techniques. The aptasensors have been categorised based upon these detection techniques and their modifications viz., colorimetric, fluorometric, Raman spectroscopy, electro-chemiluminescence, voltammetric, impedimetric and mechanical force-based sensing of a multitude of targets are discussed in detail. The bio-interaction of these numerous nanomaterials with the aptameric component and that of the complete aptasensor with the target have been studied in great depth. This review thus acts as a compendium for nanomaterial based aptasensors and their applications in the field of clinical and environmental diagnosis.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science and Technology Mohali 160062 India
| | - Munish Shorie
- Institute of Nano Science and Technology Mohali 160062 India
| |
Collapse
|
12
|
Xu P, Liao G. A Novel Fluorescent Biosensor for Adenosine Triphosphate Detection Based on a Metal⁻Organic Framework Coating Polydopamine Layer. MATERIALS 2018; 11:ma11091616. [PMID: 30189605 PMCID: PMC6164074 DOI: 10.3390/ma11091616] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022]
Abstract
In this work, a novel and sensitive fluorescent biosensor based on polydopamine coated Zr-based metal–organic framework (PDA/UiO-66) is presented for adenosine triphosphate (ATP) detection. This PDA/UiO-66 nanoparticle which holds a great potential to be excellent fluorescence quencher can protect the 6-carboxyfluorescein (FAM)-labeled probe from cleaved by DNase I dispersed in solution and the flurescence of labeled FAM is quenched. When ATP molecules exist, aptamers on the PDA/UiO-66 nanoparticles can hybridize with ATP molecule to form complex structure that will be desorbed from the PDA/UiO-66 and digested by DNase I. After that, the released ATP molecule can react with another aptamer on the PDA/UiO-66 complexes, then restarts a new cycle. Herein, the excellent strong fluorescence quenching ability and uploading more amount of aptamer probes of PDA/UiO-66 composites make them efficient biosensors, leading to a high sensitivity with detection limit of 35 nM. Compared with ATP detection directly by UiO-66-based method, the LOD is about 5.7 times higher with PDA/UiO-66 nanoparticle. Moreover, the enhanced biocompatibility and bioactivity with PDA layer of the composites render a proposed strategy for clinical diagnosis field of detecting small biological molecules in vivo in the future.
Collapse
Affiliation(s)
- Peipei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Guangfu Liao
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
Zeng P, Hou P, Jing CJ, Huang CZ. Highly sensitive detection of hepatitis C virus DNA by using a one-donor-four-acceptors FRET probe. Talanta 2018; 185:118-122. [DOI: 10.1016/j.talanta.2018.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
|
14
|
A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid. Talanta 2018; 189:599-605. [PMID: 30086966 DOI: 10.1016/j.talanta.2018.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
The detection and monitoring of acetamiprid has drawn extensive attentions, due to their potential threat to human health. Herein, a simple, sensitive and label-free fluorescent assay based on triplex-to-G-qadruplex (TTGQ) molecular switch, was developed for the assay of acetamiprid in aqueous solution. In this detection, the proposed TTGQ molecule contained the acetamiprid aptamer sequence at its loop part and the triple-helix structure at its stem part. One single-stranded DNA grafted by two split G-rich DNA sequences at its two ends, participated in the assembly of the triplex part in TTGQ. In the presence of acetamiprid, TTGQ was dissociated, and the split G-rich DNA was released out to result in the fluorescent signal enhancement of a G-quadruplex's probe. By virtue of this TTGQ molecular switch, the proposed assay can sense acetamiprid at the concentration as low as 2.38 nM with excellent selectivity. Furthermore, the detection of acetamiprid in three kinds of foods extract demonstrated the high application potential of the detection platform in the field of food safety. Compared with the other reported strategies for acetamiprid assay, this triplex-to-G-qadruplex-based fluorescent molecular switch was just composed of two DNA probes without the labeling procedure, presenting a really simple and low-cost fluorescent detection for acetamiprid assay.
Collapse
|
15
|
Ji Y, Zhang L, Zhu L, Lei J, Wu J, Ju H. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein. Biosens Bioelectron 2017; 96:201-205. [PMID: 28499196 DOI: 10.1016/j.bios.2017.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
A binding-induced DNA walker-assisted signal amplification was developed for highly selective electrochemical detection of protein. Firstly, the track of DNA walker was constructed by self-assembly of the high density ferrocene (Fc)-labeled anchor DNA and aptamer 1 on the gold electrode surface. Sequentially, a long swing-arm chain containing aptamer 2 and walking strand DNA was introduced onto gold electrode through aptamers-target specific recognition, and thus initiated walker strand sequences to hybridize with anchor DNA. Then, the DNA walker was activated by the stepwise cleavage of the hybridized anchor DNA by nicking endonuclease to release multiple Fc molecules for signal amplification. Taking thrombin as the model target, the Fc-generated electrochemical signal decreased linearly with logarithm value of thrombin concentration ranging from 10pM to 100nM with a detection limit of 2.5pM under the optimal conditions. By integrating the specific recognition of aptamers to target with the enzymatic cleavage of nicking endonuclease, the aptasensor showed the high selectivity. The binding-induced DNA walker provides a promising strategy for signal amplification in electrochemical biosensor, and has the extensive applications in sensitive and selective detection of the various targets.
Collapse
Affiliation(s)
- Yuhang Ji
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
16
|
Wang Y, Gan N, Zhou Y, Li T, Cao Y, Chen Y. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Biosens Bioelectron 2016; 87:508-513. [PMID: 27596250 DOI: 10.1016/j.bios.2016.08.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023]
Abstract
Herein, a smart single-stranded DNA binding protein (SSB)-assisted fluorescence aptamer switch based on fluorescence resonance energy transfer (FRET) was designed. The FRET switch was synthesized by connecting SSB labeled quantum dots (QDs@SSB) as donor with aptamer (apt) labeled gold nanoparticles (AuNPs@apt) as acceptor, and it was employed for detecting chloramphenicol (CAP) in a homogenous solution. In the assay, the interaction between core-shell QDs@SSB and AuNPs@apt leads to a dramatic quenching (turning off). After adding CAP in the detection system, AuNPs@apt can bind the target specifically then separate QDs@SSB with AuNPs@apt-target, resulting in restoring the fluorescence intensity of QDs (turning on). Consequently, the fluorescence intensity recovers and the recovery extent can be used for detection of CAP in homogenous phase via optical responses. Under optimal conditions, the fluorescence intensity increased linearly with increasing concentrations of CAP from 0.005 to 100ngmL-1. The limit of this fluorescence aptamer switch was around 3pgmL-1 for CAP detection. When the analyte is changed, the assay can be applied to detect other targets only by changing relative aptamer in AuNPs@apt probe. Furthermore, it has potential to be served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples.
Collapse
Affiliation(s)
- Ye Wang
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - You Zhou
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Cao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yinji Chen
- Deptartment of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210000, China
| |
Collapse
|
17
|
Liu X, Li Y, Liang J, Zhu W, Xu J, Su R, Yuan L, Sun C. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid. Talanta 2016; 160:99-105. [PMID: 27591592 DOI: 10.1016/j.talanta.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/26/2016] [Accepted: 07/03/2016] [Indexed: 02/02/2023]
Abstract
In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.
Collapse
Affiliation(s)
- Xin Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jing Liang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wenyue Zhu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingyue Xu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lei Yuan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
18
|
Wei B, Zhang J, Wang H, Xia F. A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 2016; 141:4313-8. [PMID: 27188283 DOI: 10.1039/c6an00594b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we develop a new electrochemical aptasensor by coupling two amplification strategies, including a dual signaling strategy and a supersandwich assay. In order to fabricate this aptasensor, a thiolated capture probe (CP) was first self-assembled on the gold electrode surface by Au-S bonds. After the addition of methylene blue (MB) modified signal probe 1 (SP1) and ferrocene (Fc) labeled signal probe 2 (SP2), supersandwich structure DNA, including multiple units of SP1 and SP2, was grown from the CP on the electrode surface. In the presence of ATP, the strong interaction between ATP and its aptamer (CP, SP1) leads to the disassembly of the supersandwich structure and thereby, the release of SP1 and SP2 from the gold electrode surface, resulting in a decrease of the MB and Fc signals. Taking "Signal gainMB + Signal gainFc" as the response signal, ATP can be detected sensitively; the detection limit is 2.1 nM, which is lower than that using either a single-signaling strategy or a traditional sandwich assay alone. Moreover, the new aptasensor also exhibits excellent specificity, selectivity, reliability and applicability. We believe that this new strategy will be helpful for fabricating sensitive and selective electrochemical aptasensors of other biomolecules and small molecules.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | | | | | | |
Collapse
|
19
|
Derkus B, Arslan YE, Emregul KC, Emregul E. Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic. Talanta 2016; 158:100-109. [PMID: 27343583 DOI: 10.1016/j.talanta.2016.05.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 01/01/2023]
Abstract
In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin.
Collapse
Affiliation(s)
- Burak Derkus
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Kaan C Emregul
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey
| | - Emel Emregul
- Bioelectrochemistry Lab, Department of Chemistry, Ankara University, Tandogan, Ankara 06100, Turkey.
| |
Collapse
|
20
|
Tang S, Tong P, You X, Lu W, Chen J, Li G, Zhang L. Label free electrochemical sensor for Pb2+ based on graphene oxide mediated deposition of silver nanoparticles. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Label-free aptamer biosensor for selective detection of thrombin. Anal Chim Acta 2015; 899:85-90. [DOI: 10.1016/j.aca.2015.09.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
|
22
|
Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1440-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|