1
|
Lu Y, Wang M, Yang Y, Tang Q, Zeng Y, Wang H, Zhang L, Pan C, Hu C, Fu Z, Li L. Detecting carcinoembryonic antigen based on the aggregation-induced emission enhancement effect. Chem Commun (Camb) 2024; 60:13570-13573. [PMID: 39479927 DOI: 10.1039/d4cc04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this study, a novel label-free fluorescent aptasensor with an aggregation-induced emission enhancement effect was developed and applied for the detection of carcinoembryonic antigen (CEA). The sensor has a simple detection mechanism, easy operation, high sensitivity (with low limit of detection of 1 pg mL-1), good selectivity, and wide linear range (0.003-10 ng mL-1). In addition, it can be directly applied for the determination of CEA in human serum.
Collapse
Affiliation(s)
- Yanjun Lu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Mengqi Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing 314031, Zhejiang, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Lijie Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Chengrui Pan
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Changkun Hu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Zhuowei Fu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Zhejiang, China.
| |
Collapse
|
2
|
Shahbazlou SV, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Recent advances in surface plasmon resonance for the detection of ovarian cancer biomarkers: a thorough review. Mikrochim Acta 2024; 191:659. [PMID: 39382786 DOI: 10.1007/s00604-024-06740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Early detection of ovarian cancer (OC) is crucial for effective management and treatment, as well as reducing mortality rates. However, the current diagnostic methods for OC are time-consuming and have low accuracy. Surface plasmon resonance (SPR) biosensors offer a promising alternative to conventional techniques, as they enable rapid and less invasive screening of various circulating indicators. These biosensors are widely used for biomolecular interaction analysis and detecting tumor markers, and they are currently being investigated as a rapid diagnostic tool for early-stage cancer detection. Our main focus is on the fundamental concepts and performance characteristics of SPR biosensors. We also discuss the latest advancements in SPR biosensors that enhance their sensitivity and enable high-throughput quantification of OC biomarkers, including CA125, HE4, CEA, and CA19-9. Finally, we address the future challenges that need to be overcome to advance SPR biosensors from research to clinical applications. The ultimate goal is to facilitate the translation of SPR biosensors into routine clinical practice for the early detection and management of OC.
Collapse
Affiliation(s)
- Shahnam Valizadeh Shahbazlou
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Erkal-Aytemur A, Mülazımoğlu İE, Üstündağ Z, Caglayan MO. A novel aptasensor platform for the detection of carcinoembryonic antigen using quartz crystal microbalance. Talanta 2024; 277:126376. [PMID: 38852341 DOI: 10.1016/j.talanta.2024.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification. The analytical performance of the CEA sensor was evaluated through simultaneous QCM measurements employing CEA solutions ranging from 0.1 ng/mL to 25 ng/mL. The detection limit (LOD) for CEA was determined to be 102 pg/mL for antiCEA1 and 108 pg/mL for antiCEA2 aptamers. Interday and intraday precision and accuracy tests yielded maximum results of 4.3 and + 3.8, respectively, for both aptasensors, as measured by relative standard deviation (RSD%) and relative error (RE%). The kinetic data of the aptasensors resulted in affinity values (KD) of 0.43 ± 0.14 nM for antiCEA1 and 0.75 ± 0.42 nM for antiCEA2. These values were lower than the reported values of 3.9 nM and 37.8 nM for both aptamers, respectively. The selectivity of the aptasensor was evaluated by measuring the signal changes caused by alpha-fetoprotein (AFP), cancer antigen (CA-125), and vascular endothelial growth factor (VEGF-165) individually and together at a concentration of 500 ng/mL, resulting in a maximum 4.1 % change, which was comparable to precision and accuracy values reported in the literature. After confirming the selectivity of the aptamers, recovery experiments were conducted using spiked commercial serum samples to simulate real samples, and the lowest recovery value obtained was 95.4 %. It was determined that two different aptasensors could be successfully used for the QCM-based detection of CEA in this study.
Collapse
Affiliation(s)
- Aslı Erkal-Aytemur
- Alanya Alaaddin Keykubat University, R.K. Faculty of Engineering, Fundamental Science, Antalya, Turkey
| | | | - Zafer Üstündağ
- Kütahya Dumlupınar University, Faculty of Arts and Science, Department of Chemistry, Kütahya, Turkey
| | - Mustafa Oguzhan Caglayan
- Bilecik Seyh Edebali University, Faculty of Engineering, Department of Bioengineering, Bilecik, Turkey.
| |
Collapse
|
4
|
Yi JY, Ryu J, Jeong Y, Cho Y, Kim M, Jeon M, Park HH, Hwang NS, Jeong HJ, Sung C. One-step detection of procollagen type III N-terminal peptide as a fibrosis biomarker using fluorescent immunosensor (quenchbody). Anal Chim Acta 2024; 1317:342887. [PMID: 39030019 DOI: 10.1016/j.aca.2024.342887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Procollagen type III N-terminal peptide (P-III-NP) is a fibrosis biomarker associated with liver and cardiac fibrosis. Despite the value of P-III-NP as a biomarker, its analysis currently relies on enzyme-linked immunosorbent assays (ELISA) and radioimmunoassays (RIA), which require more than 3 h. To facilitate early diagnosis and treatment through rapid biomarker testing, we developed a one-step immunoassay for P-III-NP using a quenchbody, which is a fluorescence-labeled immunosensor for immediate signal generation. RESULTS To create quenchbodies, the total mRNA of P-III-NP antibodies was extracted from early-developed hybridoma cells, and genes of variable regions were obtained through cDNA synthesis, inverse PCR, and sequencing. A single-chain variable fragment (scFv) with an N-terminal Cys-tag was expressed in E. coli Shuffle T7, resulting in a final yield of 9.8 mg L-1. The fluorescent dye was labeled on the Cys-tag of the anti-P-III-NP scFv using maleimide-thiol click chemistry, and the spacer arm lengths between the maleimide-fluorescent dyes were compared. Consequently, a TAMRA-C6-labeled quenchbody exhibited antigen-dependent fluorescence signals and demonstrated its ability to detect P-III-NP at concentrations as low as 0.46 ng mL-1 for buffer samples, 1.0 ng mL-1 for 2 % human serum samples. SIGNIFICANCE This one-step P-III-NP detection method provides both qualitative and quantitative outcomes within a concise 5-min timeframe. Furthermore, its application can be expanded using a 96-well platform and human serum, making it a high-throughput and sensitive method for testing fibrotic biomarkers.
Collapse
Affiliation(s)
- Joon-Yeop Yi
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yujin Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mijin Jeon
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea; Bio-Max/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
5
|
Tsogka I, Mermiga E, Pagkali V, Kokkinos C, Economou A. A simplified lateral flow immunosensor for the assay of carcinoembryonic antigen in low-resource settings. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2921-2929. [PMID: 38661387 DOI: 10.1039/d4ay00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Carcinoembryonic antigen (CEA) is a glycoprotein widely used as a tumor marker. In this work, a colorimetric lateral flow immunosensor is developed for rapid and low-cost quantification of CEA in human blood serum. The immunosensor consists of a glass fiber sample/conjugation pad, a nitrocellulose detection pad and a cellulose absorption pad. The detection is based on a sandwich immunoreaction: the sample/conjugation pad is modified with gold nanoparticles (GNPs)-labeled anti-CEA conjugate probes which bind to the CEA target molecules in the sample and the complexes are captured at capture anti-CEA immobilized at the test line. The color intensity of the test line, measured from a scanned image of the strip, is related to the CEA concentration in the sample. The different assay parameters are studied in detail. The linearity holds from 1.25 to 640 ng mL-1 of CEA, the instrumental and visual limits of detection are 0.45 and 0.63 ng mL-1, respectively, and the total assay time is 15 min. The specificity of the immunoassay versus other cancer biomarkers is satisfactory. The recovery in samples of human serum spiked with CEA is in the range of 81-118% and the coefficient of variation of the method is ≤10%. Results obtained with the lateral flow immunosensor correlated well with a reference radioimmunoassay method (R2 = 0.99). This immunosensor can be readily applied to CEA monitoring at the point-of-care (POC) or in resource-limited settings thanks to its low-cost and simplicity.
Collapse
Affiliation(s)
- Ioanna Tsogka
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 157 71, Greece.
| | - Electra Mermiga
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 157 71, Greece.
| | - Varvara Pagkali
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 157 71, Greece.
| | - Christos Kokkinos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 157 71, Greece.
| | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 157 71, Greece.
| |
Collapse
|
6
|
Wang H, Cai J, Wang T, Yan R, Shen M, Zhang J, Yue X, Wang L, Yuan X, Lv E, Zeng J, Shu X, Wang J. Functionalized gold nanoparticle enhanced nanorod hyperbolic metamaterial biosensor for highly sensitive detection of carcinoembryonic antigen. Biosens Bioelectron 2024; 257:116295. [PMID: 38653013 DOI: 10.1016/j.bios.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Hyperbolic metamaterial (HMM) biosensors based on metals have superior performance in comparison with conventional plasmonic biosensors in the detection of low concentrations of molecules. In this study, a nanorod HMM (NHMM) biosensor based on refractive index changes for carcinoembryonic antigen (CEA) detection is developed using secondary antibody modified gold nanoparticle (AuNP-Ab2) nanocomposites as signal amplification element for the first time. Numerical analysis based on finite element method is conducted to simulate the perturbation of the electric field of bulk plasmon polariton (BPP) supported by a NHMM in the presence of a AuNP. The simulation reveals an enhancement of the localized electric field, which arises from the resonant coupling of BPP to the localized surface plasmon resonance supported by AuNPs and is beneficial for the detection of changes of the refractive index. Furthermore, the AuNP-Ab2 nanocomposites-based NHMM (AuNP/Ab2-NHMM) biosensor enables CEA detection in the visible and near-infrared regions simultaneously. The highly sensitive detection of CEA with a wide linear range of 1-500 ng/mL is achieved in the near-infrared region. The detectable concentration of the AuNP/Ab2-NHMM biosensor has a 50-fold decrease in comparison with a NHMM biosensor. A low detection limit of 0.25 ng/mL (1.25 pM) is estimated when considering a noise level of 0.05 nm as the minimum detectable wavelength shift. The proposed method achieves high sensitivity and good reproducibility for CEA detection, which makes it a novel and viable approach for biomedical research and early clinical diagnostics.
Collapse
Affiliation(s)
- Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jintao Cai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ruoqin Yan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Enze Lv
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinwei Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuewen Shu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Kim YJ, Rho WY, Park SM, Jun BH. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J Hematol Oncol 2024; 17:10. [PMID: 38486294 PMCID: PMC10938695 DOI: 10.1186/s13045-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Chonju, 54896, Republic of Korea
| | - Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
9
|
Wang H, Wang T, Yuan X, Wang Y, Yue X, Wang L, Zhang J, Wang J. Plasmonic Nanostructure Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8156. [PMID: 37836985 PMCID: PMC10575025 DOI: 10.3390/s23198156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Collapse
Affiliation(s)
- Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Yuandong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jinyan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
10
|
Wu P, Song J, Zuo W, Zhu J, Meng X, Yang J, Liu X, Jiang H, Zhang D, Dai J, Ju Y. A universal boronate affinity capture-antibody-independent lateral flow immunoassay for point-of-care glycoprotein detection. Talanta 2023; 265:124927. [PMID: 37441999 DOI: 10.1016/j.talanta.2023.124927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Protein glycosylation and other post-translational modifications are involved in many biological processes including growth, development and immune responses, and glycoproteins are also known as biomarkers for cancer, diabetes and cardiovascular diseases. In traditional lateral flow immunoassay (LFIA) for glycoprotein detection, capture antibody (CA) is often required to label targets. However, the production of CA is complicated and expensive, restricting the wide application of LFIA. In this study, we developed a universal boronate affinity CA-independent LFIA method for glycoprotein detection. 4-Mercaptophenylboronic acid (4-MPBA)-modified Au nanoparticles (namely 4-MPBA-AuNPs) were used as LFIA labels, which could generate colorimetric signal and showed outstanding capability to bind glycoprotein. Compared with CA, 4-MPBA molecular as a glycoprotein recognition element had more prominent advantages, e.g., low cost, easy availability and good quality controllability. Take carcinoembryonic antigen (CEA) as model glycoprotein, the limit of detection of this CA-independent LFIA was 1.25 ng/mL by naked eyes, which was 8-fold lower than conventional CA-dependent sandwich LFIA. Significantly, the developed 4-MPBA-AuNPs-based CA-independent LFIA successfully detected 23 CEA-positive samples from 64 suspected human serum samples within 50 min in a nonlaboratory environment, with a 100% accuracy compared to clinical detection method. Therefore, this diagnostic platform could provide an effective tool for point-of-care glycoprotein detection with excellent reproducibility and high specificity.
Collapse
Affiliation(s)
- Pengcheng Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, China; College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaren Song
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiangming Meng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, China.
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Das S, Devireddy R, Gartia MR. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. BIOSENSORS 2023; 13:396. [PMID: 36979608 PMCID: PMC10046379 DOI: 10.3390/bios13030396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection.
Collapse
|
12
|
Szymanska B, Lukaszewski Z, Hermanowicz-Szamatowicz K, Gorodkiewicz E. A Multiple-Array SPRi Biosensor as a Tool for Detection of Gynecological-Oncological Diseases. BIOSENSORS 2023; 13:279. [PMID: 36832045 PMCID: PMC9954693 DOI: 10.3390/bios13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Diagnostics based on the determination of biomarkers in body fluids will be more successful when several biomarkers are determined. A multiple-array SPRi biosensor for the simultaneous determination of CA125, HE4, CEA, IL-6 and aromatase has been developed. Five individual biosensors were placed on the same chip. Each of them consisted of a suitable antibody covalently immobilized onto a gold chip surface via a cysteamine linker by means of the NHS/EDC protocol. The biosensor for IL-6 works in the pg mL-1 range, that for CA125 in the µg mL-1 range, and the other three within the ng mL-1 range; these are ranges suitable for the determination of biomarkers in real samples. The results obtained with the multiple-array biosensor are very similar to those obtained with a single biosensor. The applicability of the multiple biosensor was demonstrated using several examples of plasma from patients suffering from ovarian cancer and endometrial cyst. The average precision was 3.4% for the determination of CA125, 3.5% for HE4, 5.0% for CEA and IL-6, and 7.6% for aromatase. The simultaneous determination of several biomarkers may be an excellent tool for the screening of the population for earlier detection of diseases.
Collapse
Affiliation(s)
- Beata Szymanska
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, Pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
| | | | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
13
|
Keerthana S, Divya KP, Rajapriya A, Viswanathan C, Ponpandian N. Electrochemical impedimetric immunosensor based on stabilized lipid bilayer–tethered WS2@MWCNT for the sensitive detection of carcinoembryonic antigen. Mikrochim Acta 2022; 189:450. [DOI: 10.1007/s00604-022-05557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
|
14
|
Tran Ngoc Huy D, Iswanto AH, Catalan Opulencia MJ, Al-Saikhan F, Timoshin A, Abed AM, Ahmad I, Blinova SA, Hammid AT, Mustafa YF, Van Tuan P. Optical and Electrochemical Aptasensors Developed for the Detection of Alpha-Fetoprotein. Crit Rev Anal Chem 2022; 54:857-871. [PMID: 35969067 DOI: 10.1080/10408347.2022.2099221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early diagnosis of hepatocellular carcinoma (HCC), a leading cause of cancer mortality, is decisive for successful treatment of this type of cancer and increasing the patients' survival rate. Alpha-fetoprotein (AFP) is a glycoprotein that has been currently employed as a potential serological biomarker for determination of HCC and several other cancers. Achieving highly sensitive and specific detection of this biomarker is an effective strategy to inhibit developing issues caused by the cancer. Though, traditional procedures cannot meet the requirements due to the technical drawbacks. Recently, growing number of aptamer-based biosensors (aptasensors) attracted important attention as superior diagnostic tools because of their unique properties such as high stability, target versatility and remarkable affinity and selectivity. Nanomaterials, which broadly employed in the structure of these aptasensors, can considerably enhance the detection limit and sensitivity of analytes determination. Therefore, this review selectively investigated the recent progresses in several different optical and electrochemical aptasensors and nano-aptasensors designed for AFP assay.
Collapse
Affiliation(s)
- Dinh Tran Ngoc Huy
- MBA, Banking University HCMC, Ho Chi Minh City, Vietnam
- International University of Japan, Niigata, Japan
| | - A Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | | | - Fahad Al-Saikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Anton Timoshin
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sofiya A Blinova
- Department of Histology, Embryology, and Cytology, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | |
Collapse
|
15
|
Szymanska B, Lukaszewski Z, Oldak L, Zelazowska-Rutkowska B, Hermanowicz-Szamatowicz K, Gorodkiewicz E. Two Biosensors for the Determination of Interleukin-6 in Blood Plasma by Array SPRi. BIOSENSORS 2022; 12:bios12060412. [PMID: 35735559 PMCID: PMC9221503 DOI: 10.3390/bios12060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 12/05/2022]
Abstract
Interleukin-6 (IL-6) is a biomarker of inflammation, the advanced stage of COVID-19, and several cancers, including ovarian cancer. Two biosensors for the determination of IL-6 in blood plasma by array SPRi have been developed. One of these biosensors consists of the mouse monoclonal anti-IL-6 antibody as the receptor immobilized via the cysteamine linker. The second contains galiellalactone as the receptor, being an inhibitor specific for IL-6, immobilized via octadecanethiol (ODM) as the linker. Both biosensors are specific for IL-6. The biosensor with the antibody as the receptor gives a linear analytical response between 3 (LOQ) and 20 pg mL−1 and has a precision between 8% and 9.8% and recovery between 97% and 107%, depending on the IL-6 concentration. The biosensor with galiellalactone as the receptor gives a linear analytical response between 1.1 (LOQ) and 20 pg mL−1, and has a precision between 3.5% and 9.3% and recovery between 101% and 105%, depending on IL-6 concentration. Both biosensors were validated. Changes in IL-6 concentration in blood plasma before and after resection of ovarian tumor and endometrial cyst, as determined by the two developed biosensors, are given as an example of a real clinical application.
Collapse
Affiliation(s)
- Beata Szymanska
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
- Correspondence: (Z.L.); (E.G.)
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | | | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (B.S.); (L.O.)
- Correspondence: (Z.L.); (E.G.)
| |
Collapse
|
16
|
Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02287-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Philip A, Kumar AR. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Biswas S, Lan Q, Li C, Xia XH. Morphologically Flex Sm-MOF Based Electrochemical Immunosensor for Ultrasensitive Detection of a Colon Cancer Biomarker. Anal Chem 2022; 94:3013-3019. [PMID: 35119821 DOI: 10.1021/acs.analchem.1c05538] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite having the potential to synthesize stable metal-organic frameworks (MOFs), rare earth metal-based MOFs have not been exploited extensively. Owing to the high coordination numbers, the MOFs can generate a suitable coordination environment for various applications. Herein, samarium (Sm)-based MOFs were synthesized with three different organic linkers, namely, trimesic acid (TMA), meso-tetra(4-carboxyphenyl)porphine (TCPP), and 1,3,6,8-tetra(4-carboxylphenyl) pyrene(TBPy) by the solvothermal approach. The morphologies of Sm-TMA MOF, Sm-TCPP MOF, Sm-TBPy MOF were rod-shaped, cubic consisting of stacked 2D layers, and spherical made of small cubic structures, respectively. After the electrochemical properties of the synthesized MOFs were investigated, the MOFs were used to fabricate immunosensors for detection of carcinoembryonic antigen using a label-free signaling strategy. The immunosensors exhibited a wide linear detection range and a lower detection limit. The exhibited reproducibility and selectivity of the immunosensors were within the tolerable limits. The established label-free immunosensor has been successfully applied for detection of carcinoembryonic antigen in human serum samples, demonstrating that the rare earth metal-based MOFs are promising for construction of biosensors for medical diagnosis.
Collapse
Affiliation(s)
- Sudip Biswas
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qingchun Lan
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Chaorui Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xing-Hua Xia
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
WU W, WU Q, REN SN, LIU Z, CHEN FF. Ti3C2-MXene-assisted signal amplification for sensitive and selective surface plasmon resonance biosensing of biomarker. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhou S, Meng T, Hu D, Zhu Y, Huang C, Song M, Gao S, Zhang G. Characteristic Synthesis of a Covalent Organic Framework and Its Application in Multifunctional Tumor Therapy. ACS APPLIED BIO MATERIALS 2022; 5:59-81. [PMID: 35014823 DOI: 10.1021/acsabm.1c01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For decades, covalent organic frameworks (COFs) have attracted wide biomedical interest due to their unique properties including ease of synthesis, porosity, and adjustable biocompatibility. Versatile COFs can easily encapsulate various therapeutic drugs due to their extremely high payload and porosity. COFs with abundant functional groups can be surface-modified to achieve active targeting and enhance biocompatibility. In this paper, the latest developments of COFs in the biomedical field are summarized. First, the classification and synthesis of COFs are discussed. Cancer diagnosis and treatment based on COFs are studied, and the advantages and limitations of each method are discussed. Second, the specific preparation methods to obtain specific therapeutic properties are summarized. Finally, based on the combination and modification of COFs with various components, this review system summarizes different combination therapies. In addition, the main challenges faced in COF research and prospects for applying COFs to cancer diagnosis and treatment are evaluated. This review provides enlightening insights into the interdisciplinary research on COFs and applications in biomedicine, which highlight the great expectations for their further clinical transformation.
Collapse
Affiliation(s)
- Shengnan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Danyou Hu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuheng Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Chenguang Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Mengmeng Song
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
21
|
A Comparison of Various Chips Used for the Manufacture of Biosensors Applied in Non-Fluidic Array SPRi, Based on the Example of Determination of Cathepsin D. BIOSENSORS 2021; 12:bios12010021. [PMID: 35049649 PMCID: PMC8773720 DOI: 10.3390/bios12010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023]
Abstract
Non-fluidic array SPR imaging (SPRi) with appropriate biosensors is a new tool for the determination of various biomarkers in body fluids. Numerous biomarkers can be determined without signal enhancement or preliminarily preconcentration. The introduction of a new material solution of the chip may increase the scope of the application of this technique. Solutions with adhesive separating foil and an Ag/Au chip were compared with the previously used two-paint separating polymer and pure gold chip. These solutions were tested using the example of a biosensor for cathepsin D (Cath D), which consisted of pepstatin A (a Cath D inhibitor) immobilized via a cysteamine linker using the NHS/EDC protocol. Four material versions of the Cath D biosensor proved adequate in terms of range of linearity, LOQ, precision and recovery. All four versions of the biosensor were used for the determination of Cath D in the blood serum patients with glioblastoma and control samples, producing very similar results and showing an elevated biomarker concentration in the case of cancer. Therefore, the problem of determining the correct level of Cath D in the serum of healthy individuals has been resolved, correcting literature data which ranged over three orders of magnitude.
Collapse
|
22
|
Bimetallic organic framework Cu/UiO-66 mediated "fluorescence turn-on" method for ultrasensitive and rapid detection of carcinoembryonic antigen (CEA). Anal Chim Acta 2021; 1183:339000. [PMID: 34627512 DOI: 10.1016/j.aca.2021.339000] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Carcinoembryonic antigen (CEA) is a key serum tumor marker which is overexpressed in all types of adenocarcinomas. Therefore, establish the ultrasensitive, accurate and rapid method for CEA detection is essential for reducing the mortality of cancer. Here, a bimetallic organic framework Cu/UiO-66 was synthesized through the simple two-step hydrothermal method and used to construct a "fluorescence turn-on" analytical method for CEA detection. Cu/UiO-66 can adsorb CEA aptamers modified with FAM (CEA/FAM-Apt) and take place photoinduced electron transfer (PET) between Cu/UiO-66 and FAM, resulting in the fluorescence of the FAM is quenched. When CEA is present, CEA and CEA/FAM-Apt are tightly combined, making CEA/FAM-Apt far away from the Cu/UiO-66 surface. As a result, the fluorescence intensity of the system was significantly restored. Under optimal conditions, the proposed "fluorescence turn-on" method can detect CEA as low as 0.01 ng mL-1 in a range of 0.01-0.3 ng mL-1. Besides, this analytical method owns good selectivity, reproducibility and serum applicability, which provides a new platform for the direct detection of clinical diagnosis-related markers.
Collapse
|
23
|
Liu L, Jiang H, Wang X. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Zhou H, Yu Q, Wang H, Zhu W, Liu J, Wang Z. A general scattering proximity immunoassay with the formation of dimer of gold nanoparticle. Talanta 2021; 233:122515. [PMID: 34215130 DOI: 10.1016/j.talanta.2021.122515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/02/2021] [Accepted: 05/09/2021] [Indexed: 11/29/2022]
Abstract
In this work, we structured a colorimetric ultrasensitive detection of carcinoembryonic antigen (CEA) based on a proximity hybridization-induced gold nanoparticles (Au NPs) dimers structure. Under the dark-field microscope, this method takes advantage of the distinctive and strong distance-relative localized surface plasmon resonance (LSPR) of Au NPs and their oriented assembly. DNA served as a medium showing wonderful flexibility to label antibody and Au NPs, and tune interparticle spacing as well. Two capture probes were formed by the integration of DNA labeled antibody (DNA1-Ab1 or DNA2-Ab2) and asymmetrically assembled DNA (DNA 3 or DNA 4)- Au NPs via partly hybridization between DNA sequences. In the presence of antigen, the reaction between target protein and capture probes could trigger the generation of immunocomplex which led to the proximity hybridization of the DNA1 and DNA2, and then change the distance of interparticle to form Au NP dimers and thus showed a different color under dark-field microscope. A limit of detection of 14.25 pg/mL was obtained for the detection of CEA, which indicated a promising sensing method in clinical diagnosis of protein biomarkers.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qiao Yu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Haiyan Wang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Wenjing Zhu
- Department of Pharmacy, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
25
|
Fan Y, Lv M, Xue Y, Li J, Wang E. In Situ Fluorogenic Reaction Generated via Ascorbic Acid for the Construction of Universal Sensing Platform. Anal Chem 2021; 93:6873-6880. [PMID: 33899464 DOI: 10.1021/acs.analchem.1c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly fluorescent emission reaction between terephthalic acid (PTA) and ascorbic acid (AA) via simple control of the reaction temperature was first revealed with the detailed formation mechanism and various characterizations including electron paramagnetic resonance and mass spectrometry. Based on the AA-responsive emission, the alkaline phosphatase (ALP) triggered the transformation of l-ascorbic acid 2-phosphate trisodium salt to AA was integrated with the present system for developing a sensitive, selective, and universal platform. The monitoring of the activity of ALP and the fabrication of ALP-based enzyme-linked immunoassay (ELISA) with carcinoembryonic antigen (CEA) as the model target was performed. The fluorescence intensity correlated well to the CEA concentration in the ranges of 0.25-30 ng/mL, with a detection limit of 0.08 ng/mL. Such a facile protocol based on the fluorescent reaction between PTA and AA without the assistance of catalysis of nanomaterials avoided the laborious synthesis procedure and provided a direct strategy for the early clinical diagnosis coupled with ALP-related catalysis.
Collapse
Affiliation(s)
- Yongchao Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengmeng Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
26
|
Wang T, Zhao L, Wang K, Bai Y, Feng F. Research Progress on the Synthesis of Covalent Organic Frameworks and Their Applications in Tumor Therapy. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Carneiro LPT, Ferreira NS, Tavares APM, Pinto AMFR, Mendes A, Sales MGF. A passive direct methanol fuel cell as transducer of an electrochemical sensor, applied to the detection of carcinoembryonic antigen. Biosens Bioelectron 2020; 175:112877. [PMID: 33309216 DOI: 10.1016/j.bios.2020.112877] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
This work describes an electrochemical sensor with a biomimetic plastic antibody film for carcinoembryonic antigen (CEA, an important biomarker in colorectal cancer), integrated in the electrical circuit of a direct methanol fuel cell (DMFC), working in passive mode and used herein as power supply and signal transducer. In detail, the sensing layer for CEA consisted of a Fluorine-doped Tin Oxide (FTO) conductive glass substrate - connected to the negative pole side of the DMFC - with a conductive poly (3,4-ethylenedioxythiophene) (PEDOT) layer and a polypyrrol (PPy) molecularly-imprinted polymer (MIP), assembled in-situ. This sensing element is then closed using a cover FTO-glass, hold in place with a clip, connected to the positive side of the DMFC. When compared with control DMFCs, the power curves of DMFC/Sensor integrated system showed decreased power values due to the MIP layer interfaced in the electrical circuit, also displaying high stability signals. The DMFC/Sensor was further calibrated at room temperature, in different medium (buffer, a synthetic physiological fluid model and Cormay® serum), showing linear responses over a wide concentration range, with a limit of detection of 0.08 ng/mL. The DMFC/Sensor presented sensitive data, with linear responses from 0.1 ng/mL to 100 μg/mL and operating well in the presence of human serum. Overall, the results obtained evidenced the possibility of using a DMFC as a transducing element in an electrochemical sensor, confirming the sensitive and selective readings of the bio (sensing) imprinted film. This integration paves the way towards fully autonomous electrochemical devices, in which the integration of the sensor inside the fuel cell may be a subsequent direction.
Collapse
Affiliation(s)
- Liliana P T Carneiro
- BioMark, Sensor Research/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, Portugal; BioMark, Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, Portugal; CEFT, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Portugal
| | - Nádia S Ferreira
- BioMark, Sensor Research/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, Portugal; BioMark, Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, Portugal; CEFT, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Portugal
| | - Ana P M Tavares
- BioMark, Sensor Research/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, Portugal; CEB, Centre of Biological Engineering, Minho University, Portugal
| | - Alexandra M F R Pinto
- CEFT, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Portugal
| | - Adélio Mendes
- LEPABE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | - M Goreti F Sales
- BioMark, Sensor Research/UC, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, Portugal; BioMark, Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, Portugal.
| |
Collapse
|
28
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
29
|
Falkowski P, Lukaszewski Z, Gorodkiewicz E. Potential of surface plasmon resonance biosensors in cancer detection. J Pharm Biomed Anal 2020; 194:113802. [PMID: 33303267 DOI: 10.1016/j.jpba.2020.113802] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
A review is made of 71 papers on surface plasmon resonance biosensors, published between 2005 and 2020, mostly in the last decade. The reviewed papers are divided into two groups, depending on the validation of the developed biosensor. Validated biosensors are briefly characterized, while those that are not validated are listed in a table. Focus is placed on applications of SPR biosensors in testing the effectiveness of cancer markers and in the discovery of new cancer markers. Seven new markers are proposed, two of them having high sensitivity and diagnostic selectivity as determined by ROC curves. Papers concerning the determination of micro RNA and large particles such as vesicles, exosomes and cancer cells are also reviewed.
Collapse
Affiliation(s)
- Pawel Falkowski
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zenon Lukaszewski
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
30
|
Szymanska B, Lukaszewski Z, Hermanowicz-Szamatowicz K, Gorodkiewicz E. An immunosensor for the determination of carcinoembryonic antigen by Surface Plasmon Resonance imaging. Anal Biochem 2020; 609:113964. [PMID: 32979366 DOI: 10.1016/j.ab.2020.113964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
Carcinoembryonic antigen (CEA) is one of the biomarkers most commonly used to determine tumor activity. In this work, a Surface Plasmon Resonance imaging (SPRi) immunosensor was developed. The immunosensor consists of a cysteamine linker attached to a gold chip and mouse monoclonal anti-CEA antibody bonded by the "EDC/NHS protocol". The formation of successive immunosensor layers was confirmed by AFM measurements. The concentration of the antibody was optimized. The linear response range of the developed immunosensor is between 0.40 and 20 ng mL-1, and it is suitable for CEA measurement in both blood cancer patients and healthy individuals. Only 3 μL of serum or plasma sample is required, and no preconcentration is used. The method has a precision of 2-16%, a recovery of 101-104% depending on CEA concentration, a detection limit of 0.12 ng mL-1 and a quantification limit of 0.40 ng mL-1. The method is selective (with respect to albumin, leptin, interleukin 6, metalloproteinase-1, metallopeptidase inhibitor 1 and CA 125/MUC16) and it was validated by comparison with the standard electrochemiluminescence method on a series of colorectal cancer blood samples.
Collapse
Affiliation(s)
- Beata Szymanska
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, Pl. Sklodowskiej-Curie 5, 60-965, Poznan, Poland
| | | | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
31
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Choi J, Kim G, Cho SB, Im HJ. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnology 2020; 18:122. [PMID: 32883290 PMCID: PMC7470617 DOI: 10.1186/s12951-020-00684-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is an essential step during the treatment of glioblastoma multiforme (GBM), one of the most lethal malignancies. The survival in patients with GBM was improved by the current standard of care for GBM established in 2005 but has stagnated since then. Since GBM is a radioresistant malignancy and the most of GBM recurrences occur in the radiotherapy field, increasing the effectiveness of radiotherapy using high-Z metal nanoparticles (NPs) has recently attracted attention. This review summarizes the progress in radiotherapy approaches for the current treatment of GBM, the physical and biological mechanisms of radiosensitization through high-Z metal NPs, and the results of studies on radiosensitization in the in vitro and in vivo GBM models using high-Z metal NPs to date.
Collapse
Affiliation(s)
- Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Gaeun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Su Bin Cho
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Walter JG, Eilers A, Alwis LSM, Roth BW, Bremer K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2889. [PMID: 32443702 PMCID: PMC7287642 DOI: 10.3390/s20102889] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
We present a surface plasmon resonance (SPR) biosensor that is based on a planar-optical multi-mode (MM) polymer waveguide structure applied for the detection of biomolecules in the lower nano-molar (nM) range. The basic sensor shows a sensitivity of 608.6 nm/RIU when exposed to refractive index changes with a measurement resolution of 4.3 × 10-3 RIU. By combining the SPR sensor with an aptamer-functionalized, gold-nanoparticle (AuNP)-enhanced sandwich assay, the detection of C-reactive protein (CRP) in a buffer solution was achieved with a response of 0.118 nm/nM. Due to the multi-mode polymer waveguide structure and the simple concept, the reported biosensor is well suited for low-cost disposable lab-on-a-chip applications and can be used with rather simple and economic devices. In particular, the sensor offers the potential for fast and multiplexed detection of several biomarkers on a single integrated platform.
Collapse
Affiliation(s)
- Johanna-Gabriela Walter
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.-G.W.); (A.E.)
| | - Alina Eilers
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.-G.W.); (A.E.)
| | | | - Bernhard Wilhelm Roth
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering—Innovation Across Disciplines), 30167 Hannover, Germany;
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167 Hannover, Germany
| | - Kort Bremer
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167 Hannover, Germany
| |
Collapse
|
34
|
Moradkhani M, Farshchi F, Hasanzadeh M, Mokhtarzadeh A. A novel bioassay for the monitoring of carcinoembryonic antigen in human biofluid using polymeric interface and immunosensing method. J Mol Recognit 2020; 33:e2852. [PMID: 32303119 DOI: 10.1002/jmr.2852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins. Recognition of CEA is needed to monitor the physiological status of the patient for treatment and also it is important to assess the severity of the disease. In this work, we reported a novel sandwich-type electrochemical immunosensor based on gold nanoparticles functionalized cysteamine-glutaraldehyde (AuNPs-CysA-GA) and it successfully designed to detection of the CEA biomarker in a human plasma sample. The AuNPs-CysA-GA provides a large surface area for the effective immobilization of CEA antibody, as well as it ascertains the bioactivity and stability of immobilized CEA antigens. Biotinylated-anti-CEA antibody (Ab1) was immobilized on the surface of glassy carbon electrode (GCE) modified AuNPs-CysA-GA. Also, secondary antibody (HRP-Ab2) was costed immobilized to complete the sandwich part of immunosensor. Field emission scanning electron microscope (FE-SEM and EDS), was employed to monitor the sensor fabrication procedure. The immunosensor was used for the detection of CEA using differential pulse voltammetry (DPVs) technique. The proposed interface led to enhancement of accessible surface area for immobilizing high amount of anti-CEA antibody, increasing electrical conductivity, boosting stability, and biocompatibility. Finally, the low limit of quantitation (LLOQ) of the proposed immunosensor was obtained as 7 ng/mL with the linear range of 0.001-5 μg/L. The proposed immunoassay was successfully applied for the monitoring of the CEA in unprocessed human plasma samples. Obtained results paved that the proposed bioassay can be used as a novel bioassay for the clinical diagnosis of cancer based on CEA monitoring.
Collapse
Affiliation(s)
- Mahbubeh Moradkhani
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Farshchi
- Nutrition Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. MICROMACHINES 2020; 11:E356. [PMID: 32235546 PMCID: PMC7231100 DOI: 10.3390/mi11040356] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
36
|
Wu Q, Li N, Wang Y, Xu Y, Wu J, Jia G, Ji F, Fang X, Chen F, Cui X. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti3C2-MXene Nanosheets. Anal Chem 2020; 92:3354-3360. [DOI: 10.1021/acs.analchem.9b05372] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Ningbo Li
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Yanchao Xu
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Jiandong Wu
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Guangri Jia
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Fangfang Chen
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation, School of Materials Science and Engineering, and Control and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| |
Collapse
|
37
|
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020; 214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen (CEA), as one of the common tumor markers, is a human glycoprotein involved in cell adhesion and is expressed during human fetal development. Since the birth of human, CEA expression is largely inhibited, with only low levels in the plasma of healthy adults. Generally, CEA will overexpressed in many cancers, including gastric, breast, ovarian, lung, and pancreatic cancers, especially colorectal cancer. As one of the important tumor markers, the detection of CEA has great significance in differential diagnosis, condition monitoring and therapeutic evaluation of diseases. Conventional CEA testing typically uses immunoassay methods. However, immunoassay methods require complex and expensive instruments and professional personnel to operate. Moreover, radioactive element may cause certain damage to the human body, which limits their wide application. In the past few years, biosensors, especially aptamer-based biosensors, have attracted extensive attention due to their high sensitivity, good selectivity, high accuracy, fast response and low cost. This review briefly classifies and describes the advance in optical and electrochemical aptamer biosensors for CEA detection, also explains and compares their advantages and disadvantages.
Collapse
Affiliation(s)
- Wenwen Xiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qiuxiang Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, 212013, PR China
| | - Bing Xie
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212000, PR China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
38
|
Bellassai N, D'Agata R, Jungbluth V, Spoto G. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis. Front Chem 2019; 7:570. [PMID: 31448267 PMCID: PMC6695566 DOI: 10.3389/fchem.2019.00570] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Biomarker-based cancer analysis has great potential to lead to a better understanding of disease at the molecular level and to improve early diagnosis and monitoring. Unlike conventional tissue biopsy, liquid biopsy allows the detection of a large variety of circulating biomarkers, such as microRNA (miRNA), exosomes, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and proteins, in an easily accessible and minimally invasive way. In this review, we describe and evaluate the relevance and applicability of surface plasmon resonance (SPR) and localized SPR (LSPR)-based platforms for the detection of different classes of cancer biomarkers in liquid biopsy samples. Firstly, we critically discuss unsolved problems and issues in capturing and analyzing biomarkers. Secondly, we highlight current challenges which need to be resolved in applying SPR biosensors into clinical practice. Then, we mainly focus on applications of SPR-based platforms that process a patient sample aiming to detect and quantify biomarkers as a minimally invasive liquid biopsy tool for cancer patients appearing over the last 5 years. Finally, we describe the analytical performances of selected SPR biosensor assays and their significant advantages in terms of high sensitivity and specificity as well as accuracy and workflow simplicity.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Vanessa Jungbluth
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
39
|
Cao JT, Zhang WS, Wang H, Ma SH, Liu YM. A novel nitrogen and sulfur co-doped carbon dots-H 2O 2 chemiluminescence system for carcinoembryonic antigen detection using functional HRP-Au@Ag for signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:281-287. [PMID: 31051422 DOI: 10.1016/j.saa.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
A novel nitrogen and sulfur co-doped carbon dots (NS-CDs)-H2O2 chemiluminescence (CL) system was developed to detect carcinoembryonic antigen (CEA) by taking advantage of dual-signal amplification of functional Au@Ag nanoparticles (NPs) nanoprobes. Horseradish peroxidase (HRP) and the complementary DNA were co-immobilized onto Au@Ag NPs surface to shape the functional nanoprobes (HRP-Au@Ag-cDNA) for signal amplification. In this proposal, HRP-Au@Ag-cDNA was specifically hybridized with CEA aptamer-functionalized magnetic beads to form the double-strand hybridization nanocomposites (HRP-Au@Ag-dsDNA-MB). Upon the addition of CEA, the CEA aptamer preferred to bind with CEA instead of double-strand hybridization interaction, thus HRP-Au@Ag-dsDNA-MB was dehybridized and the HRP-Au@Ag-cDNA nanoprobe was released. The synergistic catalytic effects of HRP and Au @Ag NPs endow the nanoprobe producing a dual CL signal amplification in the NS-CDs-H2O2 CL system. The CL intensity of the developed strategy enhanced with CEA concentration increasing in the range of 0.3-80 ng mL-1. Benefiting from the synergistic effect, a detection limit as low as 94 pg mL-1 was obtained. Moreover, successful application of this CL sensing platform was achieved for the determination of CEA in human serum samples, demonstrating the promising prospect in the early tumor warning and therapeutic monitoring.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| | - Wen-Sheng Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang 464000, PR China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
40
|
Chen P, Hua X, Liu J, Liu H, Xia F, Tian D, Zhou C. A dual amplification electrochemical immunosensor based on HRP-Au@Ag NPs for carcinoembryonic antigen detection. Anal Biochem 2019; 574:23-30. [PMID: 30904439 DOI: 10.1016/j.ab.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022]
Abstract
A sensitive sandwich-type electrochemical immunosensor based on dual amplification strategy was constructed. The dual amplification strategy has been used secondary antibody(Ab2)-horseradish peroxidase(HRP)-Au@Ag nanoparticles (Au@Ag NPs) for carcinoembryonic antigen(CEA) detection. Ab2-HRP-Au@Ag NPs as dual amplification markers triggered the disproportionation of H2O2, which could facilitate the catalytic oxidation of hydroquinone to quinone(BQ). In addition, due to their large surface area and excellent conductivity, nitrogen-doped graphene were used as a platform to firmly assemble primary antibody (Ab1). Above mentioned generated amout of BQ are corresponding to trace CEA, resulting in the highly electrochemical reduction signal. Under the optimal conditions, the linear range of CEA concentration was 0.0001-100 ng mL-1, and the limit of detection (LOD) could be as low as 0.05 pg mL-1. Importantly, the immunosensor also showed acceptable stability, reproducibility and selectivity.
Collapse
Affiliation(s)
- Peipei Chen
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiaoxia Hua
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jianhui Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hanbiao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Fangquan Xia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dong Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Changli Zhou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
41
|
Mauriz E, Dey P, Lechuga LM. Advances in nanoplasmonic biosensors for clinical applications. Analyst 2019; 144:7105-7129. [DOI: 10.1039/c9an00701f] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmonic biosensors can be conveniently used as portable diagnostic devices for attaining timely and cost-effective clinical outcomes. Nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and point of care testing.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy
- Universidad de León
- 24071 León
- Spain
| | - Priyanka Dey
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- BIST
- and CIBER-BBN
| |
Collapse
|
42
|
Dong H, Zou F, Hu X, Zhu H, Koh K, Chen H. Analyte induced AuNPs aggregation enhanced surface plasmon resonance for sensitive detection of paraquat. Biosens Bioelectron 2018; 117:605-612. [DOI: 10.1016/j.bios.2018.06.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
|
43
|
Alim S, Vejayan J, Yusoff MM, Kafi AKM. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens Bioelectron 2018; 121:125-136. [PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
Collapse
Affiliation(s)
- Samiul Alim
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Jaya Vejayan
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - A K M Kafi
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia.
| |
Collapse
|
44
|
Xu J, Chen Y. Surface plasmon resonance sensing with adjustable sensitivity based on a flexible liquid core coupling unit. Talanta 2018; 184:468-474. [DOI: 10.1016/j.talanta.2018.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022]
|
45
|
Mimicking peroxidase activity of Co 2(OH) 2CO 3-CeO 2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 2018; 189:100-110. [PMID: 30086892 DOI: 10.1016/j.talanta.2018.06.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/10/2018] [Indexed: 01/10/2023]
Abstract
We present a paper-based microfluidic colorimetric immunosensor for the detection of carcinoembryonic antigen (CEA), using Co2(OH)2CO3-CeO2 nanocomposite with extraordinary intrinsic peroxidase like activity. The morphology and composition of the nanocomposite characterized with Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The proposed immunosensor facilely fabricated by loading mixture of ionic liquid and chitosan functionalized primary antibodies (Ab1) on the surface of paper. Compared to traditional paper based immunodevice, when ionic liquid was used the nonspecific binding protein from the paper surface was more effectively removed. Secondary antibodies (Ab2) were stacked on the surface of the carboxylated Co2(OH)2CO3-CeO2 nanocomposite. The immunosensor response was obtained by a color change resulting from Co2(OH)2CO3-CeO2 nanocomposite catalyzing the oxidation of 3,3',5,5'-tetramethyl benzidine in the presence of H2O2. The colorimetric sensing was accomplished on the paper, using smartphone for taking a photo and then analyzing the colors with an installed application. Detection of CEA was performed by this method with a linear range from 0.002 to 75.0 ng mL-1 and a detection limit of 0.51 pg mL-1. In this paper we developed simple, cost-effective and portable design for sensitive immunoassay and point-of-care diagnostics of cancer marker.
Collapse
|
46
|
Rizwan M, Elma S, Lim SA, Ahmed MU. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens Bioelectron 2018; 107:211-217. [DOI: 10.1016/j.bios.2018.02.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/13/2023]
|
47
|
Guan T, Wang X, Li D, Zhang Y, He Y, Shi L, Liu Y, Yang Y, Xu Y, Cui R. Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements. SENSORS 2018; 18:s18051550. [PMID: 29757961 PMCID: PMC5982534 DOI: 10.3390/s18051550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/26/2023]
Abstract
A phase-sensitive weak measurement biosensor was proposed for the detection of carcinoembryonic antigen (CEA), one common category of tumor markers. The total internal reflection (TIR) at the interface of the prism without precious metal coating was exploited to introduce the phase delay between horizontal and vertical polarizations, which can be determined through the central wavelength shift of output spectra for the sensing of the refractive index of the sample. In the weak measurement analysis, the specific binding reaction of tumor markers with a refractive index change on the surface of the prism can be monitored in real time through the central wavelength shift. With the specific absorption measurement, the feasibility of this weak measurement-based biosensor was experimentally demonstrated. We provide a low cost and convenient approach for tumor marker detection.
Collapse
Affiliation(s)
- Tian Guan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Xiangnan Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dongmei Li
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Department of Physics, Tsinghua University, Beijing 100084, China.
| | - Yilong Zhang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Department of Physics, Tsinghua University, Beijing 100084, China.
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Department of Physics, Tsinghua University, Beijing 100084, China.
| | - Lixuan Shi
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Department of Physics, Tsinghua University, Beijing 100084, China.
| | - Yiqing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yuxuan Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yang Xu
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Department of Physics, Tsinghua University, Beijing 100084, China.
| | - Rui Cui
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518055, China.
| |
Collapse
|
48
|
Mohammadzadeh-Asl S, Keshtkar A, Ezzati Nazhad Dolatabadi J, de la Guardia M. Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance. Biosens Bioelectron 2018; 110:118-131. [PMID: 29604520 DOI: 10.1016/j.bios.2018.03.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/22/2018] [Indexed: 01/19/2023]
Abstract
Measurement of small molecules in extremely dilute concentrations of analyte play an important role in different issues ranging from food industry to biological, pharmaceutical and therapeutical applications. Surface plasmon resonance (SPR) sensors can be a suitable choice for detection of small molecules based on interactions with biomolecules. However, sensitivity of the system for detection of these molecules is very low. Improving sensitivity has been a challenge for years. Therefore, different methods have been used to enhance SPR signals. The SPR signal enhancement using numerous nanomaterials has provided exciting results. Among various nanomaterials, metal nanoparticles (for instance gold, silver and magnetic nanoparticles), quantum dots, nanorads, and carbon-based nanostructures have got much attention due to ease in fabrication, appropriate size and shape. In addition to the advantages provided by using nanomaterials, signal enhancement provided by the appropriate use of phase information of the reflected light could be also important to improve SPR sensitivity. Phase-sensitive SPR sensors are able to detect infinitesimal changes in external properties of target while traditional type of SPR cannot demonstrate these changes. This article provides an overview on signal enhancment in SPR using nanomaterials and properties of light. We also discuss on recent progresses of the field, describing basic concepts concerning nanostructures as well as phase-sensitive sensors as platform for enhancement of signal in SPR.
Collapse
Affiliation(s)
- Saeideh Mohammadzadeh-Asl
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Keshtkar
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
49
|
Wang N, Zhang D, Deng X, Sun Y, Wang X, Ma P, Song D. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:290-295. [PMID: 29054067 DOI: 10.1016/j.saa.2017.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 05/12/2023]
Abstract
Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625μgmL-1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.
Collapse
Affiliation(s)
- Ning Wang
- Department of Medical Science & Education, Jilin Province People's Hospital, Changchun 130021, PR China
| | - Di Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Xinyu Deng
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Ying Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| |
Collapse
|
50
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|