1
|
Mesoporous molecularly imprinted nanoparticles with peptide mimics for the detection of phenolic compounds. Anal Chim Acta 2023; 1250:340970. [PMID: 36898811 DOI: 10.1016/j.aca.2023.340970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Immobilized enzymes outperform free enzymes in many properties and are widely used in environmental monitoring, engineering applications, food and medical fields. Based on the developed immobilization techniques, the search for immobilization with wider applicability, lower cost and more stable enzyme properties is of significant importance. In this study, we reported a molecular imprinting strategy for immobilizing peptide mimics of DhHP-6 on mesoporous materials. The DhHP-6 molecularly imprinted polymer (MIP) showed much higher adsorption capacity than raw mesoporous silica toward DhHP-6. The DhHP-6 peptide mimics was immobilized on the surface of mesoporous silica for the fast detection of phenolic compounds, a widely spread pollutant with highly toxic and difficult in degradation. Immobilized enzyme of DhHP-6-MIP exhibited higher peroxidase activity, better stability, and recyclability than free peptide. Notably, DhHP-6-MIP showed excellent linearity for the detection of the two phenols with detection limits of 0.28 μM and 0.25 μM, respectively. In combination with the spectral analysis and PCA method, DhHP-6-MIP provided better discrimination between the six phenolic compounds (phenol, catechol, resorcinol, hydroquinone, 2-chlorophenol, 2, 4-dichlorophenol). Our study showed that immobilization of peptide mimics by the molecular imprinting strategy using mesoporous silica as carriers was a simple and effective approach. The DhHP-6-MIP has great potentiality for the monitoring and degradation of environmental pollutants.
Collapse
|
2
|
Sellami K, Couvert A, Nasrallah N, Maachi R, Abouseoud M, Amrane A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150500. [PMID: 34852426 DOI: 10.1016/j.scitotenv.2021.150500] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
The fast-growing consumer demand drives industrial process intensification, which subsequently creates a significant amount of waste. These products are discharged into the environment and can affect the quality of air, degrade water streams, and alter soil characteristics. Waste materials may contain polluting agents that are especially harmful to human health and the ecosystem, such as the synthetic dyes, phenolic agents, polycyclic aromatic hydrocarbons, volatile organic compounds, polychlorinated biphenyls, pesticides and drug substances. Peroxidases are a class oxidoreductases capable of performing a wide variety of oxidation reactions, ranging from reactions driven by radical mechanisms, to oxygen insertion into CH bonds, and two-electron substrate oxidation. This versatility in the mode of action presents peroxidases as an interesting alternative in cleaning the environment. Herein, an effort has been made to describe mechanisms governing biochemical process of peroxidase enzymes while referring to H2O2/substrate stoichiometry and metabolite products. Plant peroxidases including horseradish peroxidase (HRP), soybean peroxidase (SBP), turnip and bitter gourd peroxidases have revealed notable biocatalytic potentialities in the degradation of toxic products. On the other hand, an introduction on the role played by ligninolytic enzymes such as manganese peroxidase (MnP) and lignin peroxidase (LiP) in the valorization of lignocellulosic materials is addressed. Moreover, sensitivity and selectivity of peroxidase-based biosensors found use in the quantitation of constituents and the development of diagnostic kits. The general merits of peroxidases and some key prospective applications have been outlined as concluding remarks.
Collapse
Affiliation(s)
- Kheireddine Sellami
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria; Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Annabelle Couvert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Noureddine Nasrallah
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria
| | - Rachida Maachi
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria
| | - Mahmoud Abouseoud
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria; Laboratoire de Biomatériaux et Phénomènes de Transport, Faculté des Sciences et de la Technologie, Université Yahia Fares de Médéa, Pôle Universitaire, RN1, Médéa 26000, Algeria
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
3
|
Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. SENSORS 2020; 20:s20133692. [PMID: 32630267 PMCID: PMC7374321 DOI: 10.3390/s20133692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof.
Collapse
|
4
|
Rahemi V, Trashin S, Hafideddine Z, Van Doorslaer S, Meynen V, Gorton L, De Wael K. Amperometric Flow-Injection Analysis of Phenols Induced by Reactive Oxygen Species Generated under Daylight Irradiation of Titania Impregnated with Horseradish Peroxidase. Anal Chem 2020; 92:3643-3649. [PMID: 31985211 DOI: 10.1021/acs.analchem.9b04617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M-1 cm-2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.
Collapse
Affiliation(s)
- Vanoushe Rahemi
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stanislav Trashin
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Zainab Hafideddine
- BIMEF Laboratory, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,PPES Research Group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Sabine Van Doorslaer
- BIMEF Laboratory, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Vera Meynen
- Laboratory of Adsorption and Catalysis (LADCA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Karolien De Wael
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,Nanolab Center of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Ghannadi S, Abdizadeh H, Miroliaei M, Saboury AA. Immobilization of Alcohol Dehydrogenase on Titania Nanoparticles To Enhance Enzyme Stability and Remove Substrate Inhibition in the Reaction of Formaldehyde to Methanol. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Mehran Miroliaei
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran, 81746-73441
| | - Ali Akbar Saboury
- Institute of Biophysics and Biochemistry, University of Tehran, Tehran, Iran, 1417614411
| |
Collapse
|
6
|
Yuan Y, Li S, Xue Y, Liang J, Cui L, Li Q, Zhou S, Huang Y, Li G, Zhao Y. A Fe 3O 4@Au-basedpseudo-homogeneous electrochemical immunosensor for AFP measurement using AFP antibody-GNPs-HRP as detection probe. Anal Biochem 2017; 534:56-63. [PMID: 28712944 DOI: 10.1016/j.ab.2017.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 11/19/2022]
Abstract
In this study, a Fe3O4@Au-based pseudo-homogeneous electrochemical immunosensor was prepared for detection of alpha fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker. The primary antibody (Ab1) was immobilized on Fe3O4@Au NPs as the capture probe. Horseradish peroxidase (HRP) and secondary antibody (Ab2) were conjugated on gold nanoparticles (GNPs) through electrostatic adsorption to form signal-amplifying labels. In the presence of AFP, a sandwich immunocomplex was formed via specific recognition of antigen-antibody in a Fe3O4@Au-basedpseudo-homogeneousreaction system. After the immunocomplex was captured to the surface of magnetic glassy carbon electrode (MGCE), the labeling HRP catalyzed the decomposition of H2O2, resulting in a substantial current for the quantitative detection of AFP. The amperometric (i-t) method was employed to record the response signal of the immunosensor based on the catalysis of the immobilized HRP toward the reduction of H2O2 with hydroquinone (HQ) as the redox mediator. Under the optimal conditions, the amperometric current response presented a linear relationship with AFP concentration over the range of 20 ng/mL-100 ng/mLwith a correlation coefficient of 0.9940, and the detection limit was 0.64 ng/mL at signal/noise [S/N] = 3. Moreover, the electrochemical immunosensor exhibited higher anti-interference ability, acceptable reproducibility and long-term stability for AFP detection.
Collapse
Affiliation(s)
- Yulin Yuan
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Shanshan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yewei Xue
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Lijie Cui
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Qingbo Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Sufang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
7
|
Direct electrochemistry of myoglobin on TiO2 and alginate composite modified carbon ionic liquid electrode via the electrodeposition method. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3193-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|