1
|
Yan Z, Zhou X, Kong L, Xu W, Hao J, Sun S, Feng J, Zhi H, Zhu X, Hu L. Spindle-shaped Cu-Ru mesoporous nanospheres with enhanced enzyme-like activity for visual differentiation of toxic o-/m-aminophenol and recognition mechanisms. ENVIRONMENTAL RESEARCH 2023; 239:117407. [PMID: 37838200 DOI: 10.1016/j.envres.2023.117407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
To effectively differentiate toxic aminophenol isomers, a kind of spindle-shaped Cu-Ru bimetal mesoporous nanozyme (Cu-Ru MPNZ) with high specific surface was developed by one-pot homogeneous reduction method, directed by hexadecyl trimethyl ammonium bromide (CTAB) in this work. By virtue of the distinctive microstructure, Cu-Ru MPNZ expressed superior bi-functional oxidase- and peroxidase-mimic activity to catalyze the oxidation of 3,3',5,5,'-tetramethylbenzidine (TMB) and 2,2'-azinobis (3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) with low Michaelis-Menten constants and quick reaction rates. Especially, toxic aminophenol isomers could exclusively react with the oxydates of TMB or ABTS to express differentiable signals in color. Under the optimal conditions, Cu-Ru MPNZ was successfully applied for visual differentiation of toxic aminophenol isomers in real aqueous, juices and medicinal samples with low detection limits (1.60 × 10-8 mol/L for o-aminophenol and 3.25 × 10-8 mol/L for m-aminophenol) and satisfactory recoveries (96.6-103.5%). The different recognition mechanisms of Cu-Ru MPNZ to toxic o- and m-aminophenol isomers were proposed for the first time as far as we known. This work will provide a potential way to monitor different organic isomer pollution in future.
Collapse
Affiliation(s)
- Zhengquan Yan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
| | - Xuemei Zhou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Lingmin Kong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Wenjing Xu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junkai Hao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Shuo Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jing Feng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Huitian Zhi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiao Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Lei Hu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
2
|
Peng M, Sun Y, Zang W, Gao C, Miao L, Wu A, Zhang Y. A highly sensitive method for the detection of p-Aminophenol based on Cu-Au nanoparticles and KIO 3. Anal Chim Acta 2023; 1283:341954. [PMID: 37977800 DOI: 10.1016/j.aca.2023.341954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND As a common industrial raw material and chemical intermediate, p-Aminophenol (pAP) is recognized as a serious pollutant that poses harm to both the environment and human health. The traditional detection methods for pAP have the advantages of good selectivity and high sensitivity, but their complex operation and time-consuming defects limit their application in on-site detection. Therefore, it is necessary to develop a simple, low-cost, rapid and high-sensitivity method for the detection of pAP. RESULTS Noble metal nanoparticles have been widely used in colorimetric sensing because of their simplicity and practicality. Herein, we presented a simple, excellent sensitive and selective colorimetric method for high-performance detection of pAP based on Cu-Au nanoparticles (Cu-Au NPs) and KIO3. In the presence of pAP, KIO3 was reduced to I2, which subsequently chemically adsorbed onto Cu-Au NPs surface and induced the dispersion and reorganization of Cu-Au NPs, along with prominent color change of the dispersion from gray-blue to pink and the transformation of Cu-Au NPs from chain-like aggregates to individual dispersed, irregular, subspherical nanoparticles. The mechanism was verified by TEM, DLS, Zeta potential, UV-vis and XPS. Meanwhile, Cu-Au NPs probe can rapidly detect pAP within 25 min, the limit of detection of pAP probe is 5 μM by the naked eyes and 0.03 μM by UV-vis absorption spectrum. SIGNIFICANCE AND NOVELTY This is the first colorimetric assay for pAP based on Cu-Au NPs probe. The satisfactory linearity (R2 = 0.9984) indicates that the colorimetric probe based on Cu-Au NPs and KIO3 can be utilized for quantitative detection of pAP. The detection results of pAP in real environmental water samples, urine samples and paracetamol tables demonstrate the practicability of pAP colorimetric probe.
Collapse
Affiliation(s)
- Minjie Peng
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yufeng Sun
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wen Zang
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Changyong Gao
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijing Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Zhang
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Li XL, Wang ZH, Zhang Q, Luo D, Xie JJ. MnO 2-DNA nanomaterials toward the dual signal detection of P-aminophenol micropollutants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4867-4871. [PMID: 36409201 DOI: 10.1039/d2ay01484j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
P-Aminophenol (PAP), a potentially toxic and mutagenic compound, is widely distributed in water and soil and has serious side effects on human health. This study presents a convenient, sensitive, and effective dual-signal assay for the detection of PAP in the environment. Two-dimensional manganese dioxide (MnO2) nanosheets were used as the carrier and quencher for fluorophore-labelled DNA to form a dual-signal nanoprobe, MnO2-DNA. Based on a specific redox reaction between the MnO2 nanosheets and target PAP, the corresponding absorption intensity of the product and the fluorescence intensity were both "turn-on" and also exhibited excellent correlation with the concentration of PAP. This strategy not only remarkably simplifies the detection process but also improves the reliability of results due to the dual-signal response, which has promising applications in environmental, clinical, and industrial research fields.
Collapse
Affiliation(s)
- Xiang-Ling Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Zi-Heng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Qin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Dan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Jing Jing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| |
Collapse
|
4
|
Buledi JJA, Solangi AR, Hyder A, Batool M, Mahar N, Mallah A, Karimi-Maleh H, Karaman O, Karaman C, Ghalkhani M. Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. ENVIRONMENTAL RESEARCH 2022; 212:113372. [PMID: 35561824 DOI: 10.1016/j.envres.2022.113372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 05/24/2023]
Abstract
4-aminophenol (4-AP) is one of the major environmental pollutants which is broadly exploited as drug intermediate in the pharmaceutical formulations. The extensive release of 4-AP in the environment without treatment has become a serious issue that has led several health effects on humans. This work describe the determination of 4-AP through a new chemically modified sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide (PVA/WO3/rGO) nanocomposite. The fabricated nanocomposite was characterized through XRD and HR-TEM to confirm the crystalline structure with average size of 35.9 nm and 2D texture with ultra-fine sheets. The electrochemical characterization of fabricated sensor was carried out by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to ensure the charge transfer kinetics of modified sensor that revealed high conductivity of PVA/WO3/rGO/GCE. Under optimized conditions e.g. scan rate 80 mV/s, phosphate buffer (pH 6) as supporting electrolyte and potential window from -0.2 to 0.8 V, the prepared sensor showed excellent response for 4-AP. The linear dynamic range of developed method was optimized as 0.003-70 μM. The LOD of fabricated sensor based on PVA/WO3/rGO/GCE for 4-AP was calculated as 0.51 nM. The practical application of PVA/WO3/rGO/GCE was tested in real water and pharmaceutical samples. The fabricated sensor presented here, exhibited exceptional stability and sensitivity than the reported sensors and could be effectively used for the monitoring 4-AP without interferences.
Collapse
Affiliation(s)
- J Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Madeeha Batool
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Nasrullah Mahar
- King Fahad University of Petroleum and Minerals (KFUPM), Saudi Arabia
| | - Arfana Mallah
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya, 07070, Turkey
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, 1678815811, Tehran, Iran
| |
Collapse
|
5
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
6
|
Xia C, Huang W, Kang X, Chen P, You L, Guo L. Salt-template preparation of Mo 5N 6 nanosheets with peroxidase- and catalase-like activities and application for colorimetric determination of 4-aminophenol. Mikrochim Acta 2021; 189:1. [PMID: 34855022 DOI: 10.1007/s00604-021-05112-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Mo5N6 nanosheets were synthesized by a nickel-induced growth method and were found to possess peroxidase-like activity in acidic condition and catalase-like activity in weak basic condition. In acidic condition, Mo5N6 nanosheets can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to form a blue color product (TMBOX). At the co-existence of 4-aminophenol (4-AP), 4-AP can react with H2O2 and TMBOX, resulting in the decrease of TMBOX and the fading of blue color. Therefore, a facile, sensitive colorimetric method for the quantitative detection of 4-AP was developed. The linear range for 4-AP was 1.0 to 80.0 μmol⋅L‒1 (R2 = 0.999), and the detection limit was 0.56 μmol⋅L‒1 based on 3σ/k. Resorcinol, aniline, humic acid, and common ions and anions in surface water did not interfere the determination of 4-AP. This colorimetric method was applied to measure the 4-AP in real water sample from Wulong River in Fujian Province of China. The relative standard deviation for the determination of 4-AP was ranged from 0.03 to 1.88%, and the recoveries from spiked samples were ranged between 99.2 and 107.6%. The determination results were consistent with those obtained by HPLC.
Collapse
Affiliation(s)
- Chunqiu Xia
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Wenying Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiutang Kang
- National Quality Supervision and Inspection Center for Incense Products (Fujian), Quanzhou, 362600, China
| | - Pingyun Chen
- National Quality Supervision and Inspection Center for Incense Products (Fujian), Quanzhou, 362600, China
| | - Longjie You
- National Quality Supervision and Inspection Center for Incense Products (Fujian), Quanzhou, 362600, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
7
|
Yu L, Jiang C, Xi L, Zhang X, Tong J, Chen Z, Chen R, He H. Colorimetric Detection of Benzoyl Peroxide in the Flour Samples Based on the Morphological Transition of Silver Nanoprisms. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gold and Silver Nanoparticle-Based Colorimetric Sensors: New Trends and Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110305] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gold and Silver nanoparticles (AuNPs and AgNPs) are perfect platforms for developing sensing colorimetric devices thanks to their high surface to volume ratio and distinctive optical properties, particularly sensitive to changes in the surrounding environment. These characteristics ensure high sensitivity in colorimetric devices. Au and Ag nanoparticles can be capped with suitable molecules that can act as specific analyte receptors, so highly selective sensors can be obtained. This review aims to highlight the principal strategies developed during the last decade concerning the preparation of Au and Ag nanoparticle-based colorimetric sensors, with particular attention to environmental and health monitoring applications.
Collapse
|
9
|
Jin Y, Yan B. A bi-functionalized metal-organic framework based on N-methylation and Eu 3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for aniline in urine. Talanta 2021; 227:122209. [PMID: 33714456 DOI: 10.1016/j.talanta.2021.122209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 01/13/2023]
Abstract
4-Aminophenol (4-AP), which is a biomarker of aniline and represents the internal dose of aniline exposure in the human body, has attracted much attention for its detection in recent years. In this work, a bi-functionalized luminescent metal-organic framework (MOF), Eu@MOF-253-CH3, is designed and prepared through encapsulating the methyl groups and the Eu3+ cations into MOF-253 based on post-synthetic modification strategy. This study shows that the bi-functionalized Eu@MOF-253-CH3 can specifically recognize 4-AP upon luminescence quenching, while refraining from the interference of other coexisting species in urine. The Eu@MOF-253-CH3 hybrid as a 4-AP sensor also displays excellent performances including high water tolerance, good pH-independent stability, fast response, great selectivity and elevated sensitivity (0.5 μg mL-1) attributed to N-viologenized ligand. These results suggest the bi-functionalized Eu@MOF-253-CH3 can act as a promising sensor to practically monitor 4-AP's concentrations in human urine system, and then to realize the screening and pre-diagnosis of human health. Moreover, the possible sensing mechanisms are further explored at length.
Collapse
Affiliation(s)
- Yingmin Jin
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
10
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Hallaj T, Azizi N, Amjadi M. A dual-mode colorimetric and fluorometric nanosensor for detection of uric acid based on N, P co-doped carbon dots and in-situ formation of Au/Ag core-shell nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Elancheziyan M, Senthilkumar S. Redox-active gold nanoparticle-encapsulated poly(amidoamine) dendrimer for electrochemical sensing of 4-aminophenol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
RAO HH, LIU HX, LUO MY, XUE X, Ming-Ming W, XUE ZH. Progress of Simple Signal Readout-based Point-of-Care Testing. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Yu L, Song Z, Peng J, Yang M, Zhi H, He H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115880] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Amjadi M, Hallaj T, Nasirloo E. In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Huang W, Wu G, Xiao H, Song H, Gan S, Ruan S, Gao Z, Song J. Transformation of m-aminophenol by birnessite (δ-MnO 2) mediated oxidative processes: Reaction kinetics, pathways and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113408. [PMID: 31662267 DOI: 10.1016/j.envpol.2019.113408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.
Collapse
Affiliation(s)
- Wenqian Huang
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China
| | - Guowei Wu
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China
| | - Hong Xiao
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China
| | - Haiyan Song
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academic of Sciences, Guangzhou, 510640, PR China; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, PR China.
| | - Shuzhao Gan
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China
| | - Shuhong Ruan
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China
| | - Zhihong Gao
- School of Chemistry and Environment, South China Normal University, Universities Town, Guangzhou, 510006, PR China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
17
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
18
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Neven L, Shanmugam ST, Rahemi V, Trashin S, Sleegers N, Carrión EN, Gorun SM, De Wael K. Optimized Photoelectrochemical Detection of Essential Drugs Bearing Phenolic Groups. Anal Chem 2019; 91:9962-9969. [DOI: 10.1021/acs.analchem.9b01706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Liselotte Neven
- AXES Research
Group, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Vanoushe Rahemi
- AXES Research
Group, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Stanislav Trashin
- AXES Research
Group, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Nick Sleegers
- AXES Research
Group, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Erik N. Carrión
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Sergiu M. Gorun
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Karolien De Wael
- AXES Research
Group, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
20
|
Song M, Wu Y, Xu C, Wang X, Su Y. Synergistic effects of multi-active sites in silver modified Bi°-BiVO 4 toward efficient reduction of aromatic nitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:530-540. [PMID: 30710782 DOI: 10.1016/j.jhazmat.2019.01.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
In this work, we report on the preparation of silver nanoparticles modified bismuth/bismuth vanadate (Bi°-BiVO4) catalyst with multi-active sites toward efficient reduction of aromatic nitrobenzene, aiming to tailor the synergistic effects of multi-active sites and specify the underlying catalytic mechanism. The as-prepared catalysts were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray and X-ray photoelectron spectroscopy. It is observed that Ag nanoparticles with diameter of ˜30 nm were anchored evenly on the surface of rod-shaped BiVO4, which offered multi-active sites to contact with the reactants effectively and transfer interfacial electron to 4-nitrophenol (4-NP) rapidly. The activity factor k of Ag/Bi°-BiVO4 for 4-NP reduction is estimated to ˜3933.4 min-1 g-1, which is much higher than that obtained from pristine BiVO4 catalyst, Bi° and noble metal Ag nanoparticles. According to the experimental results, the reaction mechanism and reaction path of 4-NP reduction for BiVO4, Bi and Ag were studied through the density functional theory (DFT) theoretical calculation, which suggested that they exhibit synergistic catalytic effect in the reaction process. This work may provide a feasible foundation for the mechanism research of semiconductor reduction to 4-nitrophenol.
Collapse
Affiliation(s)
- Meiting Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Yuhang Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Chang Xu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Xiaojing Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Yiguo Su
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China.
| |
Collapse
|
21
|
Mbokou Foukmeniok S, Ilboudo O, Njanja E, Tapsoba I, Pontie M, Tonle Kenfack I. New electrochemical carbon paste electrode (CPE) based on Arabic Gum modifier and dedicated to 4-aminophenol. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01300-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hallaj T, Amjadi M. A sensitive plasmonic probe based on in situ growth of a Ag shell on a Au@N-CD nanocomposite for detection of isoniazid in environmental and biological samples. NEW J CHEM 2019. [DOI: 10.1039/c8nj06502k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new plasmonic probe based on the wavelength shift of the surface plasmon resonance band of a Au@N-CD nanocomposite was introduced for the determination of isoniazid.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|
23
|
Duan W, Liu A, Li Q, Li Z, Wen CY, Cai Z, Tang S, Li X, Zeng J. Toward ultrasensitive and fast colorimetric detection of indoor formaldehyde across the visible region using cetyltrimethylammonium chloride-capped bone-shaped gold nanorods as “chromophores”. Analyst 2019; 144:4582-4588. [DOI: 10.1039/c9an00694j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A colorimetric method for detecting formaldehyde was developed by coupling bone-shaped gold nanorods (AuNRs) with silver mirror reaction, which enables low detection limit, wide linear range and high visual resolution.
Collapse
Affiliation(s)
- Wei Duan
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Ao Liu
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Qing Li
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Zhiwei Li
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Cong-ying Wen
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Zhixiong Cai
- School of Chemistry and Environmental
- Fujian Province University Key Laboratory of Analytical Science
- Minnan Normal University
- Zhangzhou 363000
- China
| | - Shiming Tang
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Xiyou Li
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Jingbin Zeng
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
24
|
Nechaeva D, Shishov A, Ermakov S, Bulatov A. A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta 2018; 183:290-296. [DOI: 10.1016/j.talanta.2018.02.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/28/2022]
|
25
|
Fahimi-Kashani N, Hormozi-Nezhad MR. Gold Nanorod-Based Chrono-Colorimetric Sensor Arrays: A Promising Platform for Chemical Discrimination Applications. ACS OMEGA 2018; 3:1386-1394. [PMID: 31458467 PMCID: PMC6641533 DOI: 10.1021/acsomega.7b01780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 05/13/2023]
Abstract
Most array-based sensing platforms, to date, utilize static response patterns for discrimination of a wide variety of analytes, but only a few studies have focused on the important task of quantitatively resolving structural isomers, which are nowadays important because of their broad usage in medicines and industries. A possible way of accomplishing this feat is to combine kinetic (rather than static) sensor response profiles with the chemical tongue strategy to allow the development of array-based sensors for isomeric discrimination. Here, by adding the time dimension, a simple and novel gold nanorod (AuNR)-based chrono-colorimetric sensor array is proposed for chemical discrimination applications. Because of their similar structure but different redox potentials, dihydroxybenzene (DHB) structural isomers have been chosen, as models, to evaluate the applicability of the proposed array. The principle of the array relies on various growth rates of silver shells on AuNRs at different silver ion/AuNR concentration ratios owing to the different kinetic behaviors of DHBs, which can be used as fingerprints to identify DHBs with the help of multivariate analysis methods. The combinatorial colorimetric response of AuNRs upon DHB addition has been analyzed by linear discriminant analysis and hierarchical cluster analysis. Finally, identification of individual DHBs or their mixtures in real samples confirms the potential application of the proposed array.
Collapse
Affiliation(s)
- Nafiseh Fahimi-Kashani
- Department of Chemistry and Institute of
Nanoscience and Nanotechnology, Sharif University
of Technology, Tehran 11155-9516, Iran
| | - M. Reza Hormozi-Nezhad
- Department of Chemistry and Institute of
Nanoscience and Nanotechnology, Sharif University
of Technology, Tehran 11155-9516, Iran
- E-mail: (R.H.-N.)
| |
Collapse
|
26
|
Zong C, Li B, Wang J, Liu X, Zhao W, Zhang Q, Nie X, Yu Y. Visual and colorimetric determination of H2O2 and glucose based on citrate-promoted H2O2 sculpturing of silver nanoparticles. Mikrochim Acta 2018; 185:199. [DOI: 10.1007/s00604-018-2737-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
|
27
|
Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-Based Microfluidic Devices: Emerging Themes and Applications. Anal Chem 2016; 89:71-91. [DOI: 10.1021/acs.analchem.6b04581] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Yang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eka Noviana
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael P. Nguyen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian J. Geiss
- Department
of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David S. Dandy
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles S. Henry
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
28
|
Adkins JA, Noviana E, Henry CS. Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device. Anal Chem 2016; 88:10639-10647. [DOI: 10.1021/acs.analchem.6b03010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jaclyn A. Adkins
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eka Noviana
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles S. Henry
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
29
|
Chen J, Jackson AA, Rotello VM, Nugen SR. Colorimetric Detection of Escherichia coli Based on the Enzyme-Induced Metallization of Gold Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2469-75. [PMID: 26997252 PMCID: PMC4947128 DOI: 10.1002/smll.201503682] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/10/2016] [Indexed: 05/26/2023]
Abstract
A novel enzyme-induced metallization colorimetric assay is developed to monitor and measure beta-galactosidase (β-gal) activity, and is further employed for colorimetric bacteriophage (phage)-enabled detection of Escherichia coli (E. coli). This assay relies on enzymatic reaction-induced silver deposition on the surface of gold nanorods (AuNRs). In the presence of β-gal, the substrate p-aminophenyl β-d-galactopyranoside is hydrolyzed to produce p-aminophenol (PAP). Reduction of silver ions by PAP generates a silver shell on the surface of AuNRs, resulting in the blue shift of the longitudinal localized surface plasmon resonance peak and multicolor changes of the detection solution from light green to orange-red. Under optimized conditions, the detection limit for β-gal is 128 pM, which is lower than the conventional colorimetric assay. Additionally, the assay has a broader dynamic range for β-gal detection. The specificity of this assay for the detection of β-gal is demonstrated against several protein competitors. Additionally, this technique is successfully applied to detect E. coli bacteria cells in combination with bacteriophage infection. Due to the simplicity and short incubation time of this enzyme-induced metallization colorimetric method, the assay is well suited for the detection of bacteria in low-resource settings.
Collapse
Affiliation(s)
- Juhong Chen
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, Massachusetts, 01003, USA
| | - Angelyca A. Jackson
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Sam R. Nugen
- Department of Food Science, University of Massachusetts, Amherst, 102 Holdsworth Way, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
30
|
Wu Y, Li C, Zhou K, Zhao Y, Wang X. A new preparation strategy via an in situ catalytic process: CeO2@Ag/Ag2Ta4O11catalyst for 4-nitrophenol reduction. CrystEngComm 2016. [DOI: 10.1039/c6ce01171c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abstract
Convergence of localized surface plasmon resonance of metal nanoparticles with classical ELISA has emerged as a new class of immunoassays, i.e. plasmonic ELISA, enabling biocatalysis mediated ultrasensitive naked-eye detection of disease biomarkers.
Collapse
Affiliation(s)
- Jitendra Satija
- School of BioSciences and Technology (SBST)
- VIT University
- Vellore
- India
| | - Nirmal Punjabi
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400 076
- India
| | - Debasish Mishra
- School of BioSciences and Technology (SBST)
- VIT University
- Vellore
- India
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT)
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400 076
- India
- Centre of Excellence for Nanoelectronics
| |
Collapse
|