1
|
Ye M, Zhang W, Xu H, Xie P, Song L, Sun X, Li Y, Wang S, Zhao Q. Fe-doped biodegradable dendritic mesoporous silica nanoparticles for starvation therapy and photothermal-enhanced cascade catalysis in tumor therapy. J Colloid Interface Sci 2025; 678:378-392. [PMID: 39213991 DOI: 10.1016/j.jcis.2024.08.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Combination therapies have attracted significant attention because they address the limitations of monotherapy while improving overall efficacy. In this study, we designed a novel nanoplatform, named GOx@Fe-DMSN@PDA (GFDP), by integrating Fe2+ into dendritic mesoporous silica nanoparticles (DMSN) and selecting glucose oxidase (GOx) as the model drug loaded into the DMSN pores. Additionally, we coated the surface of the DMSN with polydopamine (PDA) to confer pH/near infrared (NIR) light-responsive controlled-release behavior and photothermal therapy (PTT). The introduction of Fe2+ into the DMSN framework greatly improved biodegradability and enhanced the peroxidase (POD)-like activity of GFDP. In addition, GOx could consume glucose and generate hydrogen peroxide (H2O2) within tumor cells to facilitate starvation therapy and enhance cascade catalysis. The PDA coating provided the DMSN with an intelligent response release ability, promoting efficient photothermal conversion and achieving the PTT effect. Cellular tests showed that under NIR light irradiation, GFDP exhibited a synergistic effect of PTT-enhanced starvation therapy and cascade catalysis, with a half-maximal inhibitory concentration (IC50) of 2.89 μg/mL, which was significantly lower than that of GFDP without NIR light irradiation (18.29 μg/mL). The in vivo anti-tumor effect indicated that GFDP could effectively accumulate at the tumor site for thermal imaging and showed remarkable synergistic therapeutic effects. In summary, GFDP is a promising nanoplatform for multi-modal combination therapy that integrates starvation therapy, PTT, and cascade catalysis.
Collapse
Affiliation(s)
- Mengwei Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Weikang Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Peiyu Xie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Luming Song
- Department of Microbial and Biochemical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiaohan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
2
|
Madhuvilakku R, Hong Y, Nila IS, Villagra Moran VM, Subramanian P, Khan ZA, Jeong S, You SG. Quantification of Neuronal Cell-Released Hydrogen Peroxide Using 3D Mesoporous Copper-Enriched Prussian Blue Microcubes Nanozymes: A Colorimetric Approach in Real Time and Anticancer Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55466-55485. [PMID: 37991753 DOI: 10.1021/acsami.3c13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Despite the effectiveness and selectivity of natural enzymes, their instability has paved the way for developing nanozymes with high peroxidase activity using a straightforward technique, thereby expanding their potential for multifunctional applications. Herein, meso-copper-Prussian blue microcubes (Meso-Cu-PBMCs) nanozymes were successfully prepared via a cost-effective hydrothermal route. It was found that the Cu-PBMCs nanozymes, with three-dimensional (3D) mesoporous cubic morphologies, exhibited an excellent peroxidase-like property. Based on the high affinity of Meso-Cu-PBMCs toward H2O2 (Km = 0.226 μM) and TMB (Km = 0.407 mM), a colorimetric sensor for in situ H2O2 detection was constructed. On account of the high catalytic activity, affinity, and cascade strategy, the Meso-Cu-PBMCs nanozyme generated rapid multicolor displays at varying H2O2 concentrations. Under optimized conditions, the proposed sensor exhibits a preferable sensitivity of 18.14 μA μM-1, a linear range of 10 nM-25 mM, and a detection limit of 6.36 nM (S/N = 10). The reliability of the sensor was verified by detecting H2O2 in spiked human blood serum and milk samples, as well as by detecting in situ H2O2 generated from the neuron cell SH-SY5Y. Besides, the Meso-Cu-PBMCs nanozyme facilitated the catalysis of H2O2 in cancer cells, generating •OH radicals that induce the death of cancer cells (HCT-116 colon cancer cells), which holds substantial potential for application in chemodynamic therapy (CDT). This proposed strategy holds promise for simple, rapid, inexpensive, and effective intracellular biosensing and offers a novel approach to improve CDT efficacy.
Collapse
Affiliation(s)
- Rajesh Madhuvilakku
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Digital Anti-Aging Healthcare, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Irin Sultana Nila
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Digital Anti-Aging Healthcare, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Vanina Myuriel Villagra Moran
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Palanisamy Subramanian
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Sehoon Jeong
- Department of Medical Information Technology, College of Bio Nano Information Technology, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Sang Guan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| |
Collapse
|
3
|
Biswas R, Ghosh D, Das S, Chatterjee S, Bhaduri SN, Bhaumik A, Biswas P. Copper Immobilized over 2D Hexagonal SBA-15 for Electrochemical and Colorimetric Sulfite Sensing. Inorg Chem 2023. [PMID: 37418702 DOI: 10.1021/acs.inorgchem.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Sulfite (SO32-) is considered a highly toxic anion for living organisms. Herein, we report the synthesis of copper immobilized over a 2D hexagonally ordered mesoporous silica material CuMS as an electrochemical and colorimetric dual-technique-based sensing platform for sulfite detection. The immobilization of copper on silica was achieved through the bis[3-(triethoxysilyl)propyl]tetrasulfide (TEPTS) ligand. Morphological and physical properties of the material were confirmed by several characterization techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 sorption, and X-ray photoelectron spectroscopy. The CuMS material retained mesoporosity with a narrow pore size distribution (D ≈ 5.4 nm) and a high Brunauer-Emmett-Teller surface area of 682 m2 g-1 after the immobilization of copper. The prepared catalyst shows promising electrocatalytic activity toward sulfite oxidation. A linear variation in the peak current was obtained for SO32- oxidation in the 0.2-15 mM range with a high sensitivity of 62.08 μA cm-2, under optimum experimental conditions. The limit of detection (LOD) was found to be 1.14 nM. CuMS also shows excellent activity toward colorimetric detection of sulfite anions with an LOD of 0.4 nM. The proposed sensor shows high selectivity toward the sulfite anion, even in the presence of common interferents. The detection of sulfite in white wine with excellent recovery demonstrates the practical applicability of this sensor.
Collapse
Affiliation(s)
- Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Samarpita Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Sauvik Chatterjee
- School of Material Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| | - Asim Bhaumik
- School of Material Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711 103, India
| |
Collapse
|
4
|
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D Materials Based Biosensors for Oxidative Stress Biomarkers. ACS APPLIED BIO MATERIALS 2021; 4:5944-5960. [DOI: 10.1021/acsabm.1c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arushi Gupta
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Enhanced peroxidase-like activity of hierarchical MoS2-decorated N-doped carbon nanotubes with synergetic effect for colorimetric detection of H2O2 and ascorbic acid. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ray S, Biswas R, Banerjee R, Biswas P. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine. NANOSCALE ADVANCES 2020; 2:734-745. [PMID: 36133250 PMCID: PMC9418996 DOI: 10.1039/c9na00508k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
Highly dispersed aggregation-free gold nanoparticles intercalated into the walls of mesoporous silica (AuMS) were synthesized using thioether-functionalized silica as a nanozyme, which exhibited an excellent peroxidase mimic activity. The AuMS material was characterized via XRD, N2 adsorption-desorption, FESEM, SEM-EDS particle mapping, TEM, and XPS. The peroxidase-like activity of the AuMS material was studied thoroughly, and the effect of pH and temperature was evaluated. The reproducibility of the peroxidase mimic activity and long-term stability of the AuMS catalyst were also studied. Furthermore, the AuMS catalyst was successfully utilized for the detection and quantification of dopamine, an important neurotransmitter, colorimetrically with a linear range of 10-80 μM and a limit of detection (LOD) value of 1.28 nM. The determination of dopamine concentration in commercially available dopamine hydrochloride injection showed high accuracy, good reproducibility, and high selectivity in the presence of uric acid, ascorbic acid, glucose, tryptophan, phenylalanine, and tyrosine.
Collapse
Affiliation(s)
- Shounak Ray
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| | - Rumeli Banerjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah 711 103 West Bengal India
| |
Collapse
|
7
|
Yuan E, Ni P, Zhuang W, Jian R, Jian P. Synergic catalysis by a CuO-like phase and Cu0 for anaerobic dehydrogenation of 2,3-butanediol. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Silica microspheres functionalized with the iminodiacetic acid/copper(II) complex as a peroxidase mimic for use in metal affinity chromatography-based colorimetric determination of histidine-tagged proteins. Mikrochim Acta 2020; 187:121. [DOI: 10.1007/s00604-019-4087-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
|
9
|
Peng D, Liang RP, Qiu JD, Liu J. Robust Colorimetric Detection of Cu2+ by Excessed Nucleotide Coordinated Nanozymes. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Chen Y, Zhong Q, Wang Y, Yuan C, Qin X, Xu Y. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC Adv 2019; 9:16566-16570. [PMID: 35516354 PMCID: PMC9064409 DOI: 10.1039/c9ra03111a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Papain, a natural plant protease that exists in the latex of Carica papaya, catalyzes the hydrolysis of peptide, ester and amide bonds. In this work, we found that papain displayed peroxidase-like activity and catalyzed the oxidation of 3,3',5',5'-tetramethylbenzidine (TMB) in the presence of H2O2. This results in the formation of a blue colored product with an absorption maximum at 652 nm. The effects of experimental parameters including pH and reaction temperature on catalytic activity of papain were investigated. The increase of absorbance induced by the catalytic effect of papain offers accurate detection of H2O2 in the range of 5.00-90.0 μM, along with a detection limit of 2.10 μM. A facile colorimetric method for glucose detection was also proposed by combining the glucose oxidase (GOx)-catalyzed glucose oxidation and papain-catalyzed TMB oxidation, which exhibited a linear response in the range of 0.05-0.50 mM with a detection limit of 0.025 mM. The method proposed here displayed excellent selectivity, indicating that common coexisting substances (urea, uric acid, ascorbic acid, maltose, lactose and fructose) in urine did not interfere with detection of glucose. More importantly, the suggested method was successfully used to precisely detect the glucose concentration in human urine samples with recoveries over 96.0%.
Collapse
Affiliation(s)
- Yuye Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Qingmei Zhong
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety Nanning 530004 China +86 771 3392879
| | - Chunling Yuan
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Xiu Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| | - Yuanjin Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Biorefinery Nanning 530004 China
| |
Collapse
|
11
|
Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M. Peroxidase-Like Activity of Smart Nanomaterials and Their Advanced Application in Colorimetric Glucose Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900133. [PMID: 30908899 DOI: 10.1002/smll.201900133] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Indexed: 05/27/2023]
Abstract
Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.
Collapse
Affiliation(s)
- Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
12
|
Oliveira LH, de Barros A, Pinto LO, Oliveira CS, Kubota LT, Sigoli FA, Mazali IO. Sensitive Colorimetric Assay Based on Peroxidase-Like Activity of CeO2
Nanoparticles Supported on SBA-15 Mesoporous Silica to Determination of H2
O2. ChemistrySelect 2019. [DOI: 10.1002/slct.201803709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Larissa H. Oliveira
- Laboratory of Functional Materials (LMF); Institute of Chemistry; University of Campinas; P.O. box 6154, 13083-970, Campinas, SP Brazil
| | - Anerise de Barros
- Laboratory of Functional Materials (LMF); Institute of Chemistry; University of Campinas; P.O. box 6154, 13083-970, Campinas, SP Brazil
- Department of Materials Science and Engineering; University of Dallas at Texas, Dallas; 75080, TX United States
| | - Lidiane O. Pinto
- Laboratory of Functional Materials (LMF); Institute of Chemistry; University of Campinas; P.O. box 6154, 13083-970, Campinas, SP Brazil
| | - Cristine S. Oliveira
- Laboratory of Functional Materials (LMF); Institute of Chemistry; University of Campinas; P.O. box 6154, 13083-970, Campinas, SP Brazil
| | - Lauro T. Kubota
- Laboratory of Electrochemistryl; Electroanalytic and Sensor Development (LEEDS); Institute of Chemistry; University of Campinas, P.O. box 6154; 13083-970, Campinas, SP Brazil
| | - Fernando A. Sigoli
- Laboratory of Functional Materials (LMF); Institute of Chemistry; University of Campinas; P.O. box 6154, 13083-970, Campinas, SP Brazil
| | - Italo O. Mazali
- Laboratory of Functional Materials (LMF); Institute of Chemistry; University of Campinas; P.O. box 6154, 13083-970, Campinas, SP Brazil
| |
Collapse
|
13
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
14
|
Cao T, Zheng J, Xu J, Alharbi NS, Hayat T, Zhang M. Increasing enzyme-like activity by in situ anchoring of Ag 3PO 4 nanoparticles on keratin–inorganic hybrid nanoflowers. NEW J CHEM 2019. [DOI: 10.1039/c9nj03859k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we propose a facile strategy of rapid assembly of Ag3PO4 nanoparticles within three dimensional (3D) keratin–inorganic hybrid nanoflowers (keratin-NF@Ag3PO4), which can be used for colorimetric detection of UA.
Collapse
Affiliation(s)
- Tiantian Cao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Njud S. Alharbi
- Biotechnology Research Group
- Department of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Tasawar Hayat
- Department of Mathematics
- Quaid-I-Azam University
- Islamabad 44000
- Pakistan
- NAAM Research Group
| | - Min Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
15
|
Cao L, Wang P, Chen L, Wu Y, Di J. A photoelectrochemical glucose sensor based on gold nanoparticles as a mimic enzyme of glucose oxidase. RSC Adv 2019; 9:15307-15313. [PMID: 35514836 PMCID: PMC9064256 DOI: 10.1039/c9ra02088h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
This work reports the first construction of the ternary layers of ITO/PbS/SiO2/AuNPs nanostructure for development of photoelectrochemical (PEC) glucose sensor. Herein, the thioglycolic acid-capped PbS quantum dots was employed as a PEC active probe, which is very sensitive to oxygen. The small gold nanoparticles (AuNPs) were act as nanozyme (mimic enzyme of glucose oxidase) to catalytically oxidize glucose in the presence of oxygen, meanwhile consumed oxygen and then resulted in the decrease of cathodic photocurrent. The insertion layer of SiO2 nanoparticles between PbS and AuNPs could reduce efficiently the base current due to its low electroconductivity, which improved the detection limit. The proposed PEC sensor exhibited high sensitivity and gold selectivity towards glucose. The linear response of glucose concentrations ranged from 1.0 μM to 1.0 mM with detection limit of 0.46 μM (S/N = 3). The results suggest the potential of design and development of numerous nanozyme-based PEC biosensors with the advantage of the simplicity, stability, and efficiency. This work reports the first construction of the ternary layers of ITO/PbS/SiO2/AuNPs nanostructure for development of photoelectrochemical (PEC) glucose sensor.![]()
Collapse
Affiliation(s)
- Ling Cao
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Panpan Wang
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Li Chen
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Ying Wu
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Junwei Di
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
16
|
Lian S, Gao L, Chen M, Liu Z, Qiu J, Zhang X, Luo X, Zeng R, Liu Q. Enhanced peroxidase-like activity of MMT-supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H2
O2. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siming Lian
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Linna Gao
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Miaomiao Chen
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Jun Qiu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Xiao Zhang
- College of Chemistry and Molecular Engineering; Qingdao University of Science & Technology; Qingdao 266042 China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering; Qingdao University of Science & Technology; Qingdao 266042 China
| | - Rongchang Zeng
- College of Materials Science and Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| |
Collapse
|
17
|
Sayed M, Arooj A, Shah NS, Khan JA, Shah LA, Rehman F, Arandiyan H, Khan AM, Khan AR. Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: A mechanistic approach. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Jabariyan S, Zanjanchi MA, Arvand M, Sohrabnezhad S. Colorimetric detection of glucose using lanthanum-incorporated MCM-41. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:294-300. [PMID: 29879644 DOI: 10.1016/j.saa.2018.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 05/14/2023]
Abstract
In this study, lanthanum-containing mesoporous MCM-41 (La-MCM-41) with different amount of lanthanum were synthesized and were used for colorimetric detection of glucose. As prepared La-MCM-41 were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The quantitative amounts of incorporated lanthanum into MCM-41 structure were estimated by energy dispersive X-ray spectrometry. The prepared La-MCM-41 provided high intrinsic peroxidase-like activity in the presence of peroxidise 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 for accurate determination of glucose. This process produced a blue color in aqueous solution that directly relates to H2O2 concentration. The effect of different parameters such as the content of incorporated lanthanum, pH, temperature and time of reaction on the peroxidase-like activity was studied. The colorimetric detection of H2O2 was led to a linear dynamic range from 50 to 1000 μM (r2 = 0.9988) and low detection limit of 37.5 μM for glucose in aqueous solution. These results are comparable (close to) or better than some previous reports. Thus, La-MCM-41 can be used as admirable alternative design for colorimetric sensing of glucose.
Collapse
Affiliation(s)
- Shaghayegh Jabariyan
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht 41335, Iran.
| | - Mohammad A Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht 41335, Iran.
| | - Majid Arvand
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht 41335, Iran
| | - Shabnam Sohrabnezhad
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht 41335, Iran
| |
Collapse
|
19
|
Yang Z, Ma F, Zhu Y, Chen S, Wang C, Lu X. A facile synthesis of CuFe 2O 4/Cu 9S 8/PPy ternary nanotubes as peroxidase mimics for the sensitive colorimetric detection of H 2O 2 and dopamine. Dalton Trans 2018; 46:11171-11179. [PMID: 28812762 DOI: 10.1039/c7dt02355c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synergistic effects play an important role in improving the catalytic activity for enzyme-like reactions. Compared to individual nanomaterials, a system consisting of multiple components usually exhibits enhanced catalytic activity as an enzyme mimic. Herein we describe the synthesis of CuFe2O4/Cu9S8/polypyrrole (PPy) ternary nanotubes as an efficient peroxidase mimic via a three-step approach involving an electrospinning process, annealing treatment and hydrothermal reaction. The remarkably enhanced catalytic activity of CuFe2O4/Cu9S8/PPy ternary nanotubes as peroxidase mimics over individual CuFe2O4 nanofibers, CuFe2O4/CuO composite nanofibers, CuFe2O4/CuS composite nanofibers, and PPy materials has been achieved, demonstrating the presence of a synergistic effect among the components. The steady-state kinetic experiment suggests a good catalytic efficiency of the CuFe2O4/Cu9S8/PPy ternary nanotubes. On the basis of high catalytic activity, a colorimetric platform for the sensitive detection of H2O2 and dopamine has been developed. This work not only offers a simple approach for the fabrication of a high performance peroxidase-like nanocatalyst, but also provides its promising potential applications in biosensors, medical diagnosis, and environmental monitoring.
Collapse
Affiliation(s)
- Zezhou Yang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | |
Collapse
|
20
|
A Simple and Effective Colorimetric Assay for Glucose Based on MnO₂ Nanosheets. SENSORS 2018; 18:s18082525. [PMID: 30072628 PMCID: PMC6111558 DOI: 10.3390/s18082525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/31/2022]
Abstract
Simple and effective methods for the detection of the level of blood glucose are closely linked to the monitoring of people's health. In the study, MnO₂ nanosheets with absorption range of 300 nm~500 nm and obvious yellow color were easily prepared and applied to detect glucose through their absorbance and color. The proposed method is based on the fact that a specific concentration of glucose can be quantitatively transformed into hydrogen peroxide (H₂O₂) under the catalytic effect of glucose oxidase. Based on the redox reaction of MnO₂ with H₂O₂, yellow MnO₂ can be converted into colorless Mn2+ to monitor the concentration of glucose. Under optimal conditions, a simple and effective visual assay for the sensitive and reliable detection of glucose was developed. The linear range was estimated to the range from 0 μM to 100 μM, with a detection limit of 12.8 μM. Furthermore, the proposed colorimetric assay based on MnO₂ nanosheets can effectively detect blood glucose of clinical serum samples with accuracy and convenience.
Collapse
|
21
|
Pang Y, Huang Z, Yang Y, Long Y, Zheng H. Colorimetric detection of glucose based on ficin with peroxidase-like activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:510-515. [PMID: 28846980 DOI: 10.1016/j.saa.2017.08.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce H2O2, then, ficin catalyzes the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100μM with a detection limit of 0.5μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO2@Fe3O4 NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.
Collapse
Affiliation(s)
- Yanjiao Pang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zili Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yufang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Synthesis of hierarchical Co 3O 4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta 2018; 181:431-439. [PMID: 29426536 DOI: 10.1016/j.talanta.2018.01.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022]
Abstract
Fabrication of core-shell nanostructured catalyst is a promising way for tuning its catalytic performance due to the highly active interface and rich redox properties. In this work, hierarchical Co3O4@NiO core-shell nanotubes are fabricated by the deposition of NiO shells via a chemical bath treatment using electrospun Co-C composite nanofibers as templates, followed by a calcination process in air. The as-prepared Co3O4@NiO core-shell nanotubes exhibit a uniform and novel hollow structure with Co3O4 nanoparticles attached to the inner wall of NiO nanotubes and excellent catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Due to the synergistic effect, the peroxidase-like activity of the Co3O4@NiO core-shell nanotubes is much higher than that of individual Co3O4 and NiO components. Owing to the superior peroxidase-like activity, a simple and rapid colorimetric approach for the detection of dopamine with a detection limit of 1.21µM and excellent selectivity has been developed. It is anticipated that the prepared Co3O4@NiO core-shell nanotubes are promising materials applied for biomedical analysis and environmental monitoring.
Collapse
|
23
|
Aghayan M, Mahmoudi A, Sazegar MR, Ghavidel Hajiagha N, Nazari K. Enzymatic activity of Fe-grafted mesoporous silica nanoparticles: an insight into H2O2and glucose detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03534b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-grafted MSNs were synthesized by post-synthesis and applied as a biosensor for detection of glucose and H2O2.
Collapse
Affiliation(s)
- M. Aghayan
- Dept. of Chemistry
- Faculty of Science
- Islamic Azad University
- Tehran
- Iran
| | - A. Mahmoudi
- Dept. of Chemistry
- Faculty of Science
- Islamic Azad University
- Tehran
- Iran
| | - M. Reza Sazegar
- Dept. of Chemistry
- Faculty of Science
- Islamic Azad University
- Tehran
- Iran
| | | | - K. Nazari
- Research Institute of Petroleum Industry
- Iran
| |
Collapse
|
24
|
Gao L, Zhang L, Lyu X, Lu G, Liu Q. Corrole functionalized iron oxide nanocomposites as enhanced peroxidase mimic and their application in H2O2 and glucose colorimetric sensing. ACTA ACUST UNITED AC 2018. [DOI: 10.30919/espub.es.180314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Li Y, Guan P, Yu F, Li W, Xie X. CeO₂ Nanorods Embedded in Ni(OH)₂ Matrix for the Non-Enzymatic Detection of Glucose. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E205. [PMID: 28758973 PMCID: PMC5575687 DOI: 10.3390/nano7080205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
The electrode based on cerium oxide (CeO₂) nanorods embedded in nickel hydroxide (Ni(OH)₂) matrix were prepared and used for detecting glucose non-enzymatically. The materials were characterized by X-ray diffraction, transmission electron microscopy (TEM), and so on. The results indicate that the response of CeO₂/Ni(OH)₂ nanocomposite are significantly improved due to the synergetic effect between CeO₂ and Ni(OH)₂. The optimum CeO₂/Ni(OH)₂ nanocomposite electrode exhibits a detection range from 2 μM to 6.62 mM, a sensitivity of 594 μA mM-1 cm-2, an estimated detection limit of 1.13 μM, and a response time less than 5 s. In addition, this biosensor also shows good selectivity, long term stability, and accurate measurement in juice on sale.
Collapse
Affiliation(s)
- Yongjian Li
- Department of Material Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Panpan Guan
- Department of Material Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Fucheng Yu
- School of Material Science, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Wei Li
- Department of Material Science, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiaoling Xie
- Department of Material Science, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
26
|
Cai T, Gao Y, Yan J, Wu Y, Di J. Visual detection of glucose using triangular silver nanoplates and gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra00593h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A sensitive spectrophotometric detection of glucose based on triangular silver nanoplates (Ag TNPs) coupled with gold nanoparticles (Au NPs) was carried out.
Collapse
Affiliation(s)
- Tuanjie Cai
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Yan Gao
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Jilin Yan
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Ying Wu
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| | - Junwei Di
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
27
|
Du J, Zhao Y, Chen J, Zhang P, Gao L, Wang M, Cao C, Wen W, Zhu C. Difunctional Cu-doped carbon dots: catalytic activity and fluorescence indication for the reduction reaction of p-nitrophenol. RSC Adv 2017. [DOI: 10.1039/c7ra05383e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The reduction reaction ofp-nitrophenol was catalyzed and monitored using the fluorescence of Cu-doped CDs.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yun Zhao
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Juan Chen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Lingling Gao
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Meiqin Wang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Cong Cao
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Wu Wen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
28
|
Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2036-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Immobilized Cu(II)–Schiff base complex on modified Fe3O4 nanoparticles as catalysts in the oxidation of o-phenylenediamine to 2,3-diaminophenazine. REACTION KINETICS MECHANISMS AND CATALYSIS 2016. [DOI: 10.1007/s11144-016-1085-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|