1
|
Gou L, Li L, Wei S, Tian Y, Hou X, Wu L. Sensitive detection of histamine utilizing the SERS platform combined with an azo coupling reaction and a composite hydrophobic layer. Talanta 2024; 278:126531. [PMID: 39002262 DOI: 10.1016/j.talanta.2024.126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Herein, the surface-enhanced Raman scattering (SERS) platform was combined with an azo coupling reaction and an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes for the detection of histamine. The praseodymium oxide on aluminum alloy was successfully synthesized by the rare-earth-salt-solution boiling bath method and modified by stearic acid. Its surface exhibits a water contact angle (WCA) of 125.0°. Through the azo derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, histamine can be converted into the derivatization product with higher Raman activity. The mixture of the derivatization product and β-cyclodextrin-modified Ag nanoparticles (β-CD-AgNPs) were dropped onto the surface of an aluminum alloy covered with a hydrophobic layer of praseodymium oxide and stearic acid complexes, and dried for SERS measurement. The intensity ratio between the SERS peaks at 1246 cm-1 and 1104 cm-1 (I1246/I1104) of the derivatization product was used for the quantification of histamine. Under the selected conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for this method were 7.2 nM (S/N = 3) and 24 nM (S/N = 10), respectively. The relative standard deviation (RSD) of this method for the determination of 1 μM histamine was 6.1 % (n = 20). The method was also successfully used for the determination of histamine in fish samples with recoveries ranging from 92 % to 111 %. The present method is simple, sensitive, reliable, and may provide a new approach for preparing the composite hydrophobic layer that can enhance SERS signals through hydrophobic condensation effect. Meanwhile, it may have a promising future in the determination of small molecular compounds containing an imidazole ring.
Collapse
Affiliation(s)
- Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Siqi Wei
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yunfei Tian
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
2
|
Guan Q, Zeng P, Zhang Q, Yu L, Wu G, Hong Y, Wang C. Highly sensitive detection of tryptophan based on Schiff base reaction and surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123995. [PMID: 38341934 DOI: 10.1016/j.saa.2024.123995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
In this study, a simple, rapid and sensitive method combining surface-enhanced Raman spectroscopy and Schiff base reaction was developed for the detection of tryptophan. This method does not require product separation to obtain a significant Raman signal of the derivatized product, and the derivatization reaction can be controlled by experimental parameters such as reaction temperature, time, concentration of derivatization reagent and concentration of sodium nitrite. The characteristic peak of the derivative of tryptophan (1620 cm-1) was selected for quantitative analysis, and the intensity of the characteristic Raman spectrum peak showed a linear relationship with the concentration of tryptophan (10-8-10-4 mol/L) in the range of with a correlation coefficient R2 of 0.9922. This assay combines surface-enhanced Raman spectroscopy and Schiff base reaction, which is characterized by high sensitivity and easy operation, and has good application prospects in the detection of tryptophan in food.
Collapse
Affiliation(s)
- Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China; Technology Center of Nanchang Customs District, Nanchang 330038, People's Republic of China
| | - Qianqian Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Guoqiang Wu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yanping Hong
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
3
|
Yang S, Chen R, Jia L. Cupric oxide nanosheet as an oxidase mimic for fluorescent detection of acetone by a 3D-printed portable device. Mikrochim Acta 2024; 191:122. [PMID: 38319462 DOI: 10.1007/s00604-024-06201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
A cupric oxide (CuO) nanosheet-based chemical fluorescence sensor was developed to realize the detection of acetone in aqueous solutions. CuO is an oxidase mimic and can catalyze the oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (oxOPD). Interestingly, acetone was found to possess the scavenging ability for superoxide anions generated in the CuO-catalyzed oxidation system, hence weakening the OPD oxidation and leading to a reduction in the fluorescence intensity of the catalyzing system at 574 nm under excitation at 425 nm. Based on this property of acetone, a fluorescent sensor was constructed to detect acetone. The sensor exhibits a linear range of 1.35 to 2 × 105 µmol L-1 and a detection limit of 1.08 µmol L-1. Additionally, a smartphone-free portable device was constructed to realize on-the-spot and rapid detection of acetone in cauliflower, mineral water, tap water, and lake water samples. The recoveries by the portable device are 93.2 to 108% for actual samples, with relative standard deviations of less than 4.3%, indicating a potential application prospect of the device in on-site detection.
Collapse
Affiliation(s)
- Shuo Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ruobo Chen
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Lu Y, Yuan X, Jia C, Lei B, Zhang H, Zhao Z, Zhu S, Zhao Q, Cai W. Self-Assembled Bifunctional Copper Hydroxide/Gold-Ordered Nanoarray Composites for Fast, Sensitive, and Recyclable SERS Detection of Hazardous Benzene Vapors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2016. [PMID: 37446532 DOI: 10.3390/nano13132016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Volatile organic compounds (VOCs), particularly monoaromatic hydrocarbon compounds (MACHs), pose a potential risk to the atmospheric environment and human health. Therefore, the progressive development of efficient detection methodologies is a pertinent need, which is still a challenge at present. In this study, we present a rapid and sensitive method to detect trace amounts of MACHs using a bifunctional SERS composite substrate. We prepared an Au/SiO2 enhanced layer and a porous Cu(OH)2 adsorption layer via microfluidic-assisted gas-liquid interface self-assembly. The composite substrate effectively monitored changes in benzaldehyde using time-varying SERS spectra, and track-specifically identified various VOCs such as benzene, xylene, styrene, and nitrobenzene. In general, the substrate exhibited a rapid response time of 20 s to gaseous benzaldehyde, with a minimum detection concentration of less than 500 ppt. Further experimental assessments revealed an optimum Cu(OH)2 thickness of the surrounding adsorption layer of 150 nm, which can achieve an efficient SERS response to MACHs. Furthermore, the recoverable and reusable property of the composite substrate highlights its practicality. This study presents a straightforward and efficient approach for detecting trace gaseous VOCs using SERS, with significant implications in the designing of SERS substrates for detecting other VOCs.
Collapse
Affiliation(s)
- Yanyan Lu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Xuzhou Yuan
- Shandong Hengcheng Testing Technology Co., Ltd., Yantai 261400, China
| | - Cuiping Jia
- School of of Economics and Management (SEM), Weifang University of Science and Technology, Weifang 262700, China
| | - Biao Lei
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zhipeng Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Shuyi Zhu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qian Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Weiping Cai
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Jie Z, Liu J, Ying Y, Yang H. O-phthalaldehyde assisted surface enhanced Raman spectroscopy selective determination of trace homocysteine in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122048. [PMID: 36368268 DOI: 10.1016/j.saa.2022.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
High plasma homocysteine (Hcy) levels may indicate cardiovascular disease. However, sensitive and selective determination of Hcy remains a major challenge. Herein, we present a sensing strategy for Hcy by surface enhanced Raman scattering (SERS) method along with a specific reaction of o-phthalaldehyde (OPA) and Hcy. The obtained adduct 2-(1-carboxyl-3-thiopropyl)-1-isoindolinone (Hcy-OPA) can be directly detected by SERS using gold nanoparticles (Au NPs) as the substrate. The developed SERS method displays superior sensitivity (low detection limit of 2.50 × 10-12 mol L-1) with a broad linear range (5.00 × 10-10 -5.00 × 10-6 mol L-1). As a proof of real application, it can be used to detect Hcy in bovine serum samples with a concentration as low as 5.00 × 10-9 mol L-1, which is free from the interference of the other amino acids and glutathione.
Collapse
Affiliation(s)
- Zhishun Jie
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jia Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
6
|
Shen J, Liu G, Zhang W, Shi W, Zhou Y, Yu Z, Mei Q, Zhang L, Huang W. Design and Detection of Cyanide Raman Tag pH-Responsive SERS Probes. BIOSENSORS 2022; 13:21. [PMID: 36671856 PMCID: PMC9855686 DOI: 10.3390/bios13010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
As one of the most important parameters of biochemical analysis and detection, the pH value plays a very important role in cell function, food preservation and production, soil and water sources, and other applications. This makes it increasingly important to explore pH detection methods in depth. In this paper, a pH-responsive SERS probe based on the cyano Raman Tag was designed to realize pH sensing detection through the influence of the pH value of analytes on the displacement of the cyano Raman peak in the SERS probe. This cyano Raman tag exhibited not only excellent sensitivity in the liner range of pH 3.0-9.0 with a limit of detection (LOD) of pH 0.33, but also the anti-interference performance and stability (the relative standard deviation (RSD) was calculated to be 6.68%, n = 5). These results indicated that this pH SERS probe with the Raman cyano tag can provide new research ideas for future biological detection, bioimaging, and environmental detection.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Guan Liu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Wen Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Wenwen Shi
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Zhou
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Zejie Yu
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Qunbo Mei
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Lei Zhang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
7
|
Zhao Z, Bao H, Zhao Q, Fu H, Zhou L, Zhang H, Li Y, Cai W. Efficient SERS Response of Porous-ZnO-Covered Gold Nanoarray Chips to Trace Benzene-Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47999-48010. [PMID: 36223181 DOI: 10.1021/acsami.2c11682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fast and sensitive detection of gaseous volatile organic compounds (VOCs), based on surface-enhanced Raman spectroscopy (SERS), is still a challenge due to their weak interaction with plasmonic metals and overly small Raman scattering cross sections. Herein, we propose a simple strategy to achieve the SERS-based highly efficient detection of trace benzene-VOCs (B-VOCs) based on a composite chip. The composite chip is designed and fabricated via covering the porous zinc oxide on gold nanoarrays by a one-step solution growth method. Such composite chip shows highly selective capture of gaseous B-VOCs (benzene, toluene, nitrobenzene, xylene, and chlorobenzene, etc.), which leads to the rapid and sensitive SERS responses to them. Typically, this chip can response to gaseous toluene within 30 s, and the lowest detectable concentration is below 10 ppb. Further experiments have revealed that there exists an optimal thickness of the ZnO covering layer for the highly efficient SERS response to the B-VOCs, which is about 150 nm. Also, such a composite chip is recoverable in SERS response and hence reusable. The highly efficient SERS response of the composite chip to the B-VOCs is attributed to the porous structure-enhanced molecular adsorption and the electromagnetic-chemical dual-enhancement mechanism. This work not only presents a practical SERS chip for the efficient detection of the typical B-VOCs but also provides a deep understand the interaction between the B-VOCs and the ZnO as well as the chemical enhancement mechanism.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Haoming Bao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Hao Fu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Le Zhou
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
8
|
Gou L, Zeng X, Du H, Li L, Tian Y, Hou X, Wu L. Sensitive detection of trace 4-methylimidazole utilizing a derivatization reaction-based ratiometric surface-enhanced Raman scattering platform. Talanta 2022; 237:122925. [PMID: 34736662 DOI: 10.1016/j.talanta.2021.122925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Herein, a facile and fast surface-enhanced Raman scattering (SERS) method with ratiometric strategy was developed for detection of 4-methylimidazole (4-MI). Via a chemical derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, 4-MI could be converted to SERS-sensitive species. The SERS intensity ratio between the peaks at 1243 cm-1 and 1110 cm-1 (I1243/I1110) was used for the quantification of 4-MI. In addition, the method sensitivity was further improved by the aggregation of beta-cyclodextrin-modified Ag nanoparticles (beta-CD-AgNPs). Under the optimal conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for 4-MI were 1.7 nM (S/N = 3) and 5.7 nM (S/N = 10), respectively. The relative standard deviation (RSD) for 0.5 μM 4-MI was 8.2% (n = 20). This method was successfully used for the determination of 4-MI in cola samples with recoveries ranging from 92% to 106%. The present method is convenient, sensitive, selective, reliable and may have a promising application in determination of the compounds with an imidazole ring containing active hydrogen atoms.
Collapse
Affiliation(s)
- Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoliang Zeng
- State Grid Sichuan Electric Power Research Institute, Chengdu, Sichuan, 610041, China
| | - Huan Du
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yunfei Tian
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
9
|
Yao Y, Zhang H, Tian T, Liu Y, Zhu R, Ji J, Liu B. Iodide-modified Ag nanoparticles coupled with DSN-Assisted cycling amplification for label-free and ultrasensitive SERS detection of MicroRNA-21. Talanta 2021; 235:122728. [PMID: 34517596 DOI: 10.1016/j.talanta.2021.122728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023]
Abstract
With the emergence of microRNA (miRNA) as a key player in early clinical disease diagnosis, development of rapidly sensitive and quantitative miRNA detection methods are imperative. Herein, a label-free SERS assay coupled with duplex-specific nuclease (DSN) signal amplification strategy was proposed for facilely ultrasensitive and quantitative analysis of miRNA-21. Firstly, magnetic beads assembled with excessive capture DNA were utilized to hybridize the target miRNA-21. These DNA-RNA heteroduplexes were cleaved by DSN to generate small nucleotide fragments into the supernatant and the miRNA-21 released and rehybridized another DNA, going to the next DSN cycle. Consequently, numerous of small nucleotide fragments of capture DNA were released from magnetic beads and the miRNA-21 signal was transferred and amplified by the SERS signals of total phosphate backbones which are abundant in nucleotide. Furthermore, iodide-modified Ag nanoparticles (AgINPs) was employed to generate a strong and reproducible SERS signal. The proposed method displayed excellent performance for miRNA-21 detection with the linear range from 0.33 fM to 3.3 pM, and a lower detection limit of 42 aM. Moreover, this strategy exhibited effectively base discrimination capability and was successfully applied for monitoring the expression levels of miRNA-21 in different cancer cell lines and human serum.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Rendan Zhu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institute of Biomedical Sciences, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Liu Q, Zeng X, Tian Y, Hou X, Wu L. Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde. Talanta 2019; 202:274-278. [DOI: 10.1016/j.talanta.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
11
|
Ivashchenko O, Peplińska B, Gapiński J, Flak D, Jarek M, Załęski K, Nowaczyk G, Pietralik Z, Jurga S. Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 2018; 8:4041. [PMID: 29511277 PMCID: PMC5840429 DOI: 10.1038/s41598-018-22426-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
Micro/nanostructures, which are assembled from various nanosized building blocks are of great scientific interests due to their combined features in the micro- and nanometer scale. This study for the first time demonstrates that ultrasmall superparamagnetic iron oxide nanoparticles can change the microstructure of their hydrocolloids under the action of external magnetic field. We aimed also at the establishment of the physiological temperature (39 °C) influence on the self-organization of silver and ultrasmall iron oxides nanoparticles (NPs) in hydrocolloids. Consequences of such induced changes were further investigated in terms of their potential effect on the biological activity in vitro. Physicochemical characterization included X-ray diffraction (XRD), optical microscopies (SEM, cryo-SEM, TEM, fluorescence), dynamic light scattering (DLS) techniques, energy dispersive (EDS), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, zeta-potential and magnetic measurements. The results showed that magnetic field affected the hydrocolloids microstructure uniformity, fluorescence properties and photodynamic activity. Likewise, increased temperature caused changes in NPs hydrodynamic size distribution and in hydrocolloids microstructure. Magnetic field significantly improved photodynamic activity that was attributed to enhanced generation of reactive oxygen species due to reorganization of the microstructure.
Collapse
Affiliation(s)
- Olena Ivashchenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland.
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Jacek Gapiński
- Department of Molecular Biophysics, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, 61614, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614, Poznań, Poland
| |
Collapse
|
12
|
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. SENSORS 2017; 17:s17112689. [PMID: 29160798 PMCID: PMC5713634 DOI: 10.3390/s17112689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.
Collapse
|
13
|
Chen Z, Li G, Zhang Z. Miniaturized Thermal-Assisted Purge-and-Trap Technique Coupling with Surface-Enhanced Raman Scattering for Trace Analysis of Complex Samples. Anal Chem 2017; 89:9593-9600. [DOI: 10.1021/acs.analchem.7b02912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhengyi Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|