1
|
Li M, Ivantsova E, Liang X, Martyniuk CJ. Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review. TOXICS 2024; 12:125. [PMID: 38393220 PMCID: PMC10891865 DOI: 10.3390/toxics12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations: (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
Collapse
Affiliation(s)
- Mengli Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
2
|
Miao B, Liu Y, Zhang A, Cao Y, Zhong R, Liu J, Shao Z. An in situ grown ultrathin and robust protein nanocoating for mitigating thromboembolic issues associated with cardiovascular medical devices. Biomater Sci 2023; 11:7655-7662. [PMID: 37850341 DOI: 10.1039/d3bm01188g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Thromboembolism, arising from the utilization of cardiovascular medical devices, remains a prevalent issue entailing substantial morbidity and mortality. Despite the proposal of various surface modification strategies, each approach possesses inherent limitations and drawbacks. Herein, we propose a novel approach for the in situ growth of nanocoatings on various material surfaces through the cooperative assembly of silk fibroin (SF) and lysozyme. The intrinsic in situ growth characteristic enables the nanocoatings to achieve stable and uniform adherence to diverse substrate surfaces, including the inner surface of intravascular catheters, to redefine the surface properties of the material. The features of the hydrophilic and negatively charged nanocoating contribute to its antithrombotic properties, as evidenced by the reduced likelihood of platelet adhesion upon modification of the ultrathin and mechanically robust coating. In vitro assessment confirms a significant reduction in blood clot formation along with the promotion of anticoagulation. Such a SF/Ly nanocoating holds substantial promise as a surface modification strategy to enhance the hemocompatibility of medical devices and other materials that come into contact with blood, particularly in situations where medical-grade materials are temporarily unavailable, thus providing a feasible alternative.
Collapse
Affiliation(s)
- Bianliang Miao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Along Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Plachká K, Pilařová V, Horáček O, Gazárková T, Vlčková HK, Kučera R, Nováková L. Columns in analytical-scale supercritical fluid chromatography: From traditional to unconventional chemistries. J Sep Sci 2023; 46:e2300431. [PMID: 37568246 DOI: 10.1002/jssc.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.
Collapse
Affiliation(s)
- Kateřina Plachká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Taťána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Waheed H, Zakirhussein A, Ruparelia K, Brucoli F. Robust Nuclear Magnetic Resonance (NMR) Spectroscopy Method for the Identification and Quantification of Phthalates in Fragments of Polyvinyl Chloride (PVC) Toys. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hiba Waheed
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Ketan Ruparelia
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
5
|
Duchowny A, Ortiz Restrepo SA, Kern S, Adams A. Quantification of PVC plasticizer mixtures by compact proton NMR spectroscopy and indirect hard modeling. Anal Chim Acta 2022; 1229:340384. [PMID: 36156235 DOI: 10.1016/j.aca.2022.340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
A novel approach is introduced for the fast, reliable, and low-cost recognition and quantification of plasticizers in plasticizers mixtures. It uses benchtop 1H NMR spectroscopy and indirect hard modeling, a mechanistic multivariate regression technique. The approach is demonstrated on five different PVC plasticizers having similar spectral signatures in proton NMR spectra. With only 16 scans per spectrum, i.e., 2 min 40 s measurement time, quantification limits down to 0.14 mg mL-1, or 0.35 wt% plasticizer in PVC, were achieved. Apart from the rapid data acquisition, the use of spectral hard modeling enabled the quantification of plasticizer mixtures while using only 4 to 6 training samples per component. Despite strongly overlapping signals in the NMR spectra, various plasticizers were differentiated and quantified, as exemplarily demonstrated for binary mixtures. A commercial PVC specimen with three different layers was also examined, confirming the applicability of benchtop NMR spectroscopy. Additionally, the use of the proposed method to validate official regulations concerning the plasticizer content in PVC is assessed. The presented results demonstrate that the combination of benchtop NMR and spectral hard modeling is a very promising analytical tool for rapid PVC plasticizer recognition and quantification with high analytical throughput. Moreover, the results indicate a high potential for benchtop NMR and spectral hard modeling for microchemical analysis, even for complex samples.
Collapse
Affiliation(s)
- Anton Duchowny
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany
| | | | - Simon Kern
- S-PACT GmbH, Burtscheider Str. 1, 52064, Aachen, Germany
| | - Alina Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Templergraben 55, 52056, Aachen, Germany.
| |
Collapse
|
6
|
Chen Q, Du M, Xu X. A label-free and selective electrochemical aptasensor for ultrasensitive detection of Di(2-ethylhexyl) phthalate based on self-assembled DNA nanostructure amplification. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Tokhadzé N, Sahnoune M, Devémy J, Dequidt A, Goujon F, Chennell P, Sautou V, Malfreyt P. Insulin Adsorption onto PE and PVC Tubings. ACS APPLIED BIO MATERIALS 2022; 5:2567-2575. [PMID: 35549028 DOI: 10.1021/acsabm.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the adsorption of insulin onto PE and PVC materials by using HPLC measurements and computer simulations. We interpret the experiments by calculating the Gibbs free energy profiles during the adsorption process. The values of free energy of adsorption show a good agreement with the experimental measurements. The adsorption of insulin onto the different materials is characterized through the conformational changes with respect to its conformation in water and the interfacial regions, which are described by specific arrangements of polymer chains, water, insulin, and plasticizer molecules.
Collapse
Affiliation(s)
- Nicolas Tokhadzé
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Meriem Sahnoune
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Julien Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Florent Goujon
- Université Clermont Auvergne, CHU Clermont-Ferrand, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Philip Chennell
- Université Clermont Auvergne, CHU Clermont-Ferrand, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Valérie Sautou
- Université Clermont Auvergne, CHU Clermont-Ferrand, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Chen Y, Chen Q, Zhang Q, Zuo C, Shi H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:22. [PMCID: PMC9748405 DOI: 10.1007/s44169-022-00023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 07/21/2023]
Abstract
Plastic fibers are ubiquitous in daily life with additives incorporated to improve their performance. Only a few restrictions exist for a paucity of common additives, while most of the additives used in textile industry have not been clearly regulated with threshold limits. The production of synthetic fibers, which can shed fibrous microplastics easily (< 5 mm) through mechanical abrasion and weathering, is increasing annually. These fibrous microplastics have become the main composition of microplastics in the environment. This review focuses on additives on synthetic fibers; we summarized the detection methods of additives, compared concentrations of different additive types (plasticizers, flame retardants, antioxidants, and surfactants) on (micro)plastic fibers, and analyzed their release and exposure pathways to environment and human beings. Our prediction shows that the amounts of predominant additives (phthalates, organophosphate esters, bisphenols, per- and polyfluoroalkyl substances, and nonylphenol ethoxylates) released from clothing microplastic fibers (MFs) are estimated to reach 35, 10, 553, 0.4, and 568 ton/year to water worldwide, respectively; and 119, 35, 1911, 1.4, and 1965 ton/year to air, respectively. Human exposure to MF additives via inhalation is estimated to be up to 4.5–6440 µg/person annually for the above five additives, and via ingestion 0.1–204 µg/person. Notably, the release of additives from face masks is nonnegligible that annual human exposure to phthalates, organophosphate esters, per- and polyfluoroalkyl substances from masks via inhalation is approximately 491–1820 µg/person. This review helps understand the environmental fate and potential risks of released additives from (micro)plastic fibers, with a view to providing a basis for future research and policy designation of textile additives.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Qun Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
9
|
Poitou K, Rogez-Florent T, Lecoeur M, Danel C, Regnault R, Vérité P, Monteil C, Foulon C. Analysis of Phthalates and Alternative Plasticizers in Gloves by Gas Chromatography-Mass Spectrometry and Liquid Chromatography-UV Detection: A Comparative Study. TOXICS 2021; 9:toxics9090200. [PMID: 34564351 PMCID: PMC8472278 DOI: 10.3390/toxics9090200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Gloves represent an essential feature for hand protection because it is a requirement in the professional framework to comply with both hand hygiene standards and the principles of good laboratory practice. Despite their wide use, there is a knowledge gap regarding their composition, including phthalates. The purpose of the present study was to develop two orthogonal methods, GC–MS and HPLC–DAD, for the screening of plasticizers in gloves. Performances of these two methods were compared in terms of ease of use, number of analyzed plasticizers, and sample preparation. The two methods were validated and applied for the identification and quantification of plasticizers in ten gloves made with different materials (vinyl, nitrile, latex, and neoprene). Results revealed the presence of three main ones: DEHP, DEHT, and DINP. Additionally, the contents of plasticizers were extremely variable, depending on the glove material. As expected, the results point out a predominant use of plasticizers in vinyl gloves with an amount that should be of concern. While DEHP is classified as a toxic substance for reproduction 1B, it was, however, quantified in the ten different glove samples studied. This study provides new data regarding the plasticizers’ content in protective gloves, which could be useful for risk assessment.
Collapse
Affiliation(s)
- Kelly Poitou
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 76000 Rouen, France; (K.P.); (P.V.); (C.M.)
| | - Tiphaine Rogez-Florent
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 76000 Rouen, France; (K.P.); (P.V.); (C.M.)
- Correspondence: ; Tel.: +33-235-148-568
| | - Marie Lecoeur
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et Technologies Associées, 59000 Lille, France; (M.L.); (C.D.); (R.R.); (C.F.)
| | - Cécile Danel
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et Technologies Associées, 59000 Lille, France; (M.L.); (C.D.); (R.R.); (C.F.)
| | - Romain Regnault
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et Technologies Associées, 59000 Lille, France; (M.L.); (C.D.); (R.R.); (C.F.)
| | - Philippe Vérité
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 76000 Rouen, France; (K.P.); (P.V.); (C.M.)
| | - Christelle Monteil
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 76000 Rouen, France; (K.P.); (P.V.); (C.M.)
| | - Catherine Foulon
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et Technologies Associées, 59000 Lille, France; (M.L.); (C.D.); (R.R.); (C.F.)
| |
Collapse
|
10
|
Li H, Gu L. Intelligent data-driven in shanghai stock exchange options based on state space model. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The current relevant models for the analysis of SSE options, whether for the study of theoretical algorithms or for the application of verification, are still at the beginning of the research stage. Based on this, this study combines the status quo of China’s SSE options to construct a state space model with certain flexibility and combines image processing technology to extract model features. At the same time, this study obtained the experimental data of this study through network data collection method and analyzed the performance of the algorithm by comparison method, recorded the data obtained by the model operation, and turned the result into a visually identifiable feature result through image processing. The research indicates that the state space model has certain effects in the analysis of SSE option and can provide theoretical reference for subsequent related research.
Collapse
Affiliation(s)
- Huahua Li
- College of Finance and Economics, ShandongUniversity of Science and Technology, Tai’an, Shandong, China
| | - Lihan Gu
- School of Economics and Management, TaishanUniversity, Tai’an, Shandong, China
| |
Collapse
|
11
|
Compact NMR Spectroscopy for Low-Cost Identification and Quantification of PVC Plasticizers. Molecules 2021; 26:molecules26051221. [PMID: 33668752 PMCID: PMC7956471 DOI: 10.3390/molecules26051221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Polyvinyl chloride (PVC), one of the most important polymer materials nowadays, has a large variety of formulations through the addition of various plasticizers to meet the property requirements of the different fields of applications. Routine analytical methods able to identify plasticizers and quantify their amount inside a PVC product with a high analysis throughput would promote an improved understanding of their impact on the macroscopic properties and the possible health and environmental risks associated with plasticizer leaching. In this context, a new approach to identify and quantify plasticizers employed in PVC commodities using low-field NMR spectroscopy and an appropriate non-deuterated solvent is introduced. The proposed method allows a low-cost, fast, and simple identification of the different plasticizers, even in the presence of a strong solvent signal. Plasticizer concentrations below 2 mg mL-1 in solution corresponding to 3 wt% in a PVC product can be quantified in just 1 min. The reliability of the proposed method is tested by comparison with results obtained under the same experimental conditions but using deuterated solvents. Additionally, the type and content of plasticizer in plasticized PVC samples were determined following an extraction procedure. Furthermore, possible ways to further decrease the quantification limit are discussed.
Collapse
|
12
|
Seo JH, Yoon S, Min SH, Row HS, Bahk JH. Augmentation of curved tip of left-sided double-lumen tubes to reduce right bronchial misplacement: A randomized controlled trial. PLoS One 2019; 14:e0210711. [PMID: 30645611 PMCID: PMC6333363 DOI: 10.1371/journal.pone.0210711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022] Open
Abstract
Background During intubation with a blind technique, a left-sided double-lumen tube (DLT) can be misdirected into the right bronchus even though its curved tip of the bronchial lumen turns to the left. This right bronchial misplacement may be associated with the tip angle of DLTs. We thus performed a randomized trial to test the hypothesis that the DLT with an acute tip angle enters the right bronchus less frequently than the tube with an obtuse tip angle. Methods We randomized surgical patients (n = 1427) receiving a polyvinyl chloride left-sided DLT. Before intubation, the curved tip was further bent to an angle of 135° and kept with a stylet inside in the curved-tip group, but not in the control group. After the tip was inserted into the glottis under direct or video laryngoscopy, the stylet was removed and the DLT was advanced into the bronchus with its tip turning to the left. We checked which bronchus was intubated, and the time and number of attempts for intubation. After surgery, we assessed airway injury, sore throat, and hoarseness. The primary outcome was the incidence of right bronchial misplacement of the DLT. Results DLTs were misdirected into the right bronchus more frequently in the control group than in the curved-tip group: 57/715 (8.0%) vs 17/712 (2.4%), risk ratio (95% CI) 3.3 (2.0–5.7), P < 0.001. The difference was significant in the use of 32 (P = 0.003), 35 (P = 0.007), and 37 (P = 0.012) Fr DLTs. Intubation required longer time (P < 0.001) and more attempts (P = 0.002) in the control group. No differences were found in postoperative airway injury, sore throat and hoarseness. Conclusions Before intubation of left-sided DLTs, augmentation of the curved DLT tip reduced the right bronchial misplacement and facilitated intubation without aggravating airway injury.
Collapse
Affiliation(s)
- Jeong-Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Susie Yoon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se-Hee Min
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung Sang Row
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyon Bahk
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Kim H, Choi MS, Ji YS, Kim IS, Kim GB, Bae IY, Gye MC, Yoo HH. Pharmacokinetic Properties of Acetyl Tributyl Citrate, a Pharmaceutical Excipient. Pharmaceutics 2018; 10:pharmaceutics10040177. [PMID: 30297635 PMCID: PMC6320780 DOI: 10.3390/pharmaceutics10040177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022] Open
Abstract
Acetyl tributyl citrate (ATBC) is an (the Food and Drug Administration) FDA-approved substance for use as a pharmaceutical excipient. It is used in pharmaceutical coating of solid oral dosage forms such as coated tablets or capsules. However, the information of ATBC on its pharmacokinetics is limited. The aim of this study is to investigate the pharmacokinetic properties of ATBC using liquid chromatography–tandem mass spectrometric (LC–MS/MS) analysis. ATBC was rapidly absorbed and eliminated and the bioavailability was 27.4% in rats. The results of metabolic stability tests revealed that metabolic clearance may have accounted for a considerable portion of the total clearance of ATBC. These pharmacokinetic data would be useful in studies investigating the safety and toxicity of ATBC.
Collapse
Affiliation(s)
- Hyeon Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Min Sun Choi
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Young Seok Ji
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - In Sook Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Gi Beom Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - In Yong Bae
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Myung Chan Gye
- Department of Life Science, Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| |
Collapse
|
14
|
Kim H, Kim GB, Choi MS, Kim IS, Gye MC, Yoo HH. Liquid chromatography-tandem mass spectrometric analysis of acetyl tributyl citrate for migration testing of food contact materials. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Jeon SH, Kim YP, Kho Y, Shin JH, Ji WH, Ahn YG. Development and Validation of Gas Chromatography-Triple Quadrupole Mass Spectrometric Method for Quantitative Determination of Regulated Plasticizers in Medical Infusion Sets. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9470254. [PMID: 29629214 PMCID: PMC5832103 DOI: 10.1155/2018/9470254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
A method for the quantitative determination of dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) adipate (DEHA), bis(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), dioctyl terephthalate (DOTP), diisononyl phthalate (DINP), and diisodecyl phthalate (DIDP) in medical infusion sets was developed and validated using gas chromatography coupled with triple quadrupole mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. Solvent extraction with polymer dissolution for sample preparation was employed prior to GC-MS/MS analysis. Average recoveries of the eight target analytes are typically in the range of 91.8-122% with the relative standard deviations of 1.8-17.8%. The limits of quantification (LOQs) of the analytical method were in the ranges of 54.1 to 76.3 ng/g. Analysis using GC-MS/MS provided reliable performance, as well as higher sensitivity and selectivity than GC-MS analysis, especially for the presence of minority plasticizers at different concentrations.
Collapse
Affiliation(s)
- So Hyeon Jeon
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03759, Republic of Korea
| | - Yong Pyo Kim
- Department of Chemical Engineering and Material Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Jeoung Hwa Shin
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Won Hyun Ji
- Institute of Mine Reclamation Technology, Mine Reclamation Corporation, Wonju 26464, Republic of Korea
| | - Yun Gyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| |
Collapse
|