1
|
Zhao Y, Zhang S, Yao W, Zhu Y, Qian J, Yang J, Yang N. Design and synthesis of hierarchical MnO-Fe 3O 4@C/expanded graphite composite for sensitive electrochemical detection of bisphenol A. Talanta 2024; 269:125453. [PMID: 38006729 DOI: 10.1016/j.talanta.2023.125453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hierarchically nanostructured binary transition metal oxide-based materials with high conductivity and catalytic activity are quite attractive for the electrochemical quantitative detection of environmental pollutants due to their natural abundance, variable oxidation state, and excellent synergies between metal sites. Herein, a new hierarchical MnO-Fe3O4@C/expanded graphite (EG) composite is designed and synthesized through a simple and in situ annealing method with the utilization of bimetallic organic framework (FeMn-MOF)/EG precursor. The synthesized MnO-Fe3O4@C/EG composite possesses a unique hierarchical nanoarchitecture that small-sized bimetallic oxide nanoparticles of 10-40 nm completely encapsulated by amorphous carbon layers of 2-4 nm are uniformly distributed on the EG platform. This distinctive structure combines the advantages of high conductivity, excellent catalytic activity, and strong stability. Resultantly, when it is applied to monitor environmental endocrine disruptors, the sensor exhibits a significant catalytic effect on the electrochemical oxidation of bisphenol A (BPA), inducing an amplified response current. In addition, the sensor shows a wide linear range of 1-50 μM and 50-400 μM for the BPA monitor, giving a sensitivity of 5208.8 and 1641.9 μA mM-1 cm-2, respectively. This study offers a new approach to design hierarchical binary metal oxide-based sensing materials as well as to explore their electrochemical properties and applications for the determination of emerging contaminants.
Collapse
Affiliation(s)
- Yao Zhao
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Shu Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Wang Yao
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuxuan Zhu
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Jing Qian
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China.
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, 3590, Diepenbeek, Belgium; IMO-IMOMEC, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
2
|
Ren S, Cheng S, Wang Q, Zheng Z. Molecularly imprinted voltammetric sensor sensibilized by nitrogen-vacancy graphitized carbon nitride and Ag-MWCNTs towards the detection of acetaminophen. J Mol Recognit 2022; 35:e2992. [PMID: 36089774 DOI: 10.1002/jmr.2992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/05/2023]
Abstract
The overdose of acetaminophen (AP) can cause serious acute liver injury even the irreversible liver necrosis. The quantitative detection of AP is of great significance not only for clinical applications but also for the quantity control of its pharmaceutical formulations. In this paper, a sensitive molecularly imprinted voltammetric sensor towards AP was constructed based on synergistic enhancement of nitrogen-vacancy graphitized carbon nitride (NV-g-C3 N4 ) and carboxylated MWCNTs loaded with silver nanoparticles (Ag-MWCNTs). The powder X-Ray diffraction spectrum, field emission scanning and transmission electron microscopes, cyclic voltammetry (CV), and electrochemical impedance spectrum were used to characterize the composites. The results show that NV-g-C3 N4 and Ag-MWCNTs closely embedded each other, forming loose porous hybrid structure by hydrogen bond. The prepared sensor molecular imprinting polymer (MIP)/C3 N4 /Ag-CNTs/GCE shows a strong synergistic enhancement of electroanalytical response by CV and differential pulse voltammetry (DPV) tests when compared with NV-g-C3 N4 /GCE, Ag-CNTs/GCE, and MIP/GCE. Through the optimization of the ratio of monomer and template, electropolymerization cycle, elution cycle, incubation time, and pH, linear ranges of 0.007-5 and 5-100 μM were found with the limit of detection of 2.33 nM by DPV. Moreover, its selectivity towards AP was satisfied when compared with detection towards ascorbic acid, dopamine, and glucose. The recovery range of 96.3%-100.5% was obtained in the spiked human serum and urine samples with the SD below 3.0%. In addition, the prepared sensor shows great detecting robustness with good anti-interference, reproducibility, and stability.
Collapse
Affiliation(s)
- Shufang Ren
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| | - Shounian Cheng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Qingtao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Zhixiang Zheng
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| |
Collapse
|
3
|
Wang Q, Cheng S, Ren S, Zheng Z. Construction of molecularly imprinted voltammetric sensor based on Cu N C polyhedron porous carbon from Cu doping ZIF-8 for the selective determination of norfloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Kaya SI, Corman ME, Uzun L, Ozkan SA. Simple preparation of surface molecularly imprinted polymer based on silica particles for trace level assay of bisphenol F. Anal Bioanal Chem 2022; 414:5793-5803. [PMID: 35641645 DOI: 10.1007/s00216-022-04142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/01/2022]
Abstract
A new electrochemical sensor based on molecularly imprinted tetraethyl orthosilicate (TEOS)-based porous interface was developed for selective recognition of bisphenol F (BPF) in this study. The sensor was prepared by depositing the solution containing TEOS and L-tryptophan (L-Trp) in the presence of cetyltrimethylammonium bromide (CTAB) as a pore-maker via hydrolysis/condensation reaction on the glassy carbon electrode (GCE). While the surface morphology and structure characterization were carried out using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), electrochemical characterization was performed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The resulted MIP(TEOS:L-Trp)@GCE achieved a wide linear range of 1 × 10-15-1 × 10-14 M for BPF detection with an excellent detection limit of 0.291 fM. Furthermore, the recovery of BPF from spiked bottled water and serum samples varied between 98.83 and 101.03%. These results demonstrate that MIP(TEOS:L-Trp)@GCE was found to be a simple, sensitive, and selective smart interface to detect trace pollution even from complicated samples.
Collapse
Affiliation(s)
- S Irem Kaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.,Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - M Emin Corman
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.,Gulhane Faculty of Pharmacy, Department of Biochemistry, University of Health Sciences, Ankara, Turkey
| | - Lokman Uzun
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey.
| |
Collapse
|
5
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
6
|
Zhao C, Ren Y, Li G. Detection of naringin by fluorescent polarization molecularly imprinted polymer. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Caretti D, Binda L, Casis N, Estenoz DA. Novel monomers with
N
‐methyl‐
D
‐
glucamine segments and their application in structured porous materials for arsenic capture. J Appl Polym Sci 2022. [DOI: 10.1002/app.51610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniele Caretti
- Dipartimento di Chimica Industriale “Toso Montanari” University of Bologna Bologna Italy
| | - Lorenzo Binda
- Dipartimento di Chimica Industriale “Toso Montanari” University of Bologna Bologna Italy
| | - Natalia Casis
- INTEC Universidad Nacional del Litoral CONICET Santa Fe Argentina
| | - Diana A. Estenoz
- INTEC Universidad Nacional del Litoral CONICET Santa Fe Argentina
| |
Collapse
|
8
|
Hu C, Huang H, Han S, Yan Y, Xu F, Liao J. Simultaneous analysis of catechol and hydroquinone by polymelamine/CNT with dual-template molecular imprinting technology. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Zhang Y, Zhang W, Zhang L, Song G, Wang N, Xu W, Huang W. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Parnianchi F, Kashanian S, Nazari M, Santoro C, Bollella P, Varmira K. Highly selective and sensitive molecularly imprinting electrochemical sensing platform for bilirubin detection in saliva. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 304] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
12
|
Role of Functional Monomers upon the Properties of Bisphenol A Molecularly Imprinted Silica Films. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, two types of bisphenol A molecularly imprinted films (BPA-MIP) were successfully prepared via sol-gel derived methods using two different organosilane functional monomers N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO-T) or (3-mercaptopropyl)trimethoxysilane (MPTES). The physical-chemical characterization of films, in terms of morphology, structure, thermal analysis, and optical features, suggested that thinner films with a homogenous porous structure were more likely to retain BPA molecules. The MIP films revealed the rapid and quantitative adsorption of BPA, registering the most specific binding in the first five minutes of contact with the BPA-MIP film. Silica films were effectively regenerated for further usage for at least five times, demonstrating their high stability and reusability. Even if the performance of films for BPA uptake dropped dramatically after the third adsorption/reconditioning cycle, this synthesis method for BPA-MIP films has proven to be a reliable and cheap way to prepare sensitive films with potential application for re-usable optical sensors.
Collapse
|
13
|
Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Mikrochim Acta 2021; 188:94. [PMID: 33611643 DOI: 10.1007/s00604-021-04753-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
A molecularly imprinted paper-based analytical device (MIP-μPAD) was developed for the sensing of bisphenol A (BPA). The platform was screen-printed onto a filter paper support, where the electrodes and the fluorescence μPADs were designed. Owing to its dual electrochemical and fluorescence responses, molecularly imprinted curcumin nanoparticles were used to sense BPA. The μPAD design was characterized by transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, and electrochemical techniques. The sensor design comprised a wide linear range from 1 to 200 μg L-1 with limits of detection of 0.47 ± 0.2 and 0.62 ± 0.3 μg L-1 (LOD, S/N = 3) for electrochemical and fluorescence sensing, respectively. Furthermore, the system showed good analytical performance such as selectivity, stability, and reproducibility. The feasibility of the MIP-μPAD was demonstrated for the sensing of BPA in seawater, foods, and polycarbonate plastic packaged water with recovery values of 97.2 and 101.8%.
Collapse
|
14
|
Kaya SI, Cetinkaya A, Ozkan SA. Latest Advances in Determination of Bisphenols with Nanomaterials, Molecularly Imprinted Polymers and Aptamer Based Electrochemical Sensors. Crit Rev Anal Chem 2021; 52:1223-1243. [PMID: 33475425 DOI: 10.1080/10408347.2020.1864719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Contamination of environmental sources such as soils, sediments and rivers and human exposure caused by several endocrine disrupting compounds (EDCs) are considered as the most challenging issues of today's world. EDCs cover a wide variety of compounds ranging from phthalates to parabens and bisphenols (BPs) are the leading group among them. BPs are widely used during the production of different plastic materials such as food and beverage containers, toys, medical equipment and baby bottles that we use in every aspect of our lives. BPs may migrate from those products to different media under certain conditions and this situation causes chronic exposure for humans and other creatures in the environment. Especially bisphenol A (BPA) and its other analogues such as bisphenol F, bisphenol S and tetrabromobisphenol that have similar structures and are preferred as alternatives to BPA cause harmful adverse effects such as endocrine disruption, neurotoxicity, genotoxicity and cytotoxicity. There are legal restrictions and prohibitions by the European Union (EU) in order to prevent possible harmful effects. Therefore, it is important to develop highly sensitive, fast, easy to use and cheap sensors for the determination of BPs in biological, environmental and commercial samples. Electrochemical sensors, which are one of the most widely, used analytical techniques, provide these conditions. Additionally, it is possible to enhance the performance of electrochemical sensors with nanomaterials, molecularly imprinted polymers or aptamer based technologies. This review aims to give comprehensive information about BPs with summarizing most recent applications of electrochemical sensors for their determination in different samples.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
16
|
Zhao X, Cheng Y, Xu H, Hao Y, Lv Y, Li X. Design and Preparation of Molecularly Imprinted Membranes for Selective Separation of Acteoside. Front Chem 2020; 8:775. [PMID: 33195018 PMCID: PMC7554516 DOI: 10.3389/fchem.2020.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023] Open
Abstract
Acteoside (ACT) belongs to a type of phenylethanoid glycosides (PhGs), and it is worthy of obtaining high-purity due to its significant medicinal functions. In this study, a novel class of MIMs was designed and synthesized with PVDF membranes as the base membrane for high selective separation and enrichment of ACT. The effects of the different functional monomers, the amounts of functional monomers, crosslinking agents, and initiators on the separation properties of MIMs were investigated. Furthermore, adsorption ability, permeation capacity, and reusability of MIMs were discussed for ACT. It indicated that MIM7 was the optimal performance of MIMs. The adsorption ability of MIM7 for ACT was 62.83 mg/g, and the selectivity factor (α) of MIM7 was up to 2.74 and its permeability factor (β) was greater than 2.66. Moreover, the adsorption amount of MIM7 was still more than 88.57% of the initial value after five cycles. As an ACT imprinted layer of MIMs only had recognition sites for ACT molecules, which recombined with the recognition sites in the membrane permeation experiment, ACT molecules penetration was hindered. However, the analogs of ECH successfully passed MIMs. It indicated that the selective MIMs for ACT followed the mechanism of delayed permeation. This work provides an important reference for the high permselective separation of natural products.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yun Cheng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Helin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanyan Hao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yin Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Lou C, Jing T, Zhou J, Tian J, Zheng Y, Wang C, Zhao Z, Lin J, Liu H, Zhao C, Guo Z. Laccase immobilized polyaniline/magnetic graphene composite electrode for detecting hydroquinone. Int J Biol Macromol 2020; 149:1130-1138. [DOI: 10.1016/j.ijbiomac.2020.01.248] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
|
18
|
Wang Y, Feng N, Kang Z, Wu D, Hu D. Shape-stabilized composite phase change film with good reversible thermochromic properties fabricated via phase inversion-assisted impregnation. RSC Adv 2020; 10:7099-7107. [PMID: 35493883 PMCID: PMC9049765 DOI: 10.1039/c9ra10255h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 02/04/2023] Open
Abstract
In this study, the regenerated porous cellulose film (LD) was properly prepared by dissolving cellulose in a LiCl/DMAc solvent though a simple phase inversion method. LD has a porous structure, good mechanical properties and great thermal stability. In order to form a shape-stabilized reversible thermochromic phase change film (DTLD), a reversible thermochromic compound (DTBC) was added into the LD by simple vacuum impregnation. The effect of the weight ratio of 1-dodecanol/tetradecanol complex solvent (3 : 7, 2 : 8, 1.5 : 8.5 and 1 : 9) on the phase change properties was investigated. DTLD (1.5 : 8.5) showed the highest latent heat storage of 174.00 J g-1 with the suitable phase change temperature at 37.5 °C. The low thermal conductivity of DTLD (1.5 : 8.5) at 10 °C (50 °C) was 0.396 ± 0.004 W m-1 K-1 (0.408 ± 0.002 W m-1 K-1). The color of DTLD (1.5 : 8.5) can change reversibly between colorless and blue as temperature changes. Melting-cooling tests after 100 cycles indicated that DTLD (1.5 : 8.5) has a high latent heat storage capacity of 169.65 J g-1. A shape-stable reversible thermochromic phase change composite assembled from a regenerated porous cellulose membrane as a support matrix is expected to be applied to the field of thermal energy storage.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Resources, Environment and Materials, Guangxi University No. 100 Daxue East Road Nanning 530004 China +86-771-3232200
| | - Nianrong Feng
- School of Resources, Environment and Materials, Guangxi University No. 100 Daxue East Road Nanning 530004 China +86-771-3232200
| | - Zhe Kang
- School of Resources, Environment and Materials, Guangxi University No. 100 Daxue East Road Nanning 530004 China +86-771-3232200
| | - Dongfu Wu
- School of Resources, Environment and Materials, Guangxi University No. 100 Daxue East Road Nanning 530004 China +86-771-3232200
| | - Dongying Hu
- School of Resources, Environment and Materials, Guangxi University No. 100 Daxue East Road Nanning 530004 China +86-771-3232200
| |
Collapse
|
19
|
Akhoundian M, Alizadeh T, Pan G. Fabrication of the Enzyme‐less Voltammetric Bilirubin Sensor Based on Sol‐gel Imprinted Polymer. ELECTROANAL 2019. [DOI: 10.1002/elan.201900410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maedeh Akhoundian
- Department of Analytical Chemistry, Faculty of Chemistry, University College of ScienceUniversity of Tehran, P.O. Box 14155-6455 Tehran Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of ScienceUniversity of Tehran, P.O. Box 14155-6455 Tehran Iran
| | - Guoqing Pan
- Institute for Advanced Materials, School of Material Science and EngineeringJiangsu University Zhenjiang 212013 China
| |
Collapse
|
20
|
Yu H, Yao R, Shen S. Development of a novel assay of molecularly imprinted membrane by design-based gaussian pattern for vancomycin determination. J Pharm Biomed Anal 2019; 175:112789. [DOI: 10.1016/j.jpba.2019.112789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 01/03/2023]
|
21
|
Cong C, Bian K, Zhang X, Luo L, Li L, He H, Li C, Zhao Q, Wang S, Hao Z, He Y, Gao D. Sensitive measurement of tumor markers somatostatin receptors using an octreotide-directed Pt nano-flakes driven electrochemical sensor. Talanta 2019; 208:120286. [PMID: 31816809 DOI: 10.1016/j.talanta.2019.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Tumor markers play an important role in the early diagnosis and therapeutic effect monitoring of tumors. An electrochemical biosensor was developed based on multi-branched gold nanoshells (BGSs) and octreotide (OCT) functionalized Pt nano-flakes (PtNFs) modified electrodes, which was used for detection of tumor-specific markers to evaluate tumor cells. Sandwich-type nano-hybrid materials were prepared by layer-by-layer modification. First, reduced graphene oxide (RGO) and BGSs were modified as electronic materials onto glassy carbon electrodes (GCE). This modified electrode has strong electron transfer capability and large electrode surface area. The OCT was then anchored to the surface of BGSs to sensitively detect Somatostatin receptors (SSTRs) on the surface of HeLa cells. In addition, PtNFs were synthesized using a dual-template method, and OCT template on the surface of PtNFs, as an adsorption bioprobe, was used to reduce the H2O2 and amplify the electrochemical signal of biosensor. The proposed biosensor can be applied to the quantitative broad linear range of HeLa cells covering from 10 to 1 × 106 cells mL-1 (R2 = 0.9998) and the limit of detection (LOD) was 2 cells mL-1. The experimental results also show that the sensor has good stability, biocompatibility and high selectivity, which has great potential for clinical application.
Collapse
Affiliation(s)
- Cong Cong
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China
| | - Kexin Bian
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China
| | - Liyao Luo
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Lei Li
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Hongyu He
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Chunhui Li
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Qianqian Zhao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Shuai Wang
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Zining Hao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Yaqian He
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Dawei Gao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, PR China.
| |
Collapse
|
22
|
POMs as Active Center for Sensitively Electrochemical Detection of Bisphenol A and Acetaminophen. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Chai R, Kan X. Au-polythionine nanocomposites: a novel mediator for bisphenol A dual-signal assay based on imprinted electrochemical sensor. Anal Bioanal Chem 2019; 411:3839-3847. [PMID: 31123779 DOI: 10.1007/s00216-019-01858-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
In this work, a novel electrochemical sensor was developed by the modification of poly(p-aminobenzene sulfonic acid) (pABSA), Au-polythionine (Au-pTH) nanowires, and molecularly imprinted polymer (MIP) on glassy carbon electrode surface for bisphenol A (BPA) detection. The results of characterizations including scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, and X-ray diffraction showed the successful synthesis of helical structural Au-pTH nanowires, which acted as an electro-active probe for BPA detection. Cyclic voltammetry results illustrated that the modified pABSA, Au-pTH, and MIP endowed the sensor with good electrocatalytic activity, the second current signal, and recognition ability, respectively. Since the imprinted cavities provided electron transfer channels for thionine (TH) redox, the peak current of TH can be found in a blank electrolyte. The added BPA molecules can be rebound in imprinted cavities, which are oxidized and then display its current. The rebound BPA molecules in turn blocked the electron transfer channels for TH redox, resulting in the decrease of TH current. A double signal defined, as the sum of the changes of TH current (∆iTH|) and BPA current (|∆iBPA|) (|∆iTH|+|∆iBPA|), was employed as the detected signal for BPA sensitive detection, which was linearly proportional to the logarithm of concentration of BPA ranging from 8.0 × 10-8 to 1.0 × 10-4 mol/L with a limit of detection of 3.8 × 10-8 mol/L (S/N = 3) in a weakly acidic solution. Moreover, the natural recognition ability of MIP enabled the sensor to selectively detect BPA from its analogues. The proposed dual-signal strategy-based sensor provided a feasible tool for rapid, sensitive, and selective determination of BPA. Graphical abstract.
Collapse
Affiliation(s)
- Rong Chai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu, 241000, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
24
|
Ali H, Mukhopadhyay S, Jana NR. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite. NEW J CHEM 2019. [DOI: 10.1039/c8nj05883k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A molecularly imprinted nanocomposite with covalently connected polyacrylate, β-cyclodextrin and graphene is synthesized for selective capture and electrochemical detection of bisphenol A.
Collapse
Affiliation(s)
- Haydar Ali
- Centre for Advanced Materials and School of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Soumita Mukhopadhyay
- Centre for Advanced Materials and School of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Nikhil R. Jana
- Centre for Advanced Materials and School of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
25
|
In-site synthesis molecular imprinting Nb2O5 –based photoelectrochemical sensor for bisphenol A detection. Biosens Bioelectron 2018; 121:104-110. [DOI: 10.1016/j.bios.2018.08.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/16/2023]
|
26
|
Ulubay Karabiberoğlu Ş. Sensitive Voltammetric Determination of Bisphenol A Based on a Glassy Carbon Electrode Modified with Copper Oxide-Zinc Oxide Decorated on Graphene Oxide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Sun L, Guan J, Xu Q, Yang X, Wang J, Hu X. Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO₂ Nanomaterials: A Review. Polymers (Basel) 2018; 10:E1248. [PMID: 30961173 PMCID: PMC6401937 DOI: 10.3390/polym10111248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO₂) nanomaterials have caused a widespread concern in the past several decades for their bulk characteristics and potential applications in many different areas. Lately, the combination between molecularly imprinted polymers (MIPs) and TiO₂ nanomaterials have been proven to improve the relative adsorption capacity, selectivity and accelerate the rate of mass transfer of analyte which is not possible using TiO₂ alone. Considering the unique performance of the MIPs modified TiO₂ nanomaterials, this review intends to give an overview of the recent progresses in the development of MIPs modified TiO₂ nanomaterials, the potential applications of their tailor-made characteristics. The limitations and challenges in this practically promising nanomaterials have also been raised and summarized. By means of the points raised in this article, we would like to provide some assistance for further development of preparation methodologies and the expansion of some potential applications in the field of MIPs modified TiO₂ nanomaterials.
Collapse
Affiliation(s)
- Lingna Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jie Guan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaoyu Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
- Guangling College, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
28
|
Abnous K, Danesh NM, Ramezani M, Alibolandi M, Taghdisi SM. A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier. Biosens Bioelectron 2018; 119:204-208. [DOI: 10.1016/j.bios.2018.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
|
29
|
Karimian N, Stortini AM, Moretto LM, Costantino C, Bogialli S, Ugo P. Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly( o-phenylenediamine) Polymer. ACS Sens 2018; 3:1291-1298. [PMID: 29911865 DOI: 10.1021/acssensors.8b00154] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This work is aimed at developing an electrochemical sensor for the sensitive and selective detection of trace levels of perfluorooctanesulfonate (PFOS) in water. Contamination of waters by perfluorinated alkyl substances (PFAS) is a problem of global concern due to their suspected toxicity and ability to bioaccumulate. PFOS is the perfluorinated compound of major concern, as it has the lowest suggested control concentrations. The sensor reported here is based on a gold electrode modified with a thin coating of a molecularly imprinted polymer (MIP), prepared by anodic electropolymerization of o-phenylenediamine (o-PD) in the presence of PFOS as the template. Activation of the sensor is achieved by template removal with suitable a solvent mixture. Voltammetry, a quartz crystal microbalance, scanning electron microscopy and elemental analysis were used to monitor the electropolymerization process, template removal, and binding of the analyte. Ferrocenecarboxylic acid (FcCOOH) has been exploited as an electrochemical probe able to generate analytically useful voltammetric signals by competing for the binding sites with PFOS, as the latter is not electroactive. The sensor has a low detection limit (0.04 nM), a satisfactory selectivity, and is reproducible and repeatable, giving analytical results in good agreement with those obtained by HPLC-MS/MS analyses.
Collapse
Affiliation(s)
- Najmeh Karimian
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
| | - Angela M. Stortini
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
| | - Ligia M. Moretto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
| | - Claudio Costantino
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Ugo
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, via Torino 155, 30172 Venezia Mestre, Italy
| |
Collapse
|
30
|
Kellens E, Bové H, Vandenryt T, Lambrichts J, Dekens J, Drijkoningen S, D'Haen J, Ceuninck WD, Thoelen R, Junkers T, Haenen K, Ethirajan A. Micro-patterned molecularly imprinted polymer structures on functionalized diamond-coated substrates for testosterone detection. Biosens Bioelectron 2018; 118:58-65. [PMID: 30056301 DOI: 10.1016/j.bios.2018.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/09/2022]
Abstract
Molecularly imprinted polymers (MIPs) can selectively bind target molecules and can therefore be advantageously used as a low-cost and robust alternative to replace fragile and expensive natural receptors. Yet, one major challenge in using MIPs for sensor development is the lack of simple and cost-effective techniques that allow firm fixation as well as controllable and consistent receptor material distribution on the sensor substrate. In this work, a convenient method is presented wherein microfluidic systems in conjunction with in situ photo-polymerization on functionalized diamond substrates are used. This novel strategy is simple, efficient, low-cost and less time consuming. Moreover, the approach ensures a tunable and consistent MIP material amount and distribution between different sensor substrates and thus a controllable active sensing surface. The obtained patterned MIP structures are successfully tested as a selective sensor platform to detect physiological concentrations of the hormone disruptor testosterone in buffer, urine and saliva using electrochemical impedance spectroscopy. The highest added testosterone concentration (500 nM) in buffer resulted in an impedance signal of 10.03 ± 0.19% and the lowest concentration (0.5 nM) led to a measurable signal of 1.8 ± 0.15% for the MIPs. With a detection limit of 0.5 nM, the MIP signals exhibited good linearity between a 0.5 nM and 20 nM concentration range. Apart from the excellent and selective recognition offered by these MIP structures, they are also stable during and after the dynamic sensor measurements. Additionally, the MIPs can be easily regenerated by a simple washing procedure and are successfully tested for their reusability.
Collapse
Affiliation(s)
- Evelien Kellens
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Hannelore Bové
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium
| | - Thijs Vandenryt
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jeroen Lambrichts
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jolien Dekens
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium
| | - Sien Drijkoningen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jan D'Haen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Ward De Ceuninck
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Tanja Junkers
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium
| | - Ken Haenen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium.
| |
Collapse
|
31
|
Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 2018; 112:54-71. [DOI: 10.1016/j.bios.2018.04.028] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/31/2023]
|
32
|
Kadhem AJ, Xiang S, Nagel S, Lin CH, Fidalgo de Cortalezzi M. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers (Basel) 2018; 10:polym10040349. [PMID: 30966384 PMCID: PMC6415058 DOI: 10.3390/polym10040349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
The detection of testosterone in aqueous solutions is a difficult task due to the low concentration levels that are relevant in environmental and physiological samples. Current analytical methods are expensive and/or complex. To address this issue, we fabricated a molecularly imprinted polymer (MIP) photonic film for the detection of testosterone in water. The films were obtained using colloidal crystals as templates for the pore morphology. Monodispersed silica particles with an average diameter 330 nm were used to obtain the colloidal crystal by vertical deposition. A solution of acrylic acid with testosterone as the imprinted template was infiltrated in the colloidal crystal and polymerized via bulk polymerization; the particles were then removed by acid etching and the testosterone eluted by a suitable solvent. The material was characterized by FTIR, swelling experiments and microscopy; MIPs were investigated by equilibrium rebinding, kinetics and reuse experiments. The results showed that the MIPs exhibited selectivity to the template, a 30-min equilibration time and stability after at least six cycles of use and regeneration. After incubation, the reflectance spectra of the films showed a shift of the Bragg diffraction peak that correlated with testosterone concentration in the 5–100 ppb range.
Collapse
Affiliation(s)
- Abbas J Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Shuting Xiang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Susan Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211, USA.
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|