1
|
Krumplewski W, Rykowska I. New Materials for Thin-Film Solid-Phase Microextraction (TF-SPME) and Their Use for Isolation and Preconcentration of Selected Compounds from Aqueous, Biological and Food Matrices. Molecules 2024; 29:5025. [PMID: 39519666 PMCID: PMC11547565 DOI: 10.3390/molecules29215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Determination of a broad spectrum of analytes, carried out with analytical instruments in samples with complex matrices, including environmental, biological, and food samples, involves the development of new and selective sorption phases used in microextraction techniques that allow their isolation from the matrix. SPME solid-phase microextraction is compatible with green analytical chemistry among the sample preparation techniques, as it reduces the use of toxic organic solvents to the minimum necessary. Over the past two decades, it has undergone impressive progress, resulting in the development of the thin-film solid-phase microextraction technique, TF-SPME (the thin-film solid-phase microextraction), which is characterized by a much larger surface area of the sorption phase compared to that of the SPME fiber. TF-SPME devices, in the form of a mostly rectangular metal or polymer substrate onto which a thin film of sorption phase is applied, are characterized, among others, by a higher sorption capacity. In comparison with microextraction carried out on SPME fiber, they enable faster microextraction of analytes. The active phase on which analyte sorption occurs can be applied to the substrate through techniques such as dip coating, spin coating, electrospinning, rod coating, and spray coating. The dynamic development of materials chemistry makes it possible to use increasingly advanced materials as selective sorption phases in the TF-SPME technique: polymers, conducting polymers, molecularly imprinted polymers, organometallic frameworks, carbon nanomaterials, aptamers, polymeric ionic liquids, and deep eutectic solvents. Therefore, TF-SPME has been successfully used to prepare analytical samples to determine a broad spectrum of analytes in sample matrices: environmental, biological, and food. The work will be a review of the above-mentioned issues.
Collapse
Affiliation(s)
| | - Iwona Rykowska
- Department of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Kataoka H, Ishizaki A, Saito K, Ehara K. Developments and Applications of Molecularly Imprinted Polymer-Based In-Tube Solid Phase Microextraction Technique for Efficient Sample Preparation. Molecules 2024; 29:4472. [PMID: 39339467 PMCID: PMC11433927 DOI: 10.3390/molecules29184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various microextraction techniques such as micro solid-phase extraction, dispersive micro solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, liquid-phase microextraction, and magnetic bead extraction have been developed to minimize sample size, reduce solvent usage, and enable automation. Among these, in-tube solid-phase microextraction (IT-SPME) using capillaries as extraction devices has gained attention as an advanced "green extraction technique" that combines miniaturization, on-line automation, and reduced solvent consumption. Capillary tubes in IT-SPME are categorized into configurations: inner-wall-coated, particle-packed, fiber-packed, and rod monolith, operating either in a draw/eject system or a flow-through system. Additionally, the developments of novel adsorbents such as monoliths, ionic liquids, restricted-access materials, molecularly imprinted polymers (MIPs), graphene, carbon nanotubes, inorganic nanoparticles, and organometallic frameworks have improved extraction efficiency and selectivity. MIPs, in particular, are stable, custom-made polymers with molecular recognition capabilities formed during synthesis, making them exceptional "smart adsorbents" for selective sample preparation. The MIP fabrication process involves three main stages: pre-arrangement for recognition capability, polymerization, and template removal. After forming the template-monomer complex, polymerization creates a polymer network where the template molecules are anchored, and the final step involves removing the template to produce an MIP with cavities complementary to the template molecules. This review is the first paper to focus on advanced MIP-based IT-SPME, which integrates the selectivity of MIPs into efficient IT-SPME, and summarizes its recent developments and applications.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Atsushi Ishizaki
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Kentaro Ehara
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| |
Collapse
|
3
|
Tang P, He F. A Wearable Electrochemical Sensor Based on a Molecularly Imprinted Polymer Integrated with a Copper Benzene-1,3,5-Tricarboxylate Metal-Organic Framework for the On-Body Monitoring of Cortisol in Sweat. Polymers (Basel) 2024; 16:2289. [PMID: 39204509 PMCID: PMC11360419 DOI: 10.3390/polym16162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Owing to their potential to transform traditional medical diagnostics and health monitoring, wearable biosensors have become an alternative evolutionary technology in the field of medical care. However, it is still necessary to overcome some key technique challenges, such as the selectivity, sensitivity, and stability of biometric identification. Herein, a novel, wearable electrochemical sensor based on a molecularly imprinted polymer (MIP) integrated with a copper benzene-1,3,5-tricarboxylate metal-organic framework (MOF) was designed for the detection of stress through the on-body monitoring of cortisol in sweat. The MOF was used as the substrate for MIP deposition to enhance the stability and sensitivity of the sensor. The sensor consisted of two layers, with a microfluidic layer as the top layer for spontaneous sweating and a modified electrode as the bottom layer for sensing. The sensor measured cortisol levels by detecting the current change that occurred when the target molecules bound to the imprinted cavities, using Prussian blue nanoparticles embedded in the MIP framework as the REDOX probe. The proposed sensor exhibited a linear detection range of 0.01-1000 nM with a detection limit of 0.0027 nM, and favorable specificity over other analogies. This facile anti-body free sensor showed excellent stability, and can be successfully applied for in situ cortisol monitoring.
Collapse
Affiliation(s)
- Pingping Tang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China;
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, China
| | - Feiyu He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China;
| |
Collapse
|
4
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
5
|
Liu Y, Zhou S, Kuang Y, Feng X, Wang Z, Shen Z, Zhou N, Zheng J, Ouyang G. Nitrogen-rich covalent organic framework as a practical coating for effective determinations of polycyclic aromatic hydrocarbons. Talanta 2024; 271:125655. [PMID: 38237278 DOI: 10.1016/j.talanta.2024.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are high-profile organic pollutants to be poisonous, carcinogenic, and mutagenic, and widely distributed at trace levels in the environment. In order to effectively enrich PAHs, two stable covalent organic frameworks (COFs, TAPT-OMe-PDA and TPB-DMTP) were prepared by combining 2,4,6-tri(4-aminophenyl)-1,3,5-triazine (TAPT) and 1,3,5-tri(4-aminophenyl) benzene (TAPB) with 2,5-dimethoxy-phenyl-1,4-diformaldehyde (OMe-PDA), respectively. Even though the surface area of TAPT-OMe-PDA was much lower than that of TPB-DMTP, it still demonstrated much better extraction efficiencies towards PAHs as the solid phase microextraction (SPME) coating. Therefore, the TAPT-OMe-PDA coated fiber was coupled with gas chromatography-mass spectrometry (GC-MS) to establish a practical and sensitive method, after the extraction parameters (extraction time, extraction temperature, desorption temperature, desorption time, salt concentration and pH) were optimized. This developed analytical method showed wide linear ranges, low limits of detection, good repeatability and reproducibility. Finally, five PAHs in three water samples were detected and quantified precisely (2.72-38.7 ng·L-1) with satisfactory recoveries (88.3%-118%).
Collapse
Affiliation(s)
- Yuefan Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China
| | - Suxin Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Yixin Kuang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoying Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, PR China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Zitao Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China.
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, PR China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, PR China; School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
6
|
Liu H, Rao H, Zhou H, Li J, Li H, Guo J, Du X. A novel top-down strategy for in situ construction of vertically oriented hexagonal NiCr LDHs nanosheet arrays with intercalated sulfate ions on Nichrome fiber for selective solid-phase microextraction of phenolic compounds in water samples. Anal Chim Acta 2024; 1296:342339. [PMID: 38401931 DOI: 10.1016/j.aca.2024.342339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Phenolic compounds (PCs) are a class of polar aromatic pollutants with high toxicity in environmental water. Generally the efficient sample preparation is essential for the quantification of ultra-trace target PCs in real water sample before appropriative instrumental analysis. SPME is a convenient, solvent-free and time-saving miniaturized technique and has been recognized as a green alternative to conventional extraction techniques. In SPME, however, commercial fused-silica fibers are limited to the fragility, operation temperature, extraction capacity and selectivity as well as lifetime. Therefore, the development of new SPME fibers is always needed to overcome such limitations. RESULTS We presented a novel top-down strategy for in situ construction of vertically oriented hexagonal sulfate intercalated NiCr layered double hydroxide nanosheet arrays (NiCr LDHs-SO4 NSAs) on the Nichrome (NiCr) substrate by hydrothermal treatment in NaOH solution containing (NH4)2S2O8. The results showed that much shorter hydrothermal time was needed for the construction of NiCr@NiCr LDHs-SO4 NSAs fiber in the presence of (NH4)2S2O8. Moreover, the unique NiCr LDHs-SO4 NSAs coating offered open access structure, and thereby more available surface area for adsorption. The resulting fiber exhibited better extraction efficiency for phenolic compounds (PCs), faster mass transfer rate, higher mechanical stability, and longer service life than original NiCr@NiCr LDHs NSs fiber and typical commercially fused-silica fibers. After optimizing conditions, the SPME-HPLC-UV method demonstrated a linear range from 0.05 μg L-1 to 200 μg L-1 with LODs of 0.015-0.156 μg L-1 (S/N = 3) and LOQs of 0.048-0.498 μg L-1 (S/N = 10), as well as good repeatability (3.06%-5.22%) and fiber-to-fiber reproducibility (4.32%-6.49%). SIGNIFICANCE The developed SPME-HPLC-UV method with the constructed fiber was applied to the preconcentration and detection of different types of PCs in real water samples, showing satisfactory recoveries ranging from 86.20% to 107.8% with RSDs of 3.18%-6.69%. This study provides a new strategy for in situ construction of bimetallic hydroxides and their derived nanocomposite coatings on the NiCr fiber substrate in practical SPME application.
Collapse
Affiliation(s)
- Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huirong Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jinxin Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Newsome GA, Birdsall ER, Cody RB. Selective Sampling to and Desorption from Single Solid-Phase Microextraction Arrow Fiber for Replicative and Quantitative Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:527-533. [PMID: 38319726 DOI: 10.1021/jasms.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
New analytical functionality is demonstrated with an enclosed interface that joins a solid phase microextraction (SPME) device, a direct analysis in real time (DART) probe, and a high-resolution mass spectrometer. With a single 20 mm long SPME Arrow, the interface is able to perform five discrete DART analyses on different areas of the same fiber in 1 min of practical operation time. Three-fiber replicates for 15 runs total produce 15% or better center of variance (CV) values for both volatile headspace sampling and direct immersion sampling of a solvated analyte. Chemometric analysis of rapidly acquired headspace data is able to distinguish volatile profiles. Selective desorption within the interface also confers the ability to selectively sample to discrete areas of a fiber, and three different headspace samples or five different liquid samples can be acquired and differentiated with one Arrow. A five-point standard addition curve is constructed to measure the concentration of the solvated analyte. Unmodified commercial components of the analysis system include the fiber itself, the Orbitrap and AccuTOF mass spectrometer platforms, and the conditioning gas chromatograph inlet. Machine diagrams for the SPME-DART interface and Arrow fiber holder are included.
Collapse
Affiliation(s)
- G Asher Newsome
- Smithsonian Institution Museum Conservation Institute, Suitland, Maryland 20746, United States
| | - Erin R Birdsall
- Smithsonian Institution Museum Conservation Institute, Suitland, Maryland 20746, United States
- Smithsonian National Museum of the American Indian, Suitland, Maryland 20746, United States
| | - Robert B Cody
- JEOL USA Inc, Peabody, Massachusetts 01960, United States
| |
Collapse
|
8
|
Mametov R, Sagandykova G, Monedeiro F, Florkiewicz A, Piszczek P, Radtke A, Pomastowski P. Metabolic profiling of bacteria with the application of polypyrrole-MOF SPME fibers and plasmonic nanostructured LDI-MS substrates. Sci Rep 2024; 14:5562. [PMID: 38448652 PMCID: PMC10917794 DOI: 10.1038/s41598-024-56107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present application of innovative lab-made analytical devices such as plasmonic silver nanostructured substrates and polypyrrole-MOF solid-phase microextraction fibers for metabolic profiling of bacteria. For the first time, comprehensive metabolic profiling of both volatile and non-volatile low-molecular weight compounds in eight bacterial strains was carried out with utilization of lab-made devices. Profiles of low molecular weight metabolites were analyzed for similarities and differences using principal component analysis, hierarchical cluster analysis and random forest algorithm. The results showed clear differentiation between Gram positive (G+) and Gram negative (G-) species which were identified as distinct clusters according to their volatile metabolites. In case of non-volatile metabolites, differentiation between G+ and G- species and clustering for all eight species were observed for the chloroform fraction of the Bligh & Dyer extract, while methanolic fraction failed to recover specific ions in the profile. Furthermore, the results showed correlation between volatile and non-volatile metabolites, which suggests that lab-made devices presented in the current study might be complementary and therefore, useful for species differentiation and gaining insights into bacterial metabolic pathways.
Collapse
Affiliation(s)
- Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Fernanda Monedeiro
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-901, Brazil
| | - Aleksandra Florkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Pawel Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| |
Collapse
|
9
|
Aghaziarati M, Yamini Y, Shamsayei M. Electrodeposited histidine-(CuCr)layered double hydroxides/carbon dots for in-tube solid-phase microextraction of chlorophenols from water, juice, and honey samples followed by HPLC-UV. Talanta 2024; 268:125276. [PMID: 37844430 DOI: 10.1016/j.talanta.2023.125276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
A novel adsorbent consisting of a composition of carbon dots and CuCr-layered double hydroxides intercalated with l-histidine (C-dots@His/LDHs) was introduced. This adsorbent was electrochemically deposited on the inner surface of a capillary copper tube. It was used as an adsorbent for in-tube solid-phase microextraction of chlorophenols (CPs). Separation and measurement of CPs were done by high-performance liquid chromatography-ultraviolet detector. The main parameters which had the most impact on the extraction efficiency and time such as extraction time and flow rate, desorption time and flow rate, ionic strength (salt concentration) and pH were optimized. Calibration curves (0.5-1000 μg L-1) were plotted in real sample (tap water) under optimal conditions which coefficients of determination better than 0.9893 and relative recoveries in the range of 88-120 % were obtained. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were obtained in the range of 0.1-1.0 μg L-1 and 0.3-3.0 μg L-1, respectively. The intra- and inter-assay precisions (RSD%, n = 3) were better than 5.9 and 8.8 %, respectively.
Collapse
Affiliation(s)
- Mohsen Aghaziarati
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
10
|
Hu X, Pang L, Wu M, Wang C, Li J. Nanoleaf-derived carbon materials as a sensitivity coating for solid‑phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2024; 416:277-285. [PMID: 37946033 DOI: 10.1007/s00216-023-05016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Metal-organic framework-derived carbon materials have shown extensive application in the sensitive extraction of polycyclic aromatic hydrocarbons (PAHs), but more active sites for its adsorption were still a tireless pursuit. In this study, ZIF-nanoleaf-derived carbon (NLCs) was synthesized and developed as a solid-phase microextraction (SPME) fiber (NLCs-F). The extraction performance was compared with ZIF-dodecahedron-derived carbon (DHCs) coated fiber (DHCs-F), which was prepared by only changing the ratio of the reactants. The unique morphology of NLCs provided abundant adsorption active sites for the selected PAHs, while the large average aperture facilitated selective extraction of high molecular weight analytes. Additionally, the high carbon content enhanced the strong enrichment capability for hydrophobic PAHs. Hence, the prepared NLCs-F coupled with GC-MS showed a good correlation coefficient (0.9975) in a wide linear range, low limits of detection (0.3-1.8 ng L-1), satisfactory repeatability, and reproducibility, which made it apply in the enrichment of PAHs in actual tea and coffee samples.
Collapse
Affiliation(s)
- Xingru Hu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Mingkai Wu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
11
|
Xie W, Zhu X, Mei H, Guo H, Li H, Wang P, Li Y, Deng X, Zhu J, Hu C. Metal-organic frameworks as solid-phase microextraction adsorbents for the determination of triacetone triperoxide by gas chromatography-mass spectrometry. Forensic Sci Int 2023; 352:111852. [PMID: 37839179 DOI: 10.1016/j.forsciint.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Triacetone triperoxide (TATP) is a high-power explosive which is often used by criminals. The detection of TATP is of great significance for solving the explosion cases. However, the preconcentration and analysis of trace levels of TATP still pose challenges for analytical researchers. In this study, metal-organic frameworks (MOFs), including IRMOF-8, MOF-5, UIO-66, ZIF-8, and MIL-101(Cr), were immobilized on a stainless steel wire using a physical adhesive method as a solid-phase microextraction (SPME) fiber coating. The prepared fibers with a controllable thickness were used for the extraction of TATP followed by gas chromatography-mass spectrometry (GC-MS) analysis. Under the identical experimental conditions, the IRMOF-8-coated fiber exhibited higher extraction efficiency for TATP than the other fibers. The IRMOF-8-coated fiber was then characterized using scanning electron microscopy and thermogravimetric analysis. The results indicated that the IRMOF-8-coated fiber not only had good thermal and chemical stabilities but also afforded a high TATP extraction efficiency. Under the same extraction conditions, the extraction efficiency of the IRMOF-8-coated fiber was 2-8 times higher than those of commercial fibers. The limit of detection was 13 ng/mL, and linearity was observed in the range of 50-5000 ng/mL with a correlation coefficient greater than 0.998. The intraday repeatability (n = 6), interday repeatability (n = 3), and fiber-to-fiber reproducibility (n = 3), were 4.1 %, 4.8 %, and 8.0 %, respectively. The recoveries of TATP from the simulated tap water and soil samples were 87.32-90.57 % and 88.76-100.93 %, respectively, with relative standard deviations lower than 11.11 % (n = 3). The above method was successfully applied for the detection of TATP transferred from a finger to a paper surface, demonstrating its good application prospects in the analysis of trace TATP.
Collapse
Affiliation(s)
- Weiya Xie
- Peoples' Public Security University of China, PR China; Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Xiaohan Zhu
- Peoples' Public Security University of China, PR China; Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Hongcheng Mei
- Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Hongling Guo
- Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Haiyan Li
- Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Ping Wang
- Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Yajun Li
- Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Xianhe Deng
- Insititute of Forensic Science, Ministry of Public Security, PR China
| | - Jun Zhu
- Insititute of Forensic Science, Ministry of Public Security, PR China.
| | - Can Hu
- Insititute of Forensic Science, Ministry of Public Security, PR China.
| |
Collapse
|
12
|
Murtada K, Nazdrajić E, Pawliszyn J. Performance Evaluation of Extraction Coatings with Different Sorbent Particles and Binder Composition. Anal Chem 2023; 95:12745-12753. [PMID: 37584189 DOI: 10.1021/acs.analchem.3c01462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Binders are critical components used in the preparation of a range of extraction devices, including solid-phase microextraction (SPME) devices. While the main role of a binder is to affix the sorbent particles to the selected support, it is critical to select the optimal binder to ensure that it does not negatively impact the coating's particle sorption capability. This work presents the first comprehensive investigation of the interactions between binders and solid sorbent particles as these interactions can significantly impact the performance of the coating. Specifically, the findings presented herein provide a better understanding of the extraction mechanisms of composite coatings and new rules for predicting the particle adhesion forces and binder distribution in the coating. The influence of binder chemistry on coating performance is investigated by examining a selection of the most used binders, namely, polydimethylsiloxane (PDMS), polyacrylonitrile (PAN), poly(vinylidene difluoride) (PVDF), polytetrafluoroethylene amorphous fluoroplastics (PTFE AF 2400), and polybenzimidazole (PBI). The solid particles (e.g., hydrophilic-lipophilic balanced (HLB) and C18) used in this work were selected for their ability to provide optimal extraction coverage for a broad range of analytes. The results show that PDMS does not change the properties of the solid particles and that the binder occupies a negligible volume due to shrinking after polymerization, resulting in the solid particles making up most of the coating volume. Hence, the coating sorption characteristics correspond closely to the properties of the selected solid particles. On the other hand, the results also showed that PTFE AF 2400 can interact with the active surface of the sorbent, leading to the deactivation of the sorbent particles. Therefore, the extraction performance and permeability coefficients decrease as the size of the penetrant increases, indicating a rigid porous structure. The results of this study can aid in the optimization of SPME devices as they provide reference values that can be used to determine the optimal binder and the sorbent affinity for the targeted compounds. Finally, the present work also provides the broader scientific community with a strategy for investigating the properties of sorbent particle/binder structures and defines the characteristics of a good coating/membrane by analyzing all parameters such as kinetics, thermodynamic equilibria, and morphology.
Collapse
Affiliation(s)
- Khaled Murtada
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
13
|
Murtada K, Nazdrajić E, Pawliszyn J. Polybenzimidazole: a novel, fluorocarbon-free, SPME sorbent binder with good thermal and solvent resistance properties for GC and LC analysis. Mikrochim Acta 2023; 190:323. [PMID: 37493831 DOI: 10.1007/s00604-023-05889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
A novel solid-phase microextraction (SPME) coating is presented that uses polybenzimidazole (PBI) as a binder to immobilize micro-size sorbent particles onto a support. An evaluation of the developed binder's thermal and solvent desorption capabilities demonstrated its compatibility with both gas and liquid chromatography (GC and LC). The incorporation of hydrophilic-lipophilic balanced (HLB) particles provided optimal extraction coverage for an array of chemically diverse analytes possessing a range of hydrophobicities and molecular weights. The developed binder's performance was assessed by comparing it to a selection of binders commonly used in the literature, including polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN), as well as the more recently developed polyvinylidene fluoride (PVDF) and polytetrafluoroethylene amorphous fluoroplastic (PTFE AF 2400). The results revealed that PBI provides better performance compared to PVDF and PTFE AF 2400 in terms of its environmental impact, while also being convenient for use in coating preparation and offering good matrix compatibility. The thermal analysis revealed that PBI exhibited more than 93% weight retention at 550 °C, which is superior to PVDF's 80.07% weight retention at 393.78 °C. To the best of our knowledge, this work is the first to use PBI as a particle binder in SPME coatings. The PBI coating maintained high extraction efficiencies under extreme conditions with pH values of 3 and 12. The performance of PBI in combination with HLB was assessed by employing it to extract several drugs of abuse and McReynolds compounds for LC and GC analysis, respectively. The results indicated that PBI performs similarly to PAN for LC but is outperformed by PDMS in GC applications with respect to extraction and desorption kinetics. Nonetheless, the thermal and solvent desorption results indicated that PBI can be used for both applications, as it remains stable at temperatures over 350 °C and is stable when solvent desorption is applied.
Collapse
Affiliation(s)
- Khaled Murtada
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Mametov R, Sagandykova G, Monedeiro-Milanowski M, Gabryś D, Pomastowski P. Electropolymerized polypyrrole-MOF composite as a coating material for SPME fiber for extraction VOCs liberated by bacteria. Sci Rep 2023; 13:8933. [PMID: 37264070 DOI: 10.1038/s41598-023-36081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
The synthesis of efficient and low-cost coatings for solid-phase microextraction attracted much attention. Conductive polymers are excellent candidates for this purpose due to the possibility of electropolymerization, which results in the reproducible synthesis of films. A plethora of studies reported in the literature concluded that modification of conductive polymers with innovative materials could lead to an increase in sensitivity toward specific analytes. In this work, the metal-organic framework-polypyrrole composite was electrodeposited in one step directly onto a stainless-steel substrate. The effect of synthesis parameters on extraction efficiency was investigated. The obtained PPy@ZIF-8 coating was subjected to physical-chemical characterization using electron microscopy and Fourier-transform IR spectroscopy. The main finding of the study was that the values of the limit of detection and intra- and inter-day reproducibility for analytes with different chemical structures were found to be lower as compared to pure polypyrrole coating. Furthermore, the obtained polypyrrole-MOF coating was applied for the collection of profiles of volatile organic compounds liberated by bacteria. Hence, the polypyrrole@ZIF-8 coating synthesized using a low-cost and facile approach presented in this study can be useful for the profiling of VOCs liberated by bacteria.
Collapse
Affiliation(s)
- Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Maciej Monedeiro-Milanowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| |
Collapse
|
15
|
Lv Y, Shang Y, Li L, Zhang Y, Ma Q. Online hyphenation of in-capillary aptamer-functionalized solid-phase microextraction and extraction nanoelectrospray ionization for miniature mass spectrometry analysis. Analyst 2023; 148:1815-1823. [PMID: 36939082 DOI: 10.1039/d3an00111c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Direct mass spectrometry (MS) analysis is vital to chemical and biological investigations. However, measuring complex samples is challenging due to matrix interference, resulting in compromised MS performance. In this study, an integrated experimental protocol has been developed, combining in-capillary aptamer-functionalized solid-phase microextraction (SPME), extraction nanoelectrospray ionization (nanoESI), and miniature MS analysis. The established method was applied to analyze caffeine in electronic cigarette liquid and beverage samples as proof-of-concept demonstrations. A custom SPME strip fabricated with caffeine-binding aptamers was prepared with an immobilization density of up to 0.812 nmol cm-2. Critical parameters affecting the effects of extraction, desorption, and ionization were optimized. A novel transition ion ratio-based strategy with enhanced quantitation accuracy was developed. The analytical performance of the proposed method was evaluated under optimized conditions. Acceptable recoveries of 87.5-111.5% with relative standard deviations of 3.1-6.1% and satisfactory sensitivity with limits of detection of 1.5 and 3 ng mL-1 and limits of quantitation of 5 and 10 ng mL-1 were obtained, respectively. The developed approach demonstrates a promising potential for rapid on-site applications with appealing analytical performance and efficiency.
Collapse
Affiliation(s)
- Yueguang Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Yuhan Shang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Linsen Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China. .,Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
16
|
Simple and rapid preparation of homemade SPME PDMS fibers and their application to the analysis of personal care products in water samples. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Shafiei-Navid S, Hosseinzadeh R, Ghani M. Solid-phase extraction of nonsteroidal anti-inflammatory drugs in urine and water samples using acidic calix[4]arene intercalated in LDH followed by quantification via HPLC-UV. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Behzadi M. Determination of Bisphenol A, B, F and S in Canned Foodstuffs and Canned Pet Foods by Solid-phase Microextraction With Polytyramine Nanocomposite Fiber. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Luo Z, Chen X, Ma Y, Yang F, He N, Yu L, Zeng A. Multi-template imprinted solid-phase microextraction coupled with UPLC-Q-TOF-MS for simultaneous monitoring of ten hepatotoxic pyrrolizidine alkaloids in scented tea. Front Chem 2022; 10:1048467. [PMID: 36518981 PMCID: PMC9742424 DOI: 10.3389/fchem.2022.1048467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a series of ubiquitous natural toxins in flowering plants, which are associated with serious hepatic disease in humans. However, the simultaneously fast and sensitive monitoring of different PAs are still challenge because of the diversity of PAs and huge amount of interference in complex samples, such as scented tea samples. In this study, molecularly imprinted solid phase microextraction (MIP-SPME) fibers were fabricated by using multi-template imprinting technique for selective recognition and efficient enrichment of different PAs from scented teas. MIP-SPME could be used for selective adsorption of ten types of PAs through specific recognition cavity and strong ionic interaction, including senecionine, lycopsamine, retrorsine, heliotrine, lasiocarpine, monocrotaline, echimidine, erucifoline, europine and seneciphylline. The extraction parameters were also optimized including extraction time, elution solvent and elution time. Then, ultra performance liquid chromatography- quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) coupled with MIP-SPME method was developed for fast, simple, sensitive and accurate determination of ten PAs in scented teas. The established method was validated and presented satisfactory accuracy and high precision. It was also successfully applied for simultaneous determination of ten PAs in different scented tea samples. PAs were found in most of these scented tea samples, which suggest the cautious use of scented tea for consumers.
Collapse
Affiliation(s)
- Zhimin Luo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | | | | | | | | | | | - Aiguo Zeng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Hasani F, Raoof JB, Ghani M, Ojani R. In situ electrodeposition of Cu-BDC metal–organic framework on pencil graphite substrate for solid-phase microextraction of some pesticides. Mikrochim Acta 2022; 189:432. [DOI: 10.1007/s00604-022-05537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
21
|
Khosravi H, Mehrdel P, Martínez JAL, Casals-Terré J. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors. MEMBRANES 2022; 12:1074. [PMID: 36363629 PMCID: PMC9699251 DOI: 10.3390/membranes12111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microfluidic paper-based analytical devices (µPADs) are leading the field of low-cost, quantitative in-situ assays. However, understanding the flow behavior in cellulose-based membranes to achieve an accurate and rapid response has remained a challenge. Previous studies focused on commercial filter papers, and one of their problems was the time required to perform the test. This work studies the effect of different cellulose substrates on diffusion-based sensor performance. A diffusion-based sensor was laser cut on different cellulose fibers (Whatman and lab-made Sisal papers) with different structure characteristics, such as basis weight, density, pore size, fiber diameter, and length. Better sensitivity and faster response are found in papers with bigger pore sizes and lower basis weights. The designed sensor has been successfully used to quantify the ionic concentration of commercial wines with a 13.6 mM limit of detection in 30 s. The developed µPAD can be used in quantitative assays for agri-food applications without the need for any external equipment or trained personnel.
Collapse
Affiliation(s)
- Hamid Khosravi
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Pouya Mehrdel
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Joan Antoni López Martínez
- Department of Mining, Industrial and ICT Engineering (EMIT), Universitat Politècnica de Catalunya (UPC), AV. Bases de Manresa 61-73, 08240 Manresa, Barcelona, Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
22
|
Electrospun zeolitic imidazolate framework-8/poly(lactic acid) nanofibers for pipette-tip micro-solid phase extraction of carbamate insecticides from environmental samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Selective enrichment and determination of polychlorinated biphenyls in milk by solid-phase microextraction using molecularly imprinted phenolic resin fiber coating. Anal Chim Acta 2022; 1227:340328. [DOI: 10.1016/j.aca.2022.340328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
24
|
High-surface β-Ketoenamine linked covalent organic framework driving broad-spectrum solid phase microextraction on multi-polar aromatic esters. Anal Chim Acta 2022; 1220:340040. [DOI: 10.1016/j.aca.2022.340040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022]
|
25
|
Mussel Inspired Polydopamine as Silica Fibers Coating for Solid-Phase Microextraction. SEPARATIONS 2022. [DOI: 10.3390/separations9080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|
26
|
Magnetic restricted-access carbon nanotubes for SPME to determine cannabinoids in plasma samples by UHPLC-MS/MS. Anal Chim Acta 2022; 1226:340160. [DOI: 10.1016/j.aca.2022.340160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022]
|
27
|
A New Composite of O-aminobenzene Sulfonic Acid Self-Doped Polyaniline and Multi-Walled Carbon Nanotubes as a Fiber Coating for Solid-Phase Microextraction Gas Chromatography. Chromatographia 2022. [DOI: 10.1007/s10337-022-04177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Shahhoseini F, Azizi A, S.Bottaro C. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Jiang Q, Zhang S, Feng J, Sun M. Silica Aerogel Hybridized with Melamine-Terephthalaldehyde Polymer for In-Tube Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Environment Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1766. [PMID: 35630987 PMCID: PMC9144139 DOI: 10.3390/nano12101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
To improve the extraction performance of the silica aerogel, a melamine-terephthalaldehyde polymer was used to hybridize silica aerogel, and the hybridized aerogel was coated on the surface of stainless steel wire to prepare a fiber-filled extraction tube through placing four wires into a polyetheretherketone tube. The tube was combined with high-performance liquid chromatography, then the online extraction and detection were established. Several polycyclic aromatic hydrocarbons (PAHs) were selected as the target analytes. Under the optimum extraction and desorption conditions, the limit of detection was as low as 3.0 ng L-1, and the linear range was 0.01-20.0 μg L-1. The enrichment factors of PAHs were in the range of 1724-2393. Three environmental water samples of mineral water, tap water and river water were analyzed by this method, and the recoveries that spiked at 1.0-10.0 μg L-1 were between 80.5-126%. It showed many advantages compared with other methods, such as better sensitivity, faster detection and online analysis.
Collapse
Affiliation(s)
- Qiong Jiang
- College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070, China;
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University/Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070, China;
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| |
Collapse
|
30
|
Chang N, Kang J, Wang F, Liu H, Wang X, Du X. Hydrothermal in situ growth and application of a novel flower-like phosphorous-doped titanium oxide nanoflakes on titanium alloy substrate for enhanced solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2022; 1208:339808. [DOI: 10.1016/j.aca.2022.339808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
31
|
Deep Eutectic Solvent-Based Coating Sorbent for Preconcentration of Formaldehyde by Thin-Film Solid-Phase Microextraction Technique. Processes (Basel) 2022. [DOI: 10.3390/pr10050828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A thin-film solid-phase microextraction method with a sorbent composed of a deep eutectic solvent was developed for the preconcentration of formaldehyde from river and lake water samples. Four new deep eutectic solvents (DESs) were synthesized, each in molar ratios 1:1, 1:2, and 1:3. Among prepared compounds, the greatest efficiency in the proposed method of preconcentration of formaldehyde derivatized with Nash reagent was demonstrated by DES-3 consisting of benzyldimethylhexadecylammonium chloride and lauric acid, in a molar ratio of 1:3. For the proposed method, the parameters affecting the extraction efficiency of formaldehyde were optimized (including the choice of DES-based sorbent and desorption solvent as well as the sample volume and pH, the salting-out effect, the extraction time, and the desorption time). Under optimal conditions, the proposed method achieved good precision between 3.3% (for single sorbent) and 4.8% (for sorbent-to-sorbent) as well as good recovery ranging from 78.0 to 99.1%. The limits of detection and quantitation were 0.15 ng mL−1 and 0.50 ng mL−1, respectively. The enrichment factor was equal to 178. The developed method was successfully applied to determine formaldehyde in environmental water samples.
Collapse
|
32
|
Du J, Zhang R, Wang F, Du X. Development of a novel porous cobalt, phosphorus and nitrogen co-doped carbonaceous coating by phosphiding ZIF-67 grown on nitinol fiber for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1498-1506. [PMID: 35343555 DOI: 10.1039/d2ay00340f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nature and fabrication of the fiber coatings with good adsorption capacity and selectivity play a decisive role in solid-phase microextraction (SPME). In this work, a facile strategy was proposed to fabricate a cobalt, phosphorus and nitrogen co-doped carbonaceous (Co-P-NC) coating on superelastic nitinol (NiTi) substrate as a binder-free fiber for SPME. In particular, direct electrochemical in situ growth of ZIF-67 crystals served as the N-containing carbon precursor and sacrificial template for subsequent controllable conversion of ZIF-67 into a novel porous Co-P-NC coating on the NiTi wire substrate via a phosphiding process in a N2 atmosphere. The obtained NiTi wire with the Co-P-NC coating (NiTi@Co-P-NC) was employed to investigate the adsorption of some representative aromatic analytes in water samples for the first time coupling with high-performance liquid chromatography with UV detection (HPLC/UV). The results proved that the resulting fiber showed superior adsorption selectivity for polycyclic aromatic hydrocarbons (PAHs). Therefore, the key parameters were further examined for the adsorption and preconcentration of PAHs. Under the obtained conditions, linear chromatographic responses were achieved over the concentration ranges of 0.03-100 μg L-1 with the correlation coefficients ranging from 0.9980 to 0.9991. Limits of detection (LODs) were between 0.007 and 0.149 μg L-1 (S/N = 3). The developed SPME-HPLC/UV method was applied to selective preconcentration and sensitive determination of PAHs in water. Moreover, this fiber had good fiber preparation reproducibility and presented 120 adsorption and desorption cycles at the same time in practical SPME application.
Collapse
Affiliation(s)
- Junliang Du
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Rong Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Feifei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
33
|
A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Werner J, Grześkowiak T, Zgoła-Grześkowiak A. A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens. Anal Chim Acta 2022; 1202:339666. [DOI: 10.1016/j.aca.2022.339666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/01/2022]
|
35
|
Yu J, Jiang X, Lu Z, Han Q, Chen Z, Liang Q. In situ self-assembly of three-dimensional porous graphene film on zinc fiber for solid-phase microextraction of polychlorinated biphenyls. Anal Bioanal Chem 2022; 414:5585-5594. [PMID: 35288764 DOI: 10.1007/s00216-022-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayan Yu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Xue Jiang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Zenghui Lu
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| | - Qiang Han
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China.
| | - Zhenling Chen
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, 610041, China
| | - Qionglin Liang
- Beijing Key Lab of Microanalytical Methods & Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Science Building D308, Beijing, 100084, China
| |
Collapse
|
36
|
Werner J, Zgoła-Grześkowiak A, Grześkowiak T. Development of novel thin-film solid-phase microextraction materials based on deep eutectic solvents for preconcentration of trace amounts of parabens in surface waters. J Sep Sci 2022; 45:1374-1384. [PMID: 35137554 DOI: 10.1002/jssc.202100917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
A green and sensitive thin-film solid-phase microextraction method based on deep eutectic solvent was developed that enables simultaneous isolation, preconcentration, and determination of parabens in surface waters. Six new deep eutectic solvents were synthesized and used directly to prepare thin-film coatings on a stainless steel mesh support. Among the compounds obtained, the highest efficiency in the extraction of parabens was found for a material consisting of trihexyltetradecylphosphonium chloride and n-docosanol in a molar ratio of 1:2. For the proposed method, parameters affecting the extraction efficiency of parabens, such as the coating material, the desorption solvent, the volume of the sample, the pH of the sample, the extraction and desorption time, and the salting-out effect, were optimized. Under optimal conditions, the proposed method allowed us to achieve good precision between 3.6 and 6.5% and recovery ranging from 68.1 to 91.4%. The limits of detection range from 0.018 to 0.055 ng mL-1 . This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Justyna Werner
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | | | | |
Collapse
|
37
|
Dziedzic D, Nawała J, Gordon D, Dawidziuk B, Popiel S. Nanostructured polyaniline SPME fiber coating for chemical warfare agents analysis. Anal Chim Acta 2022; 1202:339649. [DOI: 10.1016/j.aca.2022.339649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
|
38
|
Wang F, Du J, Zhou H, Chang N, Kang J, Wang X, Du X. Controllable growth of flower-like hierarchical CoNiO2 nanoflakes anchored on Nitinol fiber substrate with good selectivity for highly efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water. Anal Chim Acta 2022; 1192:339371. [DOI: 10.1016/j.aca.2021.339371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
|
39
|
Canpolat G, Dolak İ, Keçili R, Hussain CG, Amiri A, Hussain CM. Conductive Polymer-Based Nanocomposites as Powerful Sorbents: Design, Preparation and Extraction Applications. Crit Rev Anal Chem 2022; 53:1419-1432. [PMID: 35040725 DOI: 10.1080/10408347.2021.2025334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Conductive polymers as composite materials have been attracted tremendous attention due to their versatile and excellent features such as tunable conductivity, facile synthesis and fabrication, high chemical and thermal stability etc. These characteristics make them versatile and let them being used in numerous fields including microelectronics, optics and biosensors. Throughout the mentioned fields, conductive polymers particularly perform as effective sorbents. Although tremendous efforts have been put into this topic, to the best of our knowledge, a comprehensive up-to-date review on the applications of conductive polymers as efficient sorbents has not been reported. The main objective of this paper is to make a significant contribution to the recent literature toward the synthesis and extraction applications of conductive polymers as efficient sorbents.
Collapse
Affiliation(s)
| | - İbrahim Dolak
- Vocational School of Technical Sciences, Dicle University, Diyarbakır, Turkey
| | - Rüstem Keçili
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, Eskişehir, Turkey
| | | | - Amirhassan Amiri
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
40
|
Wang H, Yang M, Wang D, Li K, Wang S, Liu H. Ionic liquid-functionalized poly- N-phenylpyrrole coated on a NiTi alloy substrate for highly efficient solid-phase microextraction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TiO2–NiO composite nanoflakes were in situ grown, followed by electrochemical polymerization of [C4MIM]PF6@PPPy as a fiber coating for solid phase microextraction.
Collapse
Affiliation(s)
- Huiju Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
- Key Lab of Resource Chemistry & Environmental Protection of Qinhai, Xining 810007, China
| | - Minghong Yang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Dongdong Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Kang Li
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Shoujia Wang
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| | - Hailan Liu
- College of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
| |
Collapse
|
41
|
Du J, Li J, Lv R, Du X. Controllable in situ growth of novel octahedral TiO 2 nanoparticles on nickel/titanium alloy fiber substrate for selective solid-phase microextraction of ultraviolet filters in water samples. RSC Adv 2022; 12:11933-11941. [PMID: 35481081 PMCID: PMC9017461 DOI: 10.1039/d2ra01031c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The nature and fabrication of fiber coatings with good adsorption capacity and selectivity play a decisive role in solid-phase microextraction (SPME). In this work, a novel SPME fiber was fabricated through hydrothermal in situ growth of octahedral TiO2 nanoparticles (TiO2NPs) on a superelastic nickel/titanium alloy (NiTi) wire substrate in acid solution. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid types, acid concentration as well as hydrothermal temperature and time were found to be effective route to manipulate the morphologies and composition of TiO2-based nanoflakes grown on the NiTi fiber substrates. At the concentration of 0.4 mol L−1 HCl as well as hydrothermal temperature of 150 °C and hydrothermal time of 12 h, TiO2NPs were in situ grown on the NiTi wire substrates. The obtained NiTi wire with the TiO2NPs coating (NiTi@TiO2NPs fiber) was employed to investigate the adsorption of some representative aromatic analytes in water samples coupling with high-performance liquid chromatography with UV detection (HPLC/UV). The results clearly demonstrate that the fiber exhibits good extraction selectivity for ultraviolet filters (UVFs). In view of good extraction selectivity for the selected UVFs, the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the ranges of 0.05–100 μg L−1 with the correlation coefficients greater than 0.998. Limits of detection (LODs) were 0.007 to 0.064 μg L−1. Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 4.3% to 6.1% and from 4.5% to 6.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.2%. The developed SPME-HPLC/UV method was applied to selective preconcentration and sensitive determination of target UVFs from real water samples. Moreover, the fabricated fiber showed precisely controllable growth and 150 extraction and desorption cycles. This work presents a facile strategy with in situ growth of TiO2 nanoparticles on nickel/titanium alloy wire through hydrothermal method for selective preconcentration and determination of UVFs in water.![]()
Collapse
Affiliation(s)
- Junliang Du
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Li
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
| | - Rui Lv
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
42
|
Lin S, Zhao Z, Lv YK, Shen S, Liang SX. Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: a review. Analyst 2021; 146:7394-7417. [PMID: 34783327 DOI: 10.1039/d1an00988e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rapid and accurate detection of pesticide and veterinary drug residues is a continuing challenge because of the complex matrix effects. Thus, appropriate sample pretreatment is a crucial step for the effective extraction of the analytes and removal of the interferences. Recently, the development of nanomaterial adsorbents has greatly promoted the innovation of food sample pretreatment approaches. Porous organic frameworks (POFs), including polymers of intrinsic microporosity, covalent organic frameworks, hyper crosslinked polymers, conjugated microporous polymers, and porous aromatic frameworks, have been widely utilized due to their tailorable skeletons and pores as well as fascinating features. This review summarizes the recent advances for POFs to be utilized in adsorption and sample preparation of pesticide and veterinary drug residues. In addition, future prospects and challenges are discussed, hoping to offer a reference for further study on POFs in sample pretreatment.
Collapse
Affiliation(s)
- Shumin Lin
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China. .,Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, PR China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shigang Shen
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| |
Collapse
|
43
|
Maghsoudi M, Nojavan S, Hatami E. Development of electrically assisted solvent bar microextraction followed by high performance liquid chromatography for the extraction and quantification of basic drugs in biological samples. J Chromatogr A 2021; 1654:462447. [PMID: 34392124 DOI: 10.1016/j.chroma.2021.462447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
In this study, a new extraction procedure is introduced based on electrically assisted solvent bar microextraction. In the first step, the analytes are transferred from sample solution to the hollow fiber supported organic solvent. After that, with the aid of an electrical field, the analytes migrated into the aqueous extractant. The proposed approach was used to extract the three basic drugs (including lidocaine, diltiazem, and propranolol) from the plasma and urine samples. Under the optimized condition, (the supported organic solvent: 1-octanol, stirring rate: 300 rpm, pH of sample solution: 12.0, salt concentration: 2.0% (w/v), extraction time: 15 min, aqueous extractant: (30 µL, 100 mM HCl), back-extraction time: 2 min, back-extraction voltage: 100 V), the proposed procedure presented wide linearities with coefficients of determination more than 0.992 over a concentration range of 5.0-1000 ng mL-1. The limit of detection was also determined in the range of 0.5 to 5.0 ng mL-1, repeatability (intra-day) was between 3.3 and 11.1% (n = 4), and reproducibility (inter-day) was between 4.3 and 14.6% (n = 4 days). It was indicated that the proposed approach could effectively extract the analytes from the plasma and urine samples, and the relative recoveries were between 90.2 and 105.6%, indicating the validity of this method.
Collapse
Affiliation(s)
- Majid Maghsoudi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran.
| | - Ensieh Hatami
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
| |
Collapse
|
44
|
Derivation of carbonaceous nanoparticles from glucose-modified nickel-titanium oxide nanoparticles grown on Nitinol fiber for solid phase microextraction of several polycyclic aromatic hydrocarbons in water samples. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2020.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Li Y, Dong G, Li J, Xiang J, Yuan J, Wang H, Wang X. A solid-phase microextraction fiber coating based on magnetic covalent organic framework for highly efficient extraction of triclosan and methyltriclosan in environmental water and human urine samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112319. [PMID: 33993090 DOI: 10.1016/j.ecoenv.2021.112319] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Herein, we synthesized a kind of magnetic covalent organic framework nanohybrids (NiFe2O4@COF), and integrated it with polydimethyl siloxane and silicone rubber curing agent for solid phase microextraction (SPME) fiber coating. The fiber coating demonstrated a porous and uniform surface with the BET specific surface of 169.7 m2 g-1. As for seven environmental analytes, the NiFe2O4@COF-based SPME fiber coating gave the higher extraction recoveries for triclosan (TCS) and methyltriclosn (MTCS) than those of fenpropathrin, bifenthrin, permethrin, fenvalerate and deltamethrin. Several operational parameters were rigorously optimized, such as extraction temperature, extraction time, thermal desorption time, solution pH and salt effect. Combined with the GC-ECD detection, the newly developed microextraction method supplied the wide linear range of 0.1-1000 µg L-1 with the correlation coefficients of > 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) reached as low as 1-7 ng L-1 and 3.3-23 ng L-1, respectively. The intra-day and inter-day precisions in six replicates (n = 6 ) were < 3.55% and < 5.06%, respectively, and the fiber-to-fiber reproducibility (n = 3) was < 7.64%. To evaluate its feasibility in real samples, the fortified recoveries for TCS and MTCS, at low (0.2 µg L-1), middle (2.0 µg L-1) and high (20.0 µg L-1) levels, varied between 81.9% and 119.1% in tap, river and barreled waters as well as male, female and children urine samples. Especially, it is worth mentioning that the NiFe2O4@COF-based SPME coating fiber can be recycled for at least 150 times with nearly unchanged extraction efficiency. Moreover, the extraction recoveries by the as-fabricated fiber coating were much higher than those by three commercial fibers (PDMS, PDMS/DVB and PDMS/DVB/CAR). Overall, the NiFe2O4@COF-based SPME is a convenient, sensitive, efficient and "green" pretreatment method, thereby possessing important application prospects in trace monitoring of TCS-like pollutants in complex liquid matrices.
Collapse
Affiliation(s)
- Yanyan Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Guozhong Dong
- School of Sports Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianye Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianxing Xiang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingrui Yuan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
46
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Flow Control in Porous Media: From Numerical Analysis to Quantitative μPAD for Ionic Strength Measurements. SENSORS 2021; 21:s21103328. [PMID: 34064828 PMCID: PMC8150341 DOI: 10.3390/s21103328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/05/2022]
Abstract
Microfluidic paper-based analytical devices (µPADs) are a promising technology to enable accurate and quantitative in situ assays. Paper’s inherent hydrophilicity drives the fluids without the need for external pressure sources. However, controlling the flow in the porous medium has remained a challenge. This study addresses this problem from the nature of the paper substrate and its design. A computational fluid dynamic model has been developed, which couples the characteristics of the porous media (fiber length, fiber diameter and porosity) to the fluidic performance of the diffusion-based µPAD sensor. The numerical results showed that for a given porous membrane, the diffusion, and therefore the sensor performance is affected not only by the substrate nature but also by the inlets’ orientation. Given a porous substrate, the optimum performance is achieved by the lowest inlets’ angle. A diffusion-based self-referencing colorimetric sensor was built and validated according to the design. The device is able to quantify the hydronium concentration in wines by comparison to 0.1–1.0 M tartaric acid solutions with a 41.3 mM limit of detection. This research showed that by proper adjustments even the simplest µPADs can be used in quantitative assays for agri-food applications.
Collapse
|
48
|
Ji R, Wu Y, Bian Y, Song Y, Sun Q, Jiang X, Zhang L, Han J, Cheng H. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124785. [PMID: 33348203 DOI: 10.1016/j.jhazmat.2020.124785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen-doped porous biochar (NPB) with a large specific surface area, wide pore size distribution, graphitized structure, nitrogen doping, and hydrophobicity was fabricated by high-temperature modification of algal biochar with potassium carbonate. This NPB was then uniformly coated on stainless steel wire as a novel solid-phase microextraction (SPME) fiber. The extraction efficiency of NPB-coated fiber for seven chlorobenzenes (CBs) was excellent; it was 1.0-112.2 times higher than that of commercial SPME fibers. A trace determination method was developed for seven CBs in water with the optimized extraction conditions by NPB-coated fiber and gas chromatography-electron capture detector, which showed wide linear ranges (1-1000 ng L-1), low detection limits (0.007-0.079 ng L-1), great repeatability (2.5-6.5% for intra-day, and 3.1-6.8% for inter-day), and excellent reproducibility (3.5-6.3%, n = 5). The practicality of the developed method was evaluated using real water samples and showed great recoveries (89.55-105.19%). This study showed that low-cost biomass wastes could be converted to advanced biochar materials by a facile method, and displayed excellent performance in SPME applications.
Collapse
Affiliation(s)
- Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yarui Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| |
Collapse
|
49
|
Fundamentals and applications of stir bar sorptive dispersive microextraction: A tutorial review. Anal Chim Acta 2021; 1153:338271. [DOI: 10.1016/j.aca.2021.338271] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
|
50
|
Abstract
Solid phase microextraction (SPME) is one of the most popular sample preparation methods which can be applied to organic compounds allowing the simultaneous extraction and pre-concentration of analytes from the sample matrix. It is based on the partitioning of the analyte between the extracting phase, generally immobilized on a fiber substrate, and the matrix (water, air, etc.), and has numerous advantages such as rapidity, simplicity, low cost, ease of use and automation, and absence of toxic solvents. Fiber SPME has been widely used in combination with various analytical instrumentation even if most of the work has been done coupling the extraction technique with gas and liquid chromatography (GC and LC). This manuscript presents an overview of the recent works (from 2010 to date) of solid phase microextraction coupled to liquid chromatography (SPME-LC) relevant to analytical applications performed using commercially available fibers or lab-made fibers already developed in previous papers, and to improved instrumental systems and approaches.
Collapse
|