1
|
Aliyeva N, Akgönüllü S, Erdem A, Denizli A. Specific DNA aptamer-immobilized cryogel membranes as novel bioaffinity supports and their potential for the purification of activated protein C. Biomed Chromatogr 2024; 38:e5995. [PMID: 39189513 DOI: 10.1002/bmc.5995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
Activated protein C (APC), a serine protease produced from zymogen protein C (PC), is the key enzyme of the protein C pathway. APC has anticoagulant, anti-inflammatory, and cytoprotective features. APC has recently been shown to significantly reduce coagulation as well as mortality in patients with severe sepsis. Herein, we aimed to develop an affinity support material that allows the purification of plasma APC for the first time. In this research, a novel APC-specific DNA aptamer-based poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) (poly(HEMA-GMA/DNA-Apt)) macroporous cryogel membrane at different molar ratios was prepared using affinity binding method and their potential for purification and identification of APC was investigated. The DNA aptamer-immobilized cryogels were characterized to examine their structural and morphological properties. The effect of pH, initial concentration, temperature, ionic strength difference, and flow rate changes was examined. Selectivity studies were performed in the presence of APC and competitive proteins, and cryogel support materials were shown to have a very high affinity for APC. Adsorption capacity was found to be 89.02 mg/g. Finally, NaCl revealed efficiency for APC desorption and the reuse of cryogels was successfully tested for ten cycles.
Collapse
Affiliation(s)
- Nilufer Aliyeva
- Bioengineering Division, Hacettepe University, Ankara, 06800, Turkey
| | - Semra Akgönüllü
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, 06800, Turkey
| | - Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, 06800, Turkey
| |
Collapse
|
2
|
Agnishwaran B, Manivasagam G, Udduttula A. Molecularly Imprinted Polymers: Shaping the Future of Early-Stage Bone Loss Detection-A Review. ACS OMEGA 2024; 9:8730-8742. [PMID: 38434830 PMCID: PMC10905706 DOI: 10.1021/acsomega.3c08977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Osteoporosis is the deterioration of bone mineral density (BMD) because of an imbalance between bone resorption and formation, which might happen due to lots of factors like age, hormonal imbalance, and several others. While this occurrence is prevalent in both genders, it is more common in women, especially postmenopausal women. It is an asymptomatic disease that is underlying until the first incidence of a fracture. The bone is weakened, making it more susceptible to fracture. Even a low trauma can result in a fracture, making osteoporosis an even more alarming disease. These fractures can sometimes be fatal or can make the patient bedridden. Osteoporosis is an understudied disease, and there are certain limitations in diagnosing and early-stage detection of this condition. The standard method of dual X-ray absorptiometry can be used to some extent and can be detected in standard radiographs after the deterioration of a significant amount of bone mass. Clinically assessing osteoporosis using biomarkers can still be challenging, as clinical tests can be expensive and cannot be accessed by most of the general population. In addition, manufacturing antibodies specific to these biomarkers can be a challenging, time-consuming, and expensive method. As an alternative to these antibodies, molecularly imprinted polymers (MIPs) can be used in the detection of these biomarkers. This Review provides a comprehensive exploration of bone formation, resorption, and remodeling processes, linking them to the pathophysiology of osteoporosis. It details biomarker-based detection and diagnosis methods, with a focus on MIPs for sensing CTX-1, NTX-1, and other biomarkers. The discussion compares traditional clinical practices with MIP-based sensors, revealing comparable sensitivity with identified limitations. Additionally, the Review contrasts antibody-functionalized sensors with MIPs. Finally, our Review concludes by highlighting the potential of MIPs in future early-stage osteoporosis detection.
Collapse
Affiliation(s)
- Bala Agnishwaran
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
- School
of Bio Sciences and Technology (SBST), Vellore
Institute of Technology (VIT), Vellore-632014, Tamil
Nadu, India
| | - Geetha Manivasagam
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| |
Collapse
|
3
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Maurya R, Mishra A, Yadav CS, Upadhyay A, Sharma G, Kumar S, Singh V. A novel tunable metal-clad planar waveguide with 0.62PMN-0.38PT material for detection of cancer cells. JOURNAL OF BIOPHOTONICS 2023; 16:e202300148. [PMID: 37280718 DOI: 10.1002/jbio.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
A dynamically tunable metal clad planar waveguide having 0.62PMN-0.38PT material is simulated and optimized for detection of cancer cells. Angular interrogation of the TE0 mode of waveguide shows that critical angle increases greater than the resonance angle with increasing of cover refractive index, which limits the detection range of waveguide. To overcome this limitation, proposed waveguide applies a potential on the PMN-PT adlayer. Although a sensitivity of 105.42 degree/RIU was achieved at 70 Volts in testing the proposed waveguide, it was found that the optimal performance parameters were obtained at 60 Volts. At this voltage, the waveguide demonstrated detection range 1.3330-1.5030, a detection accuracy 2393.33, and a figure of merit 2243.59 RIU-1 , which enabled the detection of the entire range of the targeted cancer cells. Therefore, it is recommended to apply a potential of 60 Volts to achieve the best performance from the proposed waveguide.
Collapse
Affiliation(s)
- Rajiv Maurya
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ankit Mishra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Chandan Singh Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gaurav Sharma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sushil Kumar
- Department of Physics, Sri Shankar College Sasaram, Bihar, India
| | - Vivek Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Maral M, Erdem A. Carbon Nanofiber-Ionic Liquid Nanocomposite Modified Aptasensors Developed for Electrochemical Investigation of Interaction of Aptamer/Aptamer-Antisense Pair with Activated Protein C. BIOSENSORS 2023; 13:bios13040458. [PMID: 37185533 PMCID: PMC10136435 DOI: 10.3390/bios13040458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Selective and sensitive detection of human activated protein C (APC) was performed herein by using carbon nanofiber (CNF) and ionic liquid (IL) composite modified pencil graphite electrode (PGE) and electrochemical impedance spectroscopy (EIS) technique. A carbon nanomaterial-based electrochemical aptasensor was designed and implemented for the first time in this study for the solution-phase interaction of DNA-Apt with its cognate protein APC as well as APC inhibitor aptamer-antidote pair. The applicability of this assay developed for the determination of APC in fetal bovine serum (FBS) and its selectivity against different proteins (protein C, thrombin, bovine serum albumin) was also examined. CNF-IL modified aptasensor specific to APC provided the detection limit as 0.23 μg/mL (equal to 3.83 nM) in buffer medium and 0.11 μg/mL (equal to 1.83 nM) in FBS. The duration of the proposed assay from the point of electrode modification to the detection of APC was completed within only 55 min.
Collapse
Affiliation(s)
- Meltem Maral
- Department of Material Science and Engineering, The Institute of Natural and Applied Sciences, Ege University, Bornova, 35100 Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Turkey
| | - Arzum Erdem
- Department of Material Science and Engineering, The Institute of Natural and Applied Sciences, Ege University, Bornova, 35100 Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
6
|
Eksin E, Erdem A. Recent Progress on Optical Biosensors Developed for Nucleic Acid Detection Related to Infectious Viral Diseases. MICROMACHINES 2023; 14:mi14020295. [PMID: 36837995 PMCID: PMC9966969 DOI: 10.3390/mi14020295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
Optical biosensors have many advantages over traditional analytical methods. They enable the identification of several biological and chemical compounds directly, instantly, and without the need of labels. Their benefits include excellent specificity, sensitivity, compact size, and low cost. In this review, the main focus is placed on the nucleic acid-based optical biosensor technologies, including colorimetric, fluorescence, surface plasmon resonance (SPR), Evanescent-Wave Optical, Fiber optic and bioluminescent optical fibre. The fundamentals of each type of biosensor are briefly explained, and particular emphasis has been placed on the achievements which have been gained in the last decade on the field of diagnosis of infectious viral diseases. Concluding remarks concerning the perspectives of further developments are discussed.
Collapse
Affiliation(s)
- Ece Eksin
- Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, 35290 Izmir, Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
7
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
8
|
Hu X, Hu R, Zhu H, Chen Q, Lu Y, Chen J, Liu Y, Chen H. Nanozyme-based cascade SPR signal amplification for immunosensing of nitrated alpha-synuclein. Mikrochim Acta 2022; 189:367. [PMID: 36056240 DOI: 10.1007/s00604-022-05465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
A self-assembled nanozyme of iron porphyrin mediated supramolecular modified gold nanoparticles (FpA) was fabricated to determine nitrated alpha-synuclein as the Tyr 39 residue (nT39 α-Syn) of a potential biomarker for early diagnosis of Parkinson's disease (PD). Mechanically, localized surface plasmon resonance (LSPR) and the mass effect caused by catalytic deposition of the nanozyme contributed to a cascade signal amplification strategy. The sensor allowed a signal amplification and selective nT39 α-Syn bioanalysis with a 1.34-fold enhancement by cascade amplified SPR signal and double specific recognition. The detection limit was 1.78 ng/mL in the detection range of 7-240 ng/mL. Benefiting from the excellent immunosensor, this method can distinguish healthy people and PD patients using actual samples. Overall, this strategy provides a nanozyme-based biosensing platform for the early diagnosis of PD and can be applied to detect other protein biomarkers, such as PD-L1.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ruhui Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qiang Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
9
|
Akgönüllü S, Özgür E, Denizli A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. MICROMACHINES 2022; 13:1441. [PMID: 36144064 PMCID: PMC9503788 DOI: 10.3390/mi13091441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Aptamers are important materials for the specific determination of different disease-related biomarkers. Several methods have been enhanced to transform selected target molecule-specific aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been designed for potential applications in clinical diagnostics. Various methods in combination with a wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to further increase sensitivity and detection limit for related target molecules. In this critical review, we highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules. In recent years, it has been demonstrated that electrode material plays an important role in obtaining quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.
Collapse
|
10
|
Gu C, Shan F, Zheng L, Zhou Y, Hu J, Chen G. Towards a protein-selective Raman enhancement by a glycopolymer-based composite surface. J Mater Chem B 2022; 10:1434-1441. [PMID: 35168248 DOI: 10.1039/d1tb02746h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS), which is based on the surface plasmon resonance (LSPR) of noble metal nanostructures, is widely used in the biological field due to its advantages of non-damaging samples and detection up to the molecular level. For biological SERS detection, preparation of substrates with biocompatibility and specific adsorption, leading to selective enhancement of the target biomolecules, are important design strategies. Utilizing the specific interaction between a carbohydrate and protein, a glycopolymer-based composite surface is fabricated to realize specific SERS detection of proteins. Herein, we use N-3,4-dihydroxybenzeneethyl methacrylamide (DMA), 2-deoxy-2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) as monomers in a sunlight-induced RAFT polymerization to synthesize a dopamine-containing glycopolymer. The glycopolymers are used to prepare a SERS substrate. The composite surface shows specific protein adsorption capacity, and the selective Raman enhancement of specific proteins was successfully achieved between the two different proteins Con A and BSA. This provides a feasible approach to design a SERS surface for protein detection and the study of the interaction between sugar and proteins.
Collapse
Affiliation(s)
- Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
11
|
Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N, Brown RJC, Zhang W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 2022; 197:113767. [PMID: 34768064 DOI: 10.1016/j.bios.2021.113767] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/25/2023]
Abstract
Surface plasmon resonance approach is a highly useful option to offer optical and label-free detection of target bioanalytes with numerous advantages (e.g., low-cost fabrication, appreciable sensitivity, label-free detection, and outstanding accuracy). As such, it allows early diagnosis of cancer biomarkers to monitor tumor progression and to prevent the recurrence of oncogenic tumors. This work highlights the recent progress in SPR biosensing technology for the diagnosis of various cancer types (e.g., lung, breast, prostate, and ovarian). Further, the performance of various SPR biosensors is also evaluated in terms of the basic quality assurance criteria (e.g., limit of detection (LOD), selectivity, sensor response time, and reusability). Finally, the limitations and future challenges associated with SPR biosensors are also discussed with respect to cancer biomarker detection.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| | - Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Wei Zhang
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
12
|
Akgönüllü S, Koyun S, Yavuz H, Erdem A, Denizli A. Preparation of Surface Plasmon Resonance Aptasensor for Human Activated Protein C Sensing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2393:37-56. [PMID: 34837173 DOI: 10.1007/978-1-0716-1803-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid aptamers are an emerging class of artificial ligands and have recently gained attention in several areas. Here we report the design of a surface plasmon resonance (SPR) aptasensor for highly sensitive and selective sensing of human activated protein C (APC). First, DNA aptamer (DNA-Apt) specific for APC is complexed with N-methacryloyl-L-cysteine (MAC) monomer. Then, 2-hydroxyethyl methacrylate (HEMA) and cyanamide are mixed with the DNA-Apt/MAC complex. The SPR aptasensor is characterized by atomic force microscopy, ellipsometry, and contact angle measurements. Selectivity of SPR aptasensor is carried out in the presence of myoglobin (Myb), hemoglobin (Hb), and bovine serum albumin (BSA). Limit of detection (LOD) and limit of quantification (LOQ) values are 1.5 ng mL-1 and 5.2 ng mL-1, respectively. DNA-Apt SPR aptasensor performance for APC detection is also examined in artificial plasma.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Seda Koyun
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Arzum Erdem
- Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic Systems for Cancer Diagnosis and Applications. MICROMACHINES 2021; 12:mi12111349. [PMID: 34832761 PMCID: PMC8619454 DOI: 10.3390/mi12111349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Microfluidic devices have led to novel biological advances through the improvement of micro systems that can mimic and measure. Microsystems easily handle sub-microliter volumes, obviously with guidance presumably through laminated fluid flows. Microfluidic systems have production methods that do not need expert engineering, away from a centralized laboratory, and can implement basic and point of care analysis, and this has attracted attention to their widespread dissemination and adaptation to specific biological issues. The general use of microfluidic tools in clinical settings can be seen in pregnancy tests and diabetic control, but recently microfluidic platforms have become a key novel technology for cancer diagnostics. Cancer is a heterogeneous group of diseases that needs a multimodal paradigm to diagnose, manage, and treat. Using advanced technologies can enable this, providing better diagnosis and treatment for cancer patients. Microfluidic tools have evolved as a promising tool in the field of cancer such as detection of a single cancer cell, liquid biopsy, drug screening modeling angiogenesis, and metastasis detection. This review summarizes the need for the low-abundant blood and serum cancer diagnosis with microfluidic tools and the progress that has been followed to develop integrated microfluidic platforms for this application in the last few years.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Monireh Bakhshpour
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Ayşe Kevser Pişkin
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara 06230, Turkey;
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
- Correspondence:
| |
Collapse
|
14
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
15
|
Luo Z, Liu Y, Han X, Yang W, Wang G, Wang J, Jiang X, Sen M, Li X, Yu G, Shi Y. Mechanism of Paeoniae Radix Alba in the Treatment of Non-alcoholic Fatty Liver Disease Based on Sequential Metabolites Identification Approach, Network Pharmacology, and Binding Affinity Measurement. Front Nutr 2021; 8:677659. [PMID: 34604271 PMCID: PMC8481579 DOI: 10.3389/fnut.2021.677659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Screening functional food ingredients (FFI) from medicinal and edible plants (MEP) has still remained a great challenge due to the complexity of MEP and its obscure function mechanisms. Herein, an integrated strategy based on sequential metabolites identification approach, network pharmacology, molecular docking, and surface plasmon resonance (SPR) analysis was proposed for quickly identifying the active constituents in MEP. First, the sequential biotransformation process of MEP, including intestinal absorption and metabolism, and hepatic metabolism, was investigated by oral gavage, and intestinal perfusion with venous sampling method. Then the blood samples were analyzed by UPLC-Q Exactive Orbitrap HRMS. Second, the network pharmacology approach was used to explore the potential targets and possible mechanisms of the in vivo metabolites of MEP. Third, molecular docking and SPR approaches were used to verify the specific interactions between protein targets and representative ingredients. The proposed integrated strategy was successfully used to explore the heptoprotective components and the underlying molecular mechanism of Paeoniae Radix Alba (PRA). A total of 44 compounds were identified in blood samples, including 17 porotypes and 27 metabolites. The associated metabolic pathways were oxidation, methylation, sulfation, and glucuronidation. After further screening, 31 bioactive candidates and 377 related targets were obtained. In addition, the bioactive components contained in PRA may have therapeutic potentials for non-alcoholic fatty liver disease (NAFLD). The above results demonstrated the proposed strategy may provide a feasible tool for screening FFI and elaborating the complex function mechanisms of MEP.
Collapse
Affiliation(s)
- Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoquan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Muli Sen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Department of Biomedical Engineering, Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Yazdian-Robati R, Hedayati N, Dehghani S, Ramezani M, Alibolandi M, Saeedi M, Abnous K, Taghdisi SM. Application of the catalytic activity of gold nanoparticles for development of optical aptasensors. Anal Biochem 2021; 629:114307. [PMID: 34273317 DOI: 10.1016/j.ab.2021.114307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/04/2021] [Accepted: 07/11/2021] [Indexed: 01/15/2023]
Abstract
Biosensor technology is considered to be a great alternative in analytical techniques over the conventional methods. Among many recently developed techniques and devices, aptasensors are interesting because of their high specificity, selectivity and sensitivity. Combining aptamer as a biological recognition element with gold nanoparticles (AuNPs) as probe, are becoming more general owing to their beneficial properties, including low cost and ability to analyze specific targets on-site and using naked eye. Hydrogen bonds, nucleic acid hybridization, aptamer-target and antigen-antibody binding, Raman signature, enzyme inhibition, and enzyme-mimicking activity are main different sensing strategies exploited in AuNPs-based optical aptasensors. In this review article, we discussed the recent advances in optical aptasensors with a special emphasis on the catalytic activity property of AuNPs.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Hedayati
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Dehghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Huang Y, Sun T, Liu L, Xia N, Zhao Y, Yi X. Surface plasmon resonance biosensor for the detection of miRNAs by combining the advantages of homogeneous reaction and heterogeneous detection. Talanta 2021; 234:122622. [PMID: 34364431 DOI: 10.1016/j.talanta.2021.122622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
The hybridization and enzymolysis reactions for nucleic acid detection were carried out on the chip surface in the traditional surface plasmon resonance (SPR) biosensors. Herein, we proposed an innovative method for microRNA (miRNA) detection in which the hybridization-enzymolysis recycling reactions were performed in solution. Duplex-specific nuclease (DSN) and streptavidin-modified gold nanoparticles (SA-AuNPs) were employed for enhancing the assay sensitivity. In the absence of miRNA, the biotinylated DNA probe (bio-DNA-bio, biotin tags at both the 3' and 5' termini of DNA) was attached to the SA-modified chip through the SA-biotin binding, allowing the capture of SA-AuNPs with the same interaction. As a result, a larger SPR signal was attained. However, in the presence of miRNA, bio-DNA-bio hybridized with miRNA was digested by DSN. In this process, the miRNA strand remained intact and participated in the next hybridization-enzymolysis recycling process. Thus, one miRNA could promote the hydrolysis of many bio-DNA-bio probes and allow the generation of numerous bio-DNA fragments. Meanwhile, the produced bio-DNA competed with the undigested bio-DNA-bio to bind SA on the chip surface. The digestion of bio-DNA-bio and the competitive binding between bio-DNA-bio and bio-DNA led to the attachment of fewer SA-AuNPs and then smaller SPR signals. The change in SPR signal at the concentration as low as 1 fM miRNA has been readily determined. The strategy possessed the advantageous properties of simple operation, fast response, high sensitivity and excellent specificity, serving as a viable means for the fabrication of novel sensing platforms.
Collapse
Affiliation(s)
- Yaliang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; School of Chemistry and Materials Science, Guizhou Education University, Gao Xin Road 115, Wudang District, Guizhou, 550000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Yuehua Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China.
| |
Collapse
|
18
|
Çimen D, Aslıyüce S, Tanalp TD, Denizli A. Molecularly imprinted nanofilms for endotoxin detection using an surface plasmon resonance sensor. Anal Biochem 2021; 632:114221. [PMID: 33961908 DOI: 10.1016/j.ab.2021.114221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022]
Abstract
In this study, a simple, fast, sensitive and selective surface plasmon resonance (SPR) sensor has been prepared using molecular imprinting method for endotoxin detection. Endotoxin imprinted and non-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) based nanofilms were synthesized on the SPR chip surfaces using ultraviolet polymerization. Endotoxin imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 0.5-100 ng/mL. The limit of detection and quantification were obtained as 0.023 and 0.078 ng/mL, respectively. The response time for the equilibration, adsorption and regeneration was approximately 14 min. The selectivity studies with cholesterol and hemoglobin of endotoxin imprinted SPR sensor were examined. Validation studies were carried out via limulus amebocyte lysate (LAL) in order to demonstrate the applicability of the SPR sensor.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Sevgi Aslıyüce
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | | | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
19
|
Vishwakarma A, Lal R, Ramya M. Aptamer-based approaches for the detection of waterborne pathogens. Int Microbiol 2021; 24:125-140. [PMID: 33404933 DOI: 10.1007/s10123-020-00154-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Waterborne ailments pose a serious threat to public health and are a huge economic burden. Lack of hygiene in drinking and recreational water is the chief source of microbial pathogens in developing countries. Poor water quality and sanitation account for more than 3.4 million deaths a year worldwide. This has urged authorities and researchers to explore different avenues of pathogen detection. There is a growing demand for rapid and reliable sensor technologies, in particular those that can detect in situ and perform in harsh conditions. Some of the major waterborne pathogens include Vibrio cholerae, Leptospira interrogans, Campylobacter jejuni, Shigella spp., enterotoxigenic Escherichia coli, Clostridium difficile, Cryptosporidium parvum, Entamoeba histolytica, and Hepatitis A virus. While conventional methods of pathogen detection like serodiagnosis and microbiological methods have been superseded by nucleic acid amplification methods, there is still potential for improvement. This review provides an insight into aptamers and their utility in the form of aptasensors. It discusses how aptamer-based approaches have emerged as a novel strategy and its advantages over more resource-intensive and complex biochemical approaches.
Collapse
Affiliation(s)
- Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Roshni Lal
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
20
|
Luan Y, Wang N, Li C, Guo X, Lu A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics (Basel) 2020; 9:E787. [PMID: 33171809 PMCID: PMC7695002 DOI: 10.3390/antibiotics9110787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023] Open
Abstract
Antibiotic abuse is becoming increasingly serious and the potential for harm to human health and the environment has aroused widespread social concern. Aminoglycoside antibiotics (AGs) are broad-spectrum antibiotics that have been widely used in clinical and animal medicine. Consequently, their residues are commonly found in animal-derived food items and the environment. A simple, rapid, and sensitive detection method for on-site screening and detection of AGs is urgently required. In recent years, with the development of molecular detection technology, nucleic acid aptamers have been successfully used as recognition molecules for the identification and detection of AGs in food and the environment. These aptamers have high affinities, selectivities, and specificities, are inexpensive, and can be produced with small batch-to-batch differences. This paper reviews the applications of aptamers for AG detection in colorimetric, fluorescent, chemiluminescent, surface plasmon resonance, and electrochemical sensors for the analysis in food and environmental samples. This study provides useful references for future research.
Collapse
Affiliation(s)
- Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Nan Wang
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Xiaojun Guo
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| | - Anxiang Lu
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China; (Y.L.); (N.W.); (C.L.); (X.G.)
| |
Collapse
|
21
|
SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020; 219:121219. [DOI: 10.1016/j.talanta.2020.121219] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
|
22
|
Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N. A novel strategy for detection of small molecules based on aptamer/gold nanoparticles/graphitic carbon nitride nanosheets as fluorescent biosensor. Talanta 2020; 219:121235. [PMID: 32887126 DOI: 10.1016/j.talanta.2020.121235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/02/2023]
Abstract
Herein, a novel ultrasensitive strategy has been developed by designing a label free fluorescent nano-aptasensor for monitoring of small moecules in human plasma. In this nano-aptasensor, graphitic carbon nitride nanosheets were used as fluorescent probe. The fluorescence intensity of the probe was decreased by interaction between graphitic carbon nitride nanosheets and label-free aptamer/gold nanoparticles conjugate, via Fluorescence resonance energy transfer mechanism. Upon addition of the analyte, the fluorescence of graphitic carbon nitride nanosheets was restored due to the aptamer/analyte interaction, and the aggregation of gold nanoparticles in the presence of salt. The influence of various factors on sensing method was investigated, and under the approved conditions, the fluorescence signal showed a linear relation with Digoxin concentration in the range of 10-500 ng L-1 with limit of detection down to 3.2 ng L-1 relative standard deviations for 25, 100 and 500 ng L-1 of analyte concentrations were 2.6, 4.0 and 6.5%, respectively. This strategy provided a simple, rapid, cost effective and reproducible experimental model, with successful application for determination of Digoxin in plasma samples without any pretreatment steps.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Rahtuvanoğlu A, Akgönüllü S, Karacan S, Denizli A. Biomimetic Nanoparticles Based Surface Plasmon Resonance Biosensors for Histamine Detection in Foods. ChemistrySelect 2020. [DOI: 10.1002/slct.202000440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ayşegül Rahtuvanoğlu
- Department of Chemical Engineering, Faculty of EngineeringAnkara University Ankara 06100 Turkey
| | - Semra Akgönüllü
- Depatment of Chemistry, Faculty of ScienceHacettepe University Ankara 06800 Turkey
| | - Süleyman Karacan
- Department of Chemical Engineering, Faculty of EngineeringAnkara University Ankara 06100 Turkey
| | - Adil Denizli
- Depatment of Chemistry, Faculty of ScienceHacettepe University Ankara 06800 Turkey
| |
Collapse
|
24
|
Oto J, Fernández-Pardo Á, Miralles M, Plana E, España F, Navarro S, Medina P. Activated protein C assays: A review. Clin Chim Acta 2020; 502:227-232. [DOI: 10.1016/j.cca.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023]
|
25
|
Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly imprinted polymer-coated QCM nanosensor in artificial saliva. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104454] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Erdem Ö, Cihangir N, Saylan Y, Denizli A. Comparison of molecularly imprinted plasmonic nanosensor performances for bacteriophage detection. NEW J CHEM 2020. [DOI: 10.1039/d0nj04053c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation steps of nanoparticle- and nanofilm-based plasmonic nanosensors.
Collapse
Affiliation(s)
- Özgecan Erdem
- Hacettepe University
- Department of Biology
- Ankara
- Turkey
| | | | | | - Adil Denizli
- Hacettepe University
- Department of Chemistry
- Ankara
- Turkey
| |
Collapse
|
27
|
Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Izadi Z, Rostami S, Ensafi AA, Siadat M, Losson E. Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Hosseini Ghalehno M, Mirzaei M, Torkzadeh-Mahani M. Electrochemical aptasensor for activated protein C using a gold nanoparticle - Chitosan/graphene paste modified carbon paste electrode. Bioelectrochemistry 2019; 130:107322. [PMID: 31295701 DOI: 10.1016/j.bioelechem.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
Abstract
In this work, a selective and simple electrochemical aptasensor was developed for the detection of activated protein C by employing methylene blue (MB) as a redox indicator. An activated protein C aptamer (APC-apt) was covalently immobilized on the surface of a carbon paste electrode modified with gold nanoparticle - chitosan /graphene paste (AuNPs-Chi/Gr). The AuNPs-Chi/Gr paste increased electrochemical peak current and immobilized the aptamer on the electrode surface. The process of aptasensor construction and successful immobilization of the aptamer on the electrode surface was confirmed by electrochemical cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to determine the methylene blue peak current. By replacing APC instead of MB at the electrode surface, the cathodic current of the MB decreases, and this decrease corresponds to the APC concentration. Under optimum conditions, the APC concentration was detected in the range from of 0.1 ng·mL-1 to 40 μg·mL-1 with a relatively low detection limit of 0.073 ng·mL-1. This method was then applied to the determination of APC in human serum samples. The results revealed that this strategy can be used to measure other proteins in biological samples.
Collapse
Affiliation(s)
- Maryam Hosseini Ghalehno
- Department of Chemistry, University of Shahid Bahonar Kerman, Kerman, Iran; Young Research Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, University of Shahid Bahonar Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
29
|
Jalilzadeh M, Çimen D, Özgür E, Esen C, Denizli A. Design and preparation of imprinted surface plasmon resonance (SPR) nanosensor for detection of Zn(II) ions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1617634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erdoğan Özgür
- Department of Chemistry, Hacettepe University, Ankara, Turkey
- Department of Chemistry, Aksaray University, Aksaray, Turkey
| | - Cem Esen
- Department of Chemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
30
|
Esentürk MK, Akgönüllü S, Yılmaz F, Denizli A. Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:646-661. [PMID: 30920349 DOI: 10.1080/09205063.2019.1600181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human serum albumin (HSA) is a major blood plasma protein also found in urine where its existence may be a marker of some types of liver or kidney dysfunction. Herein, we fabricated a novel surface plasmon resonance (SPR) nanosensor for selective, sensitive, and label-free microalbumin detection both in aqueous and urine sample solutions. First, HSA-imprinted nanoparticles were synthesized, which consist of ethylene glycol dimethacrylate and N-methacryloyl-L-leucine methyl ester as a cross-linker and functional monomer. The nanoparticles were characterized by zeta-size and scanning electron microscope analyses and were dropped onto the SPR chip surface to make HSA sensitive nanosensor. Characterization studies of HSA-imprinted SPR chip were carried out by atomic force microscopy, Fourier-transform infrared spectroscopy, contact angle, and ellipsometer. The limit of detection and limit of quantification values of HSA-imprinted SPR nanosensor were calculated as 0.7 pM and 1.9 pM for the concentration range of 0.15-500 nM. Selectivity studies of HSA-imprinted SPR nanosensor were achieved with hemoglobin and transferrin proteins which were chosen as competitor molecules. HSA-imprinted SPR nanosensor was displayed highly selective and sensitive to HSA.
Collapse
Affiliation(s)
- Meltem Koca Esentürk
- a Faculty of Science, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Semra Akgönüllü
- a Faculty of Science, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Fatma Yılmaz
- b Vocational School of Gerede, Department of Chemistry Technology , Bolu Abant Izzet Baysal University , Bolu , Turkey
| | - Adil Denizli
- a Faculty of Science, Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
31
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|