1
|
Yang D, Youden B, Yu N, Carrier AJ, Jiang R, Servos MR, Oakes KD, Zhang X. Surface-Enhanced Raman Spectroscopy for the Detection of Reactive Oxygen Species. ACS NANO 2025; 19:2013-2028. [PMID: 39772468 DOI: 10.1021/acsnano.4c15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Reactive oxygen species (ROS) play fundamental roles in various biological and chemical processes in nature and industries, including cell signaling, disease development and aging, immune defenses, environmental remediation, pharmaceutical syntheses, metal corrosion, energy production, etc. As such, their detection is of paramount importance, but their accurate identification and quantification are technically challenging due to their transient nature with short lifetimes and low steady-state concentrations. As a highly sensitive and selective analytical technique, surface-enhanced Raman spectroscopy (SERS) is promising for detecting ROS in real-time, enabling in situ monitoring of ROS-involved electrochemical and biochemical events with exceptional resolution. This review provides a comprehensive analysis of the state-of-the-art in the SERS-based detection of ROS. Herein, the principles and ROS sensing mechanisms of SERS have been critically evaluated, highlighting their emerging applications in direct and indirect ROS monitoring in electrochemical and biological systems. The developments and reaction schemes of selective SERS probes for superoxide (•O2-), hydroxyl radicals (•OH), nitric oxide (•NO), peroxynitrite (ONOO-), and hypochlorite (OCl-) are presented. Finally, technical challenges and future research directions are discussed to guide the design of SERS for ROS analysis.
Collapse
Affiliation(s)
- Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Naizhen Yu
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ken D Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
2
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Andreeva VD, Ehlers H, R C AK, Presselt M, J van den Broek L, Bonnet S. Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 2023; 6:179. [PMID: 37644120 PMCID: PMC10465535 DOI: 10.1038/s42004-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Haley Ehlers
- Mimetas B.V., De limes 7, 2342 DH, Oegstgeest, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aswin Krishna R C
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Guselnikova O, Nugraha AS, Na J, Postnikov P, Kim HJ, Plotnikov E, Yamauchi Y. Surface Filtration in Mesoporous Au Films Decorated by Ag Nanoparticles for Solving SERS Sensing Small Molecules in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41629-41639. [PMID: 36043945 DOI: 10.1021/acsami.2c12804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For surface-enhanced Raman spectroscopy (SERS) sensing of small molecules in the presence of living cells, biofouling and blocking of plasmonic centers are key challenges. Here, we have developed a mesoporous Au (AuM) film coated with a Ag nanoparticles (NPs) as a plasmonic sensor (AuM@Ag) to analyze aromatic thiols, which is an example of a small molecule, in the presence of a living cell strain (e.g., MDA-MB-231) as a model living system. The resulting AuM@Ag provides 0.1 nM sensitivity and high reproducibility for thiols sensing. Simultaneously, the AuM@Ag film filters large biomolecules, preventing Raman signals from overlapping produced by large biomolecules. After analysis, the AuM@Ag film undergoes recycling by the full dissolution of the Ag-thiol layer and removal of thiols from AuM. Furthermore, fresh AgNPs are formed for further SERS analysis, which circumvents the Ag oxidation issue. The ease of the AgNPs deposition allows up to 12 cycles of on-demand recycling and sensing even after utilization as a sensor in multicomponent media without enhancement and sensitivity loss. The reported mesoporous film with surface filtering ability and prominent recycling procedure promises to offer a new strategy for the detection of various small molecules in the presence of living cells.
Collapse
Affiliation(s)
- Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Yin H, Jin Z, Duan W, Han B, Han L, Li C. Emergence of Responsive Surface-Enhanced Raman Scattering Probes for Imaging Tumor-Associated Metabolites. Adv Healthc Mater 2022; 11:e2200030. [PMID: 35182455 DOI: 10.1002/adhm.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Indexed: 11/11/2022]
Abstract
As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.
Collapse
Affiliation(s)
- Hang Yin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Bing Han
- Minhang Hospital Fudan University Xinsong Road 170 Shanghai 201100 China
| | - Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
6
|
Abstract
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters are conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ryan D Norton
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | - Hoa T Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | | | - Amanda J Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| |
Collapse
|
7
|
Wu T, Xia D, Xu J, Ye C, Zhang D, Deng D, Zhang J, Huang G. Sequential injection-square wave voltammetric sensor for phosphate detection in freshwater using silanized multi-walled carbon nanotubes and gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Almeida B, Rogers KE, Nag OK, Delehanty JB. Sensing Nitric Oxide in Cells: Historical Technologies and Future Outlook. ACS Sens 2021; 6:1695-1703. [PMID: 33871990 DOI: 10.1021/acssensors.1c00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a critical cell signaling molecule with important roles in both normal cellular physiology and pathology. Over the past 20 years, multiple sensing modalities have been developed for the intracellular synthesis (endogenous) and release (exogenous) of NO. In this review, we survey the historical progression of NO sensing platforms, highlight the current state of the art, and offer a forward-looking view of how we expect the field of NO sensing to develop in the context of recent advances in bio-nanotechnology and nanoscale cellular biosensors.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, D.C. 20036, United States
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- Fischell Department of Bioengineering, University of Maryland, 2330 Kim Engineering Building, College Park, Maryland 20742, United States
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
9
|
Jahn IJ, Mühlig A, Cialla-May D. Application of molecular SERS nanosensors: where we stand and where we are headed towards? Anal Bioanal Chem 2020; 412:5999-6007. [PMID: 32676675 PMCID: PMC7442760 DOI: 10.1007/s00216-020-02779-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Molecular specific and highly sensitive detection is the driving force of the surface-enhanced Raman spectroscopy (SERS) community. The technique opens the window to the undisturbed monitoring of cellular processes in situ or to the quantification of small molecular species that do not deliver Raman signals. The smart design of molecular SERS nanosensors makes it possible to indirectly but specifically detect, e.g. reactive oxygen species, carbon monoxide or potentially toxic metal ions. Detection schemes evolved over the years from simple metallic colloidal nanoparticles functionalized with sensing molecules that show uncontrolled aggregation to complex nanostructures with magnetic properties making the analysis of complex environmental samples possible. The present article gives the readership an overview of the present research advancements in the field of molecular SERS sensors, highlighting future trends.
Collapse
Affiliation(s)
- Izabella J Jahn
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Anna Mühlig
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Care and Control Jena, Jena University Hospital, Kollegiengasse 10, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, Germany.
- Center of Applied Research, InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
10
|
Ge M, Wu Q, Yin L, Xu M, Yuan Y, Guo Q, Yao J. Surface enhanced Raman spectroscopic studies on the adsorption behaviour of nitric oxide on a Ru covered Au nanoparticle film. RSC Adv 2020; 10:12339-12346. [PMID: 35497607 PMCID: PMC9050915 DOI: 10.1039/d0ra00430h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) is very interesting because of its effects on air pollution and especially biological systems. The adsorption behavior of NO molecules has fundamental importance with great technical challenges due to complex processes and species identification. Herein, the NO adsorption behavior on a Ru surface has been investigated using well-designed surface enhanced Raman spectroscopy (SERS) substrates. A Au nanoparticle monolayer film on ITO was employed as the electrode and Ru layers were electrochemically deposited. The internal SERS effect from the Au nanoparticles with high sensitivity and the metallic surfaces of Ru with practical application were integrated into a composite Au/Ru substrate. The molecular adsorption and dissociation of NO were observed simultaneously by SERS. A competitive relationship between adsorption and dissociation was observed at higher NO pressure, and the 3-fold and 2-fold bridge and top adsorption configurations appeared on the surface and were associated with different νNO vibrational frequencies. The results indicated that 3-fold bridge sites are preferred for dissociation over other structures. The dissociation of NO produced adsorbed atomic nitrogen and oxygen species to form Ru–N and Ru–O bonds, respectively. The dissociation process, especially for linear NO, was site dependent and blocked at higher pressure or coverage. Due to the change in adsorption energy and coverage, a conversion of the adsorption configuration from bridge to top was observed in the initial stage of NO adsorption, and this was followed by a mixture of bridge and top configurations of NO and dissociated species. A two-step dissociation mechanism and the steps of NO adsorption were proposed. The present study suggested that the SERS technique with appropriate attractive metal overlayers provided a significant and possibly even a valuable approach to explore adsorption behavior and kinetics at gas–solid interfaces. A SERS borrowing strategy with well-designed substrates has been developed to monitor the adsorption and dissociation of NO at Au/Ru surfaces.![]()
Collapse
Affiliation(s)
- Ming Ge
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Qian Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lu Yin
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Minmin Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yaxian Yuan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Qinghua Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jianlin Yao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|