1
|
Zegarra V, Weiland P, Plitzko PA, Thiery J, Czech L, Willmund F, Bedrunka P, Bange G. Structural and mechanistic basis for the regulation of the chloroplast signal recognition particle by (p)ppGpp. FEBS Lett 2025. [PMID: 39935135 DOI: 10.1002/1873-3468.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
The alarmones (p)ppGpp play a critical role in chloroplasts by acting as signalling molecules that regulate gene expression, protein synthesis and chloroplast (cp) development, particularly in response to stress and nutrient availability. However, the underlying molecular mechanisms are still poorly understood. Here, we show that (p)ppGpp binds to the GTPase-containing NG domains of the chloroplast signal recognition particle (SRP) and its receptor, preventing their GTP-dependent association through a competitive mechanism. The structure of (cp)FtsY bound to ppGpp reveals that the alarmone employs the same binding mode as its GDP counterpart and hinders chloroplast SRP:FtsY complex formation via its pyrophosphate moiety. Consequently, (p)ppGpp also inhibits the mutual stimulation of the two GTPases present in the (cp)SRP54:FtsY complex. Taken together, our findings provide the first description of how the alarmones (p)ppGpp may regulate the SRP-dependent protein trafficking pathway in plants.
Collapse
Affiliation(s)
- Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Center for Tumor Biology and Immunology, Department of Medicine, Philipps-University Marburg, Germany
| | - Pauline Anka Plitzko
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Julia Thiery
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Laura Czech
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Felix Willmund
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Biology, Philipps-University Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
D’Alessandro S, Velay F, Lebrun R, Zafirov D, Mehrez M, Romand S, Saadouni R, Forzani C, Citerne S, Montané MH, Robaglia C, Menand B, Meyer C, Field B. Posttranslational regulation of photosynthetic activity via the TOR kinase in plants. SCIENCE ADVANCES 2024; 10:eadj3268. [PMID: 38896607 PMCID: PMC11186500 DOI: 10.1126/sciadv.adj3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Chloroplasts are the powerhouse of the plant cell, and their activity must be matched to plant growth to avoid photooxidative damage. We have identified a posttranslational mechanism linking the eukaryotic target of rapamycin (TOR) kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origins that regulates chloroplast activity and photosynthesis in particular. We find that RelA SpoT homolog 3 (RSH3), a nuclear-encoded enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific amino-terminal region which is phosphorylated in a TOR-dependent manner. Down-regulating TOR activity causes a rapid increase in ppGpp synthesis in RSH3 overexpressors and reduces photosynthetic capacity in an RSH-dependent manner in wild-type plants. The TOR-RSH3 signaling axis therefore regulates the equilibrium between chloroplast activity and plant growth, setting a precedent for the regulation of organellar function by TOR.
Collapse
Affiliation(s)
- Stefano D’Alessandro
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
- Università di Torino, Dipartimento di Scienze della vita e Biologia dei Sistemi, 10135 Torino, Italy
| | - Florent Velay
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Univ, CNRS, Plate-forme Protéomique, Marseille Protéomique (MaP), IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Delyan Zafirov
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Marwa Mehrez
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Shanna Romand
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Rim Saadouni
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
- Aix Marseille Univ, CNRS, Plate-forme Protéomique, Marseille Protéomique (MaP), IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | | | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| |
Collapse
|
3
|
Turkan S, Kulasek M, Zienkiewicz A, Mierek-Adamska A, Skrzypek E, Warchoł M, Szydłowska-Czerniak A, Bartoli J, Field B, Dąbrowska GB. Guanosine tetraphosphate (ppGpp) is a new player in Brassica napus L. seed development. Food Chem 2024; 436:137648. [PMID: 37852071 DOI: 10.1016/j.foodchem.2023.137648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Rapeseed oil, constituting 12% of global vegetable oil production, is susceptible to quality degradation due to stress-induced incomplete seed degreening, fatty acid oxidation, or poor nutrient accumulation. We hypothesise that the hyperphosphorylated nucleotide alarmone ppGpp (guanosine tetraphosphate), acts as a pivotal regulator of these processes, given its established roles in nutrient management, degreening, and ROS regulation in leaves. Using qPCR, UHPLC-MS/MS, and biochemical methods, our study delves into the impact of ppGpp on seed nutritional value. We observed a positive correlation between ppGpp levels and desiccation, and a negative correlation with photosynthetic pigment levels. Trends in antioxidant activity suggest that ppGpp may negatively influence peroxidases, which are safeguarding against chlorophyll decomposition. Notably, despite increasing ppGpp levels, sugars, proteins and oils appear unaffected. This newfound role of ppGpp in seed development suggests it regulates the endogenous antioxidant system during degreening and desiccation, preserving nutritional quality. Further validation through mutant-based research is needed.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agnieszka Zienkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Edyta Skrzypek
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Marzena Warchoł
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Julia Bartoli
- Aix Marseille Univ, CNRS, LISM, UMR7255, IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, 13009 Marseille, France.
| | - Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Bartoli J, Tempier AC, Guzzi NL, Piras CM, Cascales E, Viala JPM. Characterization of a (p)ppApp Synthetase Belonging to a New Family of Polymorphic Toxin Associated with Temperate Phages. J Mol Biol 2023; 435:168282. [PMID: 37730083 DOI: 10.1016/j.jmb.2023.168282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Polymorphic toxins (PTs) are a broad family of toxins involved in interbacterial competition and pathogenesis. PTs are modular proteins that are comprised of a conserved N-terminal domain responsible for its transport, and a variable C-terminal domain bearing toxic activity. Although the mode of transport has yet to be elucidated, a new family of putative PTs containing an N-terminal MuF domain, resembling the Mu coliphage F protein, was identified in prophage genetic elements. The C-terminal toxin domains of these MuF PTs are predicted to bear nuclease, metallopeptidase, ADP-ribosyl transferase and RelA_SpoT activities. In this study, we characterized the MuF-RelA_SpoT toxin associated with the temperate phage of Streptococcus pneumoniae SPNA45. We show that the RelA_SpoT domain has (p)ppApp synthetase activity, which is bactericidal under our experimental conditions. We further determine that the two genes located downstream encode two immunity proteins, one binding to and inactivating the toxin and the other detoxifying the cell via a pppApp hydrolase activity. Finally, based on protein sequence alignments, we propose a signature for (p)ppApp synthetases that distinguishes them from (p)ppGpp synthetases.
Collapse
Affiliation(s)
- Julia Bartoli
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Audrey C Tempier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Noa L Guzzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France. https://twitter.com/NoaGzzi
| | - Chloé M Piras
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France. https://twitter.com/CascalesLab
| | - Julie P M Viala
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR 7255), Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS - 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France.
| |
Collapse
|
5
|
Qiu D, Lange E, Haas TM, Prucker I, Masuda S, Wang YL, Felix G, Schaaf G, Jessen HJ. Bacterial Pathogen Infection Triggers Magic Spot Nucleotide Signaling in Arabidopsis thaliana Chloroplasts through Specific RelA/SpoT Homologues. J Am Chem Soc 2023. [PMID: 37437195 PMCID: PMC10375528 DOI: 10.1021/jacs.3c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Magic spot nucleotides (p)ppGpp are important signaling molecules in bacteria and plants. In the latter, RelA-SpoT homologue (RSH) enzymes are responsible for (p)ppGpp turnover. Profiling of (p)ppGpp is more difficult in plants than in bacteria due to lower concentrations and more severe matrix effects. Here, we report that capillary electrophoresis mass spectrometry (CE-MS) can be deployed to study (p)ppGpp abundance and identity in Arabidopsis thaliana. This goal is achieved by combining a titanium dioxide extraction protocol and pre-spiking with chemically synthesized stable isotope-labeled internal reference compounds. The high sensitivity and separation efficiency of CE-MS enables monitoring of changes in (p)ppGpp levels in A. thaliana upon infection with the pathogen Pseudomonas syringae pv. tomato (PstDC3000). We observed a significant increase of ppGpp post infection that is also stimulated by the flagellin peptide flg22 only. This increase depends on functional flg22 receptor FLS2 and its interacting kinase BAK1 indicating that pathogen-associated molecular pattern (PAMP) receptor-mediated signaling controls ppGpp levels. Transcript analyses showed an upregulation of RSH2 upon flg22 treatment and both RSH2 and RSH3 after PstDC3000 infection. Arabidopsis mutants deficient in RSH2 and RSH3 activity display no ppGpp accumulation upon infection and flg22 treatment, supporting the involvement of these synthases in PAMP-triggered innate immune responses to pathogens within the chloroplast.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Esther Lange
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Prucker
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yan L Wang
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Georg Felix
- Institute of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Department of Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
- CIBSS─Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Mehrez M, Romand S, Field B. New perspectives on the molecular mechanisms of stress signalling by the nucleotide guanosine tetraphosphate (ppGpp), an emerging regulator of photosynthesis in plants and algae. THE NEW PHYTOLOGIST 2023; 237:1086-1099. [PMID: 36349398 PMCID: PMC10107265 DOI: 10.1111/nph.18604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The nucleotides guanosine tetraphosphate and guanosine pentaphosphate (together (p)ppGpp) are found in a wide range of prokaryotic and eukaryotic organisms where they are associated with stress signalling. In this review, we will discuss recent research highlighting the role of (p)ppGpp signalling as a conserved regulator of photosynthetic activity in the chloroplasts of plants and algae, and the latest discoveries that open up new perspectives on the emerging roles of (p)ppGpp in acclimation to environmental stress. We explore how rapid advances in the study of (p)ppGpp signalling in prokaryotes are now revealing large gaps in our understanding of the molecular mechanisms of signalling by (p)ppGpp and related nucleotides in plants and algae. Filling in these gaps is likely to lead to the discovery of conserved as well as new plant- and algal-specific (p)ppGpp signalling mechanisms that will offer new insights into the taming of the chloroplast and the regulation of stress tolerance.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar2092TunisTunisia
| | - Shanna Romand
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| | - Ben Field
- Aix‐Marseille University, CEA, CNRS, BIAM, UMR726513009MarseilleFrance
| |
Collapse
|
7
|
Mu H, Han F, Wang Q, Wang Y, Dai X, Zhu M. Recent functional insights into the magic role of (p)ppGpp in growth control. Comput Struct Biotechnol J 2022; 21:168-175. [PMID: 36544478 PMCID: PMC9747358 DOI: 10.1016/j.csbj.2022.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid growth and survival are two key traits that enable bacterial cells to thrive in their natural habitat. The guanosine tetraphosphate and pentaphosphate [(p)ppGpp], also known as "magic spot", is a key second messenger inside bacterial cells as well as chloroplasts of plants and green algae. (p)ppGpp not only controls various stages of central dogma processes (replication, transcription, ribosome maturation and translation) and central metabolism but also regulates various physiological processes such as pathogenesis, persistence, motility and competence. Under extreme conditions such as nutrient starvation, (p)ppGpp-mediated stringent response is crucial for the survival of bacterial cells. This mini-review highlights some of the very recent progress on the key role of (p)ppGpp in bacterial growth control in light of cellular resource allocation and cell size regulation. We also briefly discuss some recent functional insights into the role of (p)ppGpp in plants and green algae from the angle of growth and development and further discuss several important open directions for future studies.
Collapse
Affiliation(s)
| | | | - Qian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Harchouni S, England S, Vieu J, Romand S, Aouane A, Citerne S, Legeret B, Alric J, Li-Beisson Y, Menand B, Field B. Guanosine tetraphosphate (ppGpp) accumulation inhibits chloroplast gene expression and promotes super grana formation in the moss Physcomitrium (Physcomitrella) patens. THE NEW PHYTOLOGIST 2022; 236:86-98. [PMID: 35715975 DOI: 10.1111/nph.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The nucleotides guanosine tetraphosphate and pentaphosphate (or (p)ppGpp) are implicated in the regulation of chloroplast function in plants. (p)ppGpp signalling is best understood in the model vascular plant Arabidopsis thaliana in which it acts to regulate plastid gene expression to influence photosynthesis, plant development and immunity. However, little information is known about the conservation or diversity of (p)ppGpp signalling in other land plants. We studied the function of ppGpp in the moss Physcomitrium (previously Physcomitrella) patens using an inducible system for triggering ppGpp accumulation. We used this approach to investigate the effects of ppGpp on chloroplast function, photosynthesis and growth. We demonstrate that ppGpp accumulation causes a dramatic drop in photosynthetic capacity by inhibiting chloroplast gene expression. This was accompanied by the unexpected reorganisation of the thylakoid system into super grana. Surprisingly, these changes did not affect gametophore growth, suggesting that bryophytes and vascular plants may have different tolerances to defects in photosynthesis. Our findings point to the existence of both highly conserved and more specific targets of (p)ppGpp signalling in the land plants that may reflect different growth strategies.
Collapse
Affiliation(s)
- Seddik Harchouni
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Samantha England
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Julien Vieu
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Shanna Romand
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Aicha Aouane
- Aix-Marseille Université, CNRS, Institut de Biologie du Developpement de Marseille (IBDM), 13009, Marseille, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Bertrand Legeret
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance, 13108, France
| | - Jean Alric
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance, 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance, 13108, France
| | - Benoît Menand
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| | - Benjamin Field
- Aix-Marseille Université, CEA, CNRS, BIAM, UMR7265, 13009, Marseille, France
| |
Collapse
|
9
|
Romand S, Abdelkefi H, Lecampion C, Belaroussi M, Dussenne M, Ksas B, Citerne S, Caius J, D'Alessandro S, Fakhfakh H, Caffarri S, Havaux M, Field B. A guanosine tetraphosphate (ppGpp) mediated brake on photosynthesis is required for acclimation to nitrogen limitation in Arabidopsis. eLife 2022; 11:e75041. [PMID: 35156611 PMCID: PMC8887892 DOI: 10.7554/elife.75041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Guanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants. Here, we demonstrate that ppGpp biosynthesis is necessary for acclimation to nitrogen starvation in Arabidopsis. We show that ppGpp is required for remodeling the photosynthetic electron transport chain to downregulate photosynthetic activity and for protection against oxidative stress. Furthermore, we demonstrate that ppGpp is required for coupling chloroplastic and nuclear gene expression during nitrogen starvation. Altogether, our work indicates that ppGpp is a pivotal regulator of chloroplast activity for stress acclimation in plants.
Collapse
Affiliation(s)
- Shanna Romand
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | - Hela Abdelkefi
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyTunisTunisia
| | - Cécile Lecampion
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | | | - Melanie Dussenne
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | - Brigitte Ksas
- Aix-Marseille University, CEA, CNRS, BIAM, SAVE TeamSaint-Paul-lez-DuranceFrance
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-SaclayVersaillesFrance
| | - Jose Caius
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | | | - Hatem Fakhfakh
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyTunisTunisia
- University of Carthage, Faculty of Sciences of BizerteBizerteTunisia
| | - Stefano Caffarri
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, BIAM, SAVE TeamSaint-Paul-lez-DuranceFrance
| | - Ben Field
- Aix-Marseille University, CEA, CNRS, BIAM, LGBP TeamMarseilleFrance
| |
Collapse
|
10
|
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li‐Beisson Y, Menand B, Field B, Gontero B. ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 230:1517-1532. [PMID: 33595847 PMCID: PMC8252717 DOI: 10.1111/nph.17286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chloroplasts retain elements of a bacterial stress response pathway that is mediated by the signalling nucleotides guanosine penta- and tetraphosphate ((p)ppGpp). In the model flowering plant Arabidopsis, ppGpp acts as a potent regulator of plastid gene expression and influences photosynthesis, plant growth and development. However, little is known about ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here, we studied the function of ppGpp in the diatom Phaeodactylum tricornutum using transgenic lines containing an inducible system for ppGpp accumulation. We used these lines to investigate the effects of ppGpp on growth, photosynthesis, lipid metabolism and protein expression. We demonstrate that ppGpp accumulation reduces photosynthetic capacity and promotes a quiescent-like state with reduced proliferation and ageing. Strikingly, using nontargeted proteomics, we discovered that ppGpp accumulation also leads to the coordinated upregulation of a protein protection response in multiple cellular compartments. Our findings highlight the importance of ppGpp as a fundamental regulator of chloroplast function across different domains of life, and lead to new questions about the molecular mechanisms and roles of (p)ppGpp signalling in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Luisana Avilan
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
- Centre for Enzyme InnovationSchool of Biological SciencesInstitute of Biological and Biomedical SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
| | - Regine Lebrun
- Plate‐forme ProtéomiqueMarseille Protéomique (MaP)IMM FR 3479, 31 Chemin Joseph AiguierMarseille13009France
| | - Carine Puppo
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Stephane Cuiné
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Yonghua Li‐Beisson
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Benoît Menand
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Ben Field
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Brigitte Gontero
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| |
Collapse
|
11
|
Haas TM, Qiu D, Häner M, Angebauer L, Ripp A, Singh J, Koch HG, Jessen-Trefzer C, Jessen HJ. Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis. J Org Chem 2020; 85:14496-14506. [PMID: 32502348 PMCID: PMC7684580 DOI: 10.1021/acs.joc.0c00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
complex phosphorylation pattern of natural and modified pentaphosphorylated
magic spot nucleotides is generated in a highly efficient way. A cyclic
pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce
four phosphates on nucleosides regioselectively in a one-flask key
transformation. The obtained magic spot nucleotides are used to develop
a capillary electrophoresis UV detection method, enabling nucleotide
assignment in complex bacterial extracts.
Collapse
Affiliation(s)
- Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany.,CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|