1
|
Chen P, Zhang Q, Yin H, Di S, Liu H, Qin H, Liu M, Liu Y, Li Z, Zhu S. Recent Progress and Applications of Advanced Nanomaterials in Solid-Phase Extraction. Electrophoresis 2024. [PMID: 39498723 DOI: 10.1002/elps.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Sample preparation maintains a key bottleneck in the whole analytical procedure. Solid-phase sorbents (SPSs) have garnered increasing attention in sample preparation research due to their crucial roles in achieving high clean-up and enrichment efficiency in the analysis of trace targets present in complex matrices. Novel nanoscale materials with improved characteristics have garnered considerable interest across different scientific disciplines due to the limited capabilities of traditional bulk-scale materials. The purpose of this review is to offer a thorough summary of the latest developments and uses of SPSs in preparing samples for chromatographic analysis, focusing on the years 2020-2024. The techniques for preparing SPSs are examined, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), carbon nanoparticles (CNPs), molecularly imprinted polymers (MIPs), and metallic nanomaterials (MNs). Examining the pros and cons of different extraction methods, including solid-phase extraction (SPE), magnetic SPE (MSPE), flow-based SPE (FBA-SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and dispersive SPE (DSPE), is the main focus. Furthermore, this article presents the utilization of SPE technology for isolating common contaminants in various environmental, biological, and food specimens. We highlight the persistent challenges in SPSs and anticipate future advancements and applications of novel SPSs.
Collapse
Affiliation(s)
- Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qiuyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hang Yin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan Textile University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hailan Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ming Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yunkang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Zihan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
2
|
Wei Z, Zhang J, Liu W, Dong X, Cheng Y, Yan S, Dong X, Wang S, Tian M. Preparation and application of a pseudo-templated multi-monomer aflatoxins imprinted polymer. Mikrochim Acta 2024; 191:607. [PMID: 39289224 DOI: 10.1007/s00604-024-06677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
A functional material was developed with specific recognition properties for aflatoxins for pre-processing enrichment and separation in the detection of aflatoxins in Chinese herbal medicines. In the experiment, ethyl coumarin-3-carboxylate, which has a highly similar structure to the oxonaphthalene o-ketone of aflatoxin, was selected as a pseudo-template, zinc acrylate, neutral red derivative, and methacrylic acid, which have complementary functions, were selected as co-monomers to prepare a pseudo-template multifunctional monomer molecularly imprinted polymer (MIP). The MIP obtained under the optimal preparation conditions has a maximum adsorption capacity of 0.036 mg/mg and an imprinting factor of 3.67. The physical property evaluation of the polymers by Fourier infrared spectrometer, scanning electron microscopy, pore size analyzer, thermogravimetric analyzer, and diffuse reflectance spectroscopy showed that the MIP were successfully prepared and porous spherical-like particles were obtained. The synthesized polymer was used as a solid-phase extraction agent for the separation of aflatoxins from the extract of spina date seed. The linear range of the developed method was 10-1000 ng/mL, the limit of detection was 0.36 ng/mL, the limit of quantification was 1.19 ng/mL, and the recoveries of the extracts at the concentration level of 0.2 μg/mL were in the range 88.0-93.4%, with relative standard deviations (RSDs) of 1.97% (n). The results showed that the preparation of MIPs using ethyl coumarin-3-carboxylate as a template was simple, economical, and convenient. It is expected to become a promising functional material for the enrichment and separation aflatoxins from complex matrices.
Collapse
Affiliation(s)
- Zehui Wei
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy , Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jun Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wenxin Liu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xue Dong
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Cheng
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shuangxian Yan
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyi Dong
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Suhong Wang
- Clinical Laboratory, Liaocheng Veterans Hospital, Shandong Province, Liaocheng, 252000, China
| | - Mei Tian
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy , Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
3
|
Tokalıoğlu Ş, Moghaddam STH, Demir S. A zirconium metal-organic framework functionalized with a S/N containing carboxylic acid (MOF-808(Zr)-Tz) as an efficient sorbent for the ultrafast and selective dispersive solid phase micro extraction of chromium, silver, and rhodium in water samples. Talanta 2024; 274:126094. [PMID: 38643650 DOI: 10.1016/j.talanta.2024.126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Metal-organic frameworks (MOFs) are good adsorbents for targeted chemicals with their adjustable properties. Herein, we prepared a zirconium based MOF (MOF-808(Zr)) and functionalized it employing 2-mercapto-4-methyl-5-thiazolacetic acid (MOF-808(Zr)-Tz). The prepared MOFs were characterized by XRD, FTIR, SEM-EDX, TGA, N2 sorption, zeta potential measurements, and elemental analysis. The surface area of MOF-808(Zr)-Tz was 1348 m2/g. Dispersive solid-phase micro-extraction (D-SPµE) method based on MOF-808(Zr)-Tz was firstly developed and applied to the extraction of chromium, silver, and rhodium in waters. The determination of the analytes was done by FAAS. The optimal pH and eluent for analytes were 7.0 and 3 mL of 2 mol L-1 HCl, respectively. The contact times were 1 min for adsorption and 3 min for elution. The LOD and PFs of the D-SPμE for analytes were 2.3 μg L-1 and 13.3 for chromium, 2.1 μg L-1 and 13.3 for silver, and 3.1 μg L-1 and 13.3 rhodium, respectively. The D-SPμE method was verified with analyses of NW-TMDA-54.6 Lake water and SPS-WW1 Batch 114 Wastewater and with spiked dam water, river water, well water, sea water, and wastewater. The recoveries of the analytes changed from 89 to 108 %. The results indicated that the method is selective, simple, effective, and rapid for extracting chromium(III), silver(I) and rhodium(III) in waters.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | | | - Selçuk Demir
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Chemistry Department, 53100, Rize, Turkey.
| |
Collapse
|
4
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
5
|
Yakout AA, Alshutairi AM, Albishri HM, Alshitari WH, Basha MT. Cu-nanoparticles@ graphene nanocomposite: A robust and efficient nanocomposite for micro-solid phase extraction of trace aflatoxins in different foodstuffs. Food Chem 2024; 440:138239. [PMID: 38154278 DOI: 10.1016/j.foodchem.2023.138239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Cu-nanoparticles-immobilized graphene (Cu@G) nanocomposite was fabricated in this study by reducing Cu(II) ions in the presence of graphene oxide using a simple chemical reduction step. Cu@G nanocomposite was applied as a sorbent for the SPE of four aflatoxins (AFs). A reusable syringe was filled with the fabricated nanocomposite and used as a sorbent for the micro-solid phase extraction of four AFs (AFB1, AFB2, AFG1, AFG2). The impact of different analytical factors was fully investigated and optimized. Excellent recoveries, ranging from 92.0 to 108.5 %, were detected when evaluating target AFs in samples of rice, maize, and pistachio. The LOD, LOQ, and linear ranges were attained under optimal circumstances in the ranges of 0.0062 µg kg-1, 0.0192 µg kg-1, and 0.0-20 µg kg-1, respectively. The discovered approach provided the dual benefits of a high enrichment capability of Cu-nanoparticles via AFs complexation and a huge porosity of graphene sheets.
Collapse
Affiliation(s)
- Amr A Yakout
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Adel M Alshutairi
- Saudi Food and Drug Authority, Saudi Arabia; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan M Albishri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael H Alshitari
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia
| | - Maram T Basha
- Chemistry Department, College of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Zhou M, Qu Z, Zhang J, Jiang H, Tang Z, Chen R. Boosting CO 2 chemical fixation over MOF-808 by the introduction of functional groups and defective Zr sites. Chem Commun (Camb) 2024; 60:3170-3173. [PMID: 38411003 DOI: 10.1039/d3cc06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
CO2 cycloaddition has emerged as a promising approach for producing value-added cyclocarbonates and mitigating greenhouse gas emissions. Although MOF-808 serves as a stable catalyst for cycloaddition, its limited activity constrains broader applications. Through the modification with a fluoride group via a ligand exchange method, F-MOF-808-1.5 exhibits exceptional performance, achieving a 98.8% conversion with 97.8% selectivity to epichlorohydrin carbonate-marking a substantial 100% improvement compared to pristine MOF-808. The defective Zr sites and the electron-withdrawing groups synergistically promote the ring opening of epoxides. Furthermore, the catalyst demonstrates high stability over multiple reaction cycles. Notably, without adding solvents and co-catalysts, F-MOF-808-1.5 outperforms most reported MOF-based catalysts.
Collapse
Affiliation(s)
- Minghui Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhengyan Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhenchen Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- Suzhou Laboratory, Suzhou, 215000, People's Republic of China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- Suzhou Laboratory, Suzhou, 215000, People's Republic of China
| |
Collapse
|
7
|
Zhao Q, Wu J, Jiang Z, Lu D, Xie X, Chen L, Shi X. Novel functional DNA-linked immunosorbent assay for aflatoxin B1 with dual-modality based on hybrid chain reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123474. [PMID: 37801796 DOI: 10.1016/j.saa.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins, which is frequently detected in agricultural products. Herein, a novel functional DNA -linked immunosorbent assay (DLISA) with dual-modality based on hybrid chain reaction (HCR) has been successfully developed for ultrasensitive detection of AFB1. The strategy relies on AFB1 immune-bridged occurrence of HCR and the salt-induced aggregation of gold nanoparticles (AuNPs). An aptamer-initiator stand (Apt-Ini stand) is designed for the AFB1 recognition and the activation of HCR, which can recognize the matched hairpins and cause the crossing-opening of H1 and H2, producing a long double-stranded DNA polymer. The addition of SYBR Green I achieves the fluorescent signal output. Remaining less DNA hairpins were added and stuck on the surface of AuNPs, which were insufficient to protect the AuNPs, resulting in the salt-induced aggregation with the color change from red to blue. The dual-modality provides limits of detections of 1.333 × 10-14 g/mL and 2.471 × 10-15 g/mL, respectively. This DLISA with dual-modality provides not only a colorimetry that can meet the needs of on-the-spot preliminary inspection, but also a fluorescence assay that can acquire the precise results.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhenghong Jiang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinhui Xie
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liye Chen
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
9
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
10
|
García-Nicolás M, Arroyo-Manzanares N, Viñas P. Dispersive Magnetic Solid-Phase Extraction as a Novelty Sample Treatment for the Determination of the Main Aflatoxins in Paprika. Toxins (Basel) 2023; 15:160. [PMID: 36828474 PMCID: PMC9959555 DOI: 10.3390/toxins15020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Dispersive magnetic solid-phase extraction (DMSPE) technique is proposed as a new sensitive and effective sample treatment method for the determination of aflatoxins in paprika samples. DMSPE was followed by ultrahigh-performance liquid chromatography and high-resolution mass spectrometry detection (UHPLC-HRMS) using a non-targeted acquisition mode for the detection of main aflatoxins (aflatoxin G1, G2, B1 and B2) and derivatives. DMSPE was based on the use of magnetic nanocomposite coated with polypyrrole (PPy) polymer and the main experimental parameters influencing the extraction efficiency in adsorption and desorption steps have been studied and optimized. Analyses were performed using 250 µL magnetic PPy nanocomposite into the sample solution, adsorbing the analytes in 30 min and desorbing them with ethyl acetate (2 mL) in 15 min. The method has been validated, obtaining quantification limits between 3.5 and 4.7 µg kg-1 and recoveries between 89.5-97.7%. The high recovery rate, wide detection range and the use for the first time of the reusable Fe3O4@PPy nanomaterial in suspension for solid food matrices, guarantee the usefulness of the method developed for adequate control of aflatoxins levels in paprika. The proposed methodology was applied for the analysis of 31 samples (conventional and organic) revealing the absence of aflatoxins in the samples.
Collapse
Affiliation(s)
| | | | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
11
|
Study on Molecularly Imprinted Polymers Obtained Sonochemically for the Determination of Aflatoxins in Food. Molecules 2023; 28:molecules28020703. [PMID: 36677761 PMCID: PMC9861586 DOI: 10.3390/molecules28020703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Aflatoxins (AFs) are fungi secondary metabolites produced by the Aspergillus family. These compounds can enter the food chain through food contamination, representing a risk to human health. Commercial immunoaffinity columns are widely used for the extraction and cleanup of AFs from food samples; however, their high cost and large solvent consumption create a need for alternative strategies. In this work, an alternative strategy for producing molecularly imprinted polymers (MIPs) was proposed to extract aflatoxins AFB1, AFB2, AFG1, and AFG2 from complex food samples, using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The MIPs were synthesized via a low-cost and rapid (5 min) sonochemical free-radical polymerization, using 1-hydroxy-2-naphthoic acid as a dummy template. MIPs-based solid phase extraction performance was tested on 17 dietary supplements (vegetables, fruits, and cereals), obtaining appreciable recovery rates (65-90%) and good reproducibility (RSD ≤ 6%, n = 3); the selectivity towards other mycotoxins was proved and the data obtained compared with commercial immunoaffinity columns. The proposed strategy can be considered an alternative affordable approach to the classical immunoaffinity columns, since it is more selective and better performing.
Collapse
|
12
|
Molecularly imprinted polymers coated on the surface of metal–organic frameworks combined with liquid chromatography-tandem mass spectrometry for the detection of free N-acetylneuraminic acid in serum of pneumoconiosis patients. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Hongfei Z, Lianhe Y, Wangkun D, Zhongzhi H. Pixel-level rapid detection of Aflatoxin B1 based on 1D-modified temporal convolutional network and hyperspectral imaging. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Valadi FM, Shahsavari S, Akbarzadeh E, Gholami MR. Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study. Carbohydr Polym 2022; 288:119383. [PMID: 35450645 DOI: 10.1016/j.carbpol.2022.119383] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
In this study, a series of Zirconium-based MOF and chitosan composites (MOF-808/chitosan) were synthesized as efficient adsorbent for Cr(VI) ions elimination from aqueous solution. MOF-808/chitosan structure and morphology was characterized by FE-SEM, EDX, XRD, BET, zeta potential analysis, FT-IR, XPS techniques. The kinetic studies ascertained that Cr(VI) adsorption over MOF-808/chitosan followed pseudo-second-order kinetic model. The adsorption isotherms fitted the Langmuir isotherm model, implying on homogeneously adsorption of Cr(VI) on the surface of MOF-808/chitosan. According to the Langmuir model, the maximum capacity was obtained to be 320.0 mg/g at pH 5. Thermodynamic investigation proposed spontaneous (ΔG° < 0), disordered (ΔS° > 0) and endothermic (ΔH° > 0) for adsorption process. Besides, MOF-808/chitosan displayed an appropriate reusability for the elimination of Cr(VI) ions from their aqueous solutions for six successive cycles. DFT study of the adsorption process displayed and confirmed the role of hydrogen bonding and electrostatic attraction simultaneously.
Collapse
Affiliation(s)
| | - Shayan Shahsavari
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran; Nanoclub Elites Association, Tehran, Iran
| | - Elham Akbarzadeh
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| | - Mohammad Reza Gholami
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| |
Collapse
|
15
|
Zeng C, Xu C, Tian H, Shao K, Song Y, Yang X, Che Z, Huang Y. Determination of aflatoxin B1 in Pixian Douban based on aptamer magnetic solid-phase extraction. RSC Adv 2022; 12:19528-19536. [PMID: 35865604 PMCID: PMC9258682 DOI: 10.1039/d2ra02763a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is considered as the most prevalent and toxic mycotoxin in food, and is the indispensable index in the monitoring of Pixian Douban, a traditional chinese fermented bean paste from Sichuan. However, the effeciency of AFB1 detection in Pixian Douban is influenced by the traditional extraction, which is usually complex and time consuming. Therefore, an aptamer-based magnetic solid-phase extraction method was designed for the pretreatment of AFB1 in this sample, for which Fe3O4 was synthesized via the solvothermal method and then a Fe3O4@SiO2–NH2 with a core–shell structure was prepared, followed by an AFB1-aptamer attachment. The validation was performed via an enzyme-linked immunosorbent assay and compared with HPLC-MS/MS. The linearity range of this method was 0.5–2.0 ng mL −1 with R2 of 0.981, and recoveries of AFB1 ranged from 80.19% to 113.92% with RSDs below 7.28% with no significant differences compared to HPLC-MS/MS. The three-time reusability efficiencies of aptamer-MNPs were averaged at 78.24%. The results proved that aptamer-MNPs were high-performance adsorbents for extracting and enriching AFB1, facilitating quick and effective detection of AFB1 in Pixian DouBan samples. An aptamer-based magnetic solid-phase extraction method was designed for the pretreatment of AFB1 from a Pixian Douban sample. It was developed based on aptamer–Fe3O4@SiO2–NH2 with subsequent ELISA validation, showing an efficient result.![]()
Collapse
Affiliation(s)
- Chaoyi Zeng
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China .,Department of Food Biotechnology, Faculty of Biotechnology, Assumption University Bangkok 10240 Thailand
| | - Chi Xu
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Hongyun Tian
- Shandong Institute of Food and Drug Control Jinan 250101 China
| | - Kun Shao
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Yaning Song
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Xiao Yang
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Zhenming Che
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China .,Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute Yibin 644004 China
| | - Yukun Huang
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China .,Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute Yibin 644004 China
| |
Collapse
|
16
|
Wang S, Shao R, Li W, Li X, Sun J, Jiao S, Dai S, Dou M, Xu R, Li Q, Li J. Three-Dimensional Ordered Macroporous Magnetic Inverse Photonic Crystal Microsphere-Based Molecularly Imprinted Polymer for Selective Capture of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18845-18853. [PMID: 35412789 DOI: 10.1021/acsami.2c01014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of an efficient detection method to monitor residual mycotoxins in food is very important to ensure food safety, but the complex food matrix seriously affects the detection sensitivity and accuracy. Here, using a three-dimensional ordered macroporous magnetic inverse photonic crystal microsphere (MPCM) as the supporting material, a molecularly imprinted polymer (MIP) that can selectively recognize aflatoxin B1 (AFB1) was synthesized through the dummy template imprinting strategy. The MPCM@MIP prepared by employing 5,7-dimethoxycoumarin as the template and methacrylic acid as the functional monomer displayed selectivity toward AFB1 (imprinting factor of 1.5) and could be used as a solid-phase extraction material. By coupling with high-performance liquid chromatography, an analytical method targeting AFB1 was established and displayed a wide linear range of 5-1000 ng/mL with a low detection limit of 0.4 ng/mL. The method showed a good recovery rate of 73-92% in AFB1-spiked soy sauce and vinegar samples. Moreover, the MPCM@MIP could be separated from the sample solution easily because of its magnetic performance, displaying a promising future not only in the enrichment of AFB1 to improve the detection sensitivity and accuracy but also in the removal of AFB1 from food and environmental samples.
Collapse
Affiliation(s)
- Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rui Shao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialong Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
17
|
Rezaeefar A, Nemati M, Farajzadeh MA, Afshar Mogaddam MR, Lotfipour F. Development of N and S doped carbon sorbent-based dispersive micro solid phase extraction method combined with dispersive liquid-liquid microextraction for selected mycotoxins from soymilk samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|