1
|
Shamloo E, Shokri S, Sadighara P, Fallahizadeh S, Ghasemi A, Abdi-Moghadam Z, Rezagholizade-shirvan A, Mazaheri Y. Application of nanomaterials for determination and removal of polycyclic aromatic hydrocarbons in food products: A review. Food Chem X 2024; 24:101833. [PMID: 39319098 PMCID: PMC11421272 DOI: 10.1016/j.fochx.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), toxic persistent pollutants, result in adverse impacts to human being health. Among the variety contaminant remediation approaches, nanotechnology was found promising in terms of its efficiency and exceptional size-dependent properties. Nanomaterials also possess high particular surface area, rapid dissolution characteristics, high sorption, magnetic -properties and quantum confinement. Nanoparticles (NPs) have been employed as sorbents in the assessment of PAHs, including carbon NPs, mesoporous silica NPs, metallic species, metal oxides, as well as magnetic and magnetized NPs. Magnetic nanocomposites have demonstrated high efficiency (>99 %) in removing PAHs from food products. Similarly, a magnetic chitosan/molybdenum disulfide nanocomposite exhibited excellent adsorption capacities for PAHs in milk samples. Present research was conducted on multiple academic platforms, including Google Scholar, Science Direct, Elsevier, Springer, Scopus, and PubMed from 2017 to 2024. Various combinations of keywords, such as "PAHs," "extraction," "removal," and "nanomaterials," were used in the search. The aim of this manuscript is to reviews the application of nanotechnologies for the elimination and extraction of PAHs from contaminated food products. The findings of this study offer novel insights into efficient and cost-saving approach and suggest the potential of NPs as promising agents for preconcentration and remediation of PAHs from variety food samples. Also, the obtained results will pave the way for future explorations that will lead to the achievement of maximum efficiency for the analysis and extraction of materials in more diverse matrices. Therefore, it is suggested to investigate the potential of various nanomaterials regarding various matrices in future.
Collapse
Affiliation(s)
- Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Samira Shokri
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Fallahizadeh
- School of Public Health, Yasuj University of Medical Sciences, Yasuj, Iran
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zohreh Abdi-Moghadam
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Yeganeh Mazaheri
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pamık DT, Bozkurt SS, Büyükkamacı N. An ultrasound assisted dispersive micro solid-phase extraction and a composite ionic liquid-metal organic framework for sixteen polycyclic aromatic hydrocarbons analysis in fruit juice and environmental water samples. J Chromatogr A 2024; 1733:465259. [PMID: 39178659 DOI: 10.1016/j.chroma.2024.465259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Aluminum-based metal organic framework composite containing ionic liquid was prepared and used as sorbent for extraction of sixteen polycyclic aromatic hydrocarbons in list of priority pollutants of United States Environmental Protection Agency before their analysis by gas chromatography/mass spectrometry. The dispersive micro solid-phase extraction method, known as a simple and fast method, was preferred as the extraction method. The optimized parameter conditions were 5 mL of sample solution, 10 min sonication by ultrasonic bath, 30 mg of sorbent, 30 °C extraction temperature, 0.1 mL of hexane as elution solvent with 5 min elution time. The suggested method presented that limit of detection and limit of quantification were in the range of 0.01-0.10 μg l-1, and 0.04-0.33 μg L-1, respectively. The intra-day and inter-day repeatability were within the ranges of 1.18-4.88 % and 1.02-5.06 %, respectively. The recoveries for polycyclic aromatic hydrocarbons in peach juice, cherry juice, tap water and rain water samples were obtained in the range of 84.9-99.9 % for spiked 5, 50 and 100 μg l-1 standard polycyclic aromatic hydrocarbons solution.
Collapse
Affiliation(s)
- Duygu Totur Pamık
- The Graduate School of Natural and Applied Science, Dokuz Eylul University, Tınaztepe Campus, Izmir 35390, Turkey
| | - Serap Seyhan Bozkurt
- Faculty of Science, Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, Izmir 35390, Turkey.
| | - Nurdan Büyükkamacı
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylul University, Tınaztepe Campus, Izmir 35390, Turkey
| |
Collapse
|
3
|
Majd M, Gholami M, Fathi A, Sedghi R, Nojavan S. Thin-film solid-phase microextraction of pesticides from cereal samples using electrospun polyvinyl alcohol/modified chitosan/porous organic framework nanofibers. Food Chem 2024; 444:138647. [PMID: 38325082 DOI: 10.1016/j.foodchem.2024.138647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
In this study, a coating of electrospun polyvinyl alcohol/modified chitosan/hydroxy-containing porous organic framework (PVA/MCS/HC-POF) was fabricated and applied as a novel sorbent for thin-film solid-phase microextraction of pesticides from cereal samples, followed by HPLC-UV. The successful fabrication of PVA/MCS/HC-POF was confirmed through characterization tests. The functional group of MCS and a large number of hydroxyl groups on the HC-POF structure contributed to the co-extraction of pesticides. Under the optimum conditions, the calibration plots were linear within the range of 5.0-800 ng mL-1 (r2 ≥ 0.978), and the limits of detection were obtained below 4.0 ng mL-1. The method's precision was investigated through intra-day, inter-day, and film-to-film RSD (%) measurements, all of which were less than 6.5 %, 8.2 %, and 10.0 %, respectively. Furthermore, satisfactory recoveries ranging from 63.3 % to 79.0 % were obtained. Accordingly, the proposed method can be considered a suitable alternative for measuring trace amounts of pesticides in cereal samples.
Collapse
Affiliation(s)
- Mahshid Majd
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran
| | - Marziye Gholami
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Anna Fathi
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
4
|
Liu T, Zhang L, Pan L, Yang D. Polycyclic Aromatic Hydrocarbons' Impact on Crops and Occurrence, Sources, and Detection Methods in Food: A Review. Foods 2024; 13:1977. [PMID: 38998483 PMCID: PMC11240991 DOI: 10.3390/foods13131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a category of persistent organic pollutants that pose a global concern in the realm of food safety due to their recognized carcinogenic properties in humans. Food can be contaminated with PAHs that are present in water, air, or soil, or during food processing and cooking. The wide and varied sources of PAHs contribute to their persistent contamination of food, leading to their accumulation within these products. As a result, monitoring of the levels of PAHs in food is necessary to guarantee the safety of food products as well as the public health. This review paper attempts to give its readers an overview of the impact of PAHs on crops, their occurrence and sources, and the methodologies employed for the sample preparation and detection of PAHs in food. In addition, possible directions for future research are proposed. The objective is to provide references for the monitoring, prevention, and in-depth exploration of PAHs in food.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| | - Li Zhang
- Suzhou Vocational University Center for Food Safety and Nutrition, Suzhou 215104, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daifeng Yang
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| |
Collapse
|
5
|
Fang Y, Zhou F, Zhang Q, Deng C, Wu M, Shen HH, Tang Y, Wang Y. Hierarchical covalent organic framework hollow nanofibers-bonded stainless steel fiber for efficient solid phase microextraction. Talanta 2024; 267:125223. [PMID: 37748274 DOI: 10.1016/j.talanta.2023.125223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
The solid phase microextraction (SPME) technique has been widely applied in the detection of trace compounds in food, environment, and medicine due to its advantages of easy quantification, simple operation, and greenness. Herein, a templating strategy with SiO2 nanofibers (SiO2 NFs) is reported to synthesize hierarchical covalent organic framework hollow nanofibers (COF HNFs)-coated stainless steel fiber for SPME application with dramatically enhanced enrichment performance for trace analytes. The construction of hierarchical porosity inside the microextraction coatings can not only increase the specific surface area of COF extraction materials for obtaining more abundant adsorption sites but also greatly improve the accessibility of internal COF micropores. Moreover, the thicknesses of the microextraction COF coatings can be facilely tailored by adjusting the amount of SiO2 NFs pre-assembled on the SPME fibers. On the headspace solid phase microextraction (HS-SPME) of antimicrobial residues, the developed COF TpBD-Me2 HNFs-12 fibers achieve enrichment factors of 2026 and 1823 for thymol and carvacrol respectively, which are significantly higher than those obtained from the counterpart COF TpBD-Me2-bonded fiber (8.5-8.2 times) and commercial CAR/PDMS fiber (3.3-4.4 times). Furthermore, the developed method was demonstrated to have wide linearity (0.1-50 μg L-1), low limits of detection (0.010 μg L-1), good thermal stability and excellent reusability (>60 recycles), demonstrating great application potential in the extraction of trace organic pollutants. The strategy developed in this work is applicable to preparing a variety of topological COF (e.g., TpBD, TpPa-1) HNFs-bonded fibers.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Fangzhou Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Qian Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Chao Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, Zhejiang, PR China.
| | - Minying Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Vic, 3800, Australia
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
| | - Yajun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, Zhejiang, PR China.
| |
Collapse
|
6
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Bagheri AR, Aramesh N, Lee HK. Chitosan- and/or cellulose-based materials in analytical extraction processes: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Saad Aldoori M, Merdivan M, Altınışık Tağaç A. Metal organic framework/clay composite for micro-dispersive solid-phase extraction of sulfonamides and penicillins in milk, and synthetic urine solution coupling with HPLC/DAD detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Pua A, Goh RMV, Huang Y, Tang VCY, Ee KH, Cornuz M, Liu SQ, Lassabliere B, Yu B. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food Chem 2022; 388:132971. [PMID: 35462220 DOI: 10.1016/j.foodchem.2022.132971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022]
Abstract
Coffee has attracted significant research interest owing to its complex volatile composition and aroma, which imparts a pleasant sensorial experience that remains challenging to analyse and interpret. This review summarises analytical challenges associated with coffee's volatile and matrix complexity, and recent developments in instrumental techniques to resolve them. The benefits of state-of-the-art analytical techniques applied to coffee volatile analysis from experimental design to sample preparation, separation, detection, and data analysis are evaluated. Complementary method selection coupled with progressive experimental design and data analysis are vital to unravel the increasing comprehensiveness of coffee volatile datasets. Considering this, analytical workflows for conventional, targeted, and untargeted coffee volatile analyses are thus proposed considering the trends towards sorptive extraction, multidimensional gas chromatography, and high-resolution mass spectrometry. In conclusion, no single analytical method addresses coffee's complexity in its entirely, and volatile analysis must be tailored to the key objectives and concerns of the analyst.
Collapse
Affiliation(s)
- Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Rui Min Vivian Goh
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Yunle Huang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore; Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore
| | - Vivien Chia Yen Tang
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Kim-Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Maurin Cornuz
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Sigapore.
| | - Benjamin Lassabliere
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore
| | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, Singapore 138623, Sigapore.
| |
Collapse
|
10
|
Separation and Enrichment of Selected Polar and Non-Polar Organic Micro-Pollutants—The Dual Nature of Quaternary Ammonium Ionic Liquid. Processes (Basel) 2022. [DOI: 10.3390/pr10081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the dual nature of quaternary ammonium ionic liquid–didecyldimethylammonium perchlorate, [DDA][ClO4], was evaluated. A novel and sensitive in situ ionic liquid dispersive liquid–liquid microextraction method (in situ IL-DLLME) combined with magnetic retrieval (MR) was applied to enrich and separate selected organic micro-pollutants, both polar and non-polar. The magnetic support relied on using unmodified magnetic nanoparticles (MNPs) prepared by the co-precipitation of Fe2+/Fe3+ (Fe3O4). The separation technique was on-lined with high-performance liquid chromatography (HPLC–DAD) verified by inverse gas chromatography. An anion exchanger, NaClO4, was added to form an in situ hydrophobic IL. The fine droplets of [DDA][ClO4], molded in aqueous samples, functioned as an extractant for isolating the studied compounds. Then the carrier MNPs were added to separate the IL from the water matrix. The supernatant-free sample was desorbed in acetonitrile (MeCN) and injected into the HPLC system. The applicability of [DDA][ClO4] as an extraction solvent in the MR in situ IL-DLLME method was checked by the selectivity parameters (Sij∞) at infinite dilution. The detection limit (LOD) ranged from 0.011 to 0.079 µg L−1 for PAHs and from 0.012 to 0.020 µg L−1 for benzophenones. The method showed good linearity with correlation coefficients (r2) ranging from 0.9995 to 0.9999.
Collapse
|
11
|
Kang JY, Shi YP. Recent advances and application of carbon nitride framework materials in sample preparation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
|