1
|
Wei K, Zhang L, Li N, Gao K, Li X, Li J, Wang S, Mao X. A colorimetric biosensor composed of split aptamers and mannan oligosaccharide nanozyme to monitor synthetic His-tagged food biomolecules. Food Chem 2025; 466:142108. [PMID: 39612832 DOI: 10.1016/j.foodchem.2024.142108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
Food synthetic biology is garnering increasing attention for its potential to generate bioactive components. His-tag is one of the most popular tags used in food synthetic biology. Herein, His-tag, His-tagged proteins, and His-tagged peptides were adopted as the model targets, and a commonly used biosensor was developed to monitor His-tagged food biomolecules, using split aptamers as specific recognition probes and nanozyme as the transduction element. A strategy to generate high-affinity split aptamers was proposed, obtaining a pair of split aptamers for His-tag (Kd = 132 nM). AuNPs-mannan oligosaccharide nanozyme was fabricated and combined with the split aptamers to develop the biosensor. The functional mechanism of the probes and the nanozyme was revealed. The biosensor demonstrated good sensitivity, selectivity, and practicability when analyzing synthetic His-tagged proteins and peptides in real-world samples, with a limit of detection of 12.44 nM. The strategies provide robust reference for developing analytical methods for synthetic biomolecules.
Collapse
Affiliation(s)
- Kaiyue Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Ling Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Nan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Kunpeng Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| |
Collapse
|
2
|
Zhou J, Wang Y, Zheng L, Li H. An Aptamer-Initiated Catalytic hairpin assembly fluorescent biosensor for simultaneous detection of major seafood allergens in food system. Microchem J 2025; 208:112315. [DOI: 10.1016/j.microc.2024.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2024; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
4
|
Yue F, Hu M, Bai M, Guo Y, Sun X, Zhao G. An exonuclease III-driven dual-mode aptasensor based on Au-Pd@Fc nanozyme and magnetic separation pretreatment for aminoglycoside antibiotics detection. Food Chem 2024; 460:140480. [PMID: 39032300 DOI: 10.1016/j.foodchem.2024.140480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
A novel dual-mode aptasensor was constructed for aminoglycoside antibiotics (AAs) detection by using a broad-spectrum aptamer as a biorecognition element, and Au-Pd@Fc functionalized by signal DNA as nanoprobes. In electrochemical mode, the target-induced cyclic amplification reaction run under the action of exonuclease-III, which increased the number of nanoprobes on the electrode surface. AAs could be quantitatively detected with LOD of 0.0355 ± 0.00613 nM. In colorimetric mode, the Au-Pd@Fc nanozyme catalyzed the color reaction of 3,3',5,5'-tetramethylbenzidine. The blue-shifted absorbance will be observed with the change of AAs concentration, and the LOD was 0.0458 ± 0.00572 nM. Furthermore, a magnetic molecular-imprinted material capable of specific adsorption of AAs was prepared on milk sample pretreatment. The aptasensor was used to detect 10 kinds of AAs in milk and the recoveries were 97.19 ± 4.41% ∼ 98.70 ± 4.45% and 96.38 ± 3.53%-97.54 ± 4.13% in electrochemical and colorimetric methods. This work provided a theoretical basis for the application of aptamers in simultaneous detection of antibiotics.
Collapse
Affiliation(s)
- Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China; School of Agricultural and Bioengineering, Heze University, No. 2269 Daxue Road, Heze 274015, Shandong Province, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China
| | - Mengyuan Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China.
| | - Guihong Zhao
- School of Agricultural and Bioengineering, Heze University, No. 2269 Daxue Road, Heze 274015, Shandong Province, China.
| |
Collapse
|
5
|
Wang Y, Chen H, Zhao T, Wang J, Wu Y, Liu J, Zhang Y, Zhu X. Lattice matching enables construction of CaS@NaYF 4 heterostructure with synergistically enhanced water resistance and luminescence for antibiotic detection. Mikrochim Acta 2024; 191:485. [PMID: 39060720 DOI: 10.1007/s00604-024-06568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Rare earth (RE)-doped CaS phosphors have been widely used as light-emitting components in various fields. Nevertheless, the application of nanosized CaS particles is still significantly limited by their poor water resistance and weak luminescence. Herein, a lattice-matching strategy is developed by growing an inert shell of cubic NaYF4 phase on the CaS luminescent core. Due to their similarity in crystal structure, a uniform core-shell heterostructure (CaS:Ce3+@NaYF4) can be obtained, which effectively protects the CaS:Ce3+ core from degradation in aqueous environment and enhances its luminescence intensity. As a proof of concept, a label-free aptasensor is further constructed by combining core-shell CaS:Ce3+@NaYF4 and Au nanoparticles (AuNPs) for the ultrasensitive detection of kanamycin antibiotics. Based on the efficient FRET process, the detection linear range of kanamycin spans from 100 to 1000 nM with a detection limit of 7.8 nM. Besides, the aptasensor shows excellent selectivity towards kanamycin antibiotics, and has been successfully applied to the detection of kanamycin spiked in tap water and milk samples, demonstrating its high potential for sensing applications.
Collapse
Affiliation(s)
- Yao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Huadong Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tonghan Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Signal-off nanozyme-based colorimetric aptasensor for sensitive detection of ampicillin using MnO 2 nanoflowers and gold nanoparticles. Anal Biochem 2024; 687:115459. [PMID: 38182031 DOI: 10.1016/j.ab.2024.115459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
The combination of nanomaterials possessing distinct characteristics and the precision of aptamers facilitates the creation of biosensors that exhibit exceptional selectivity and sensitivity. In this manuscript, we present a highly sensitive aptasensor that utilizes the distinctive characteristics of MnO2 nanoflowers and gold nanoparticles to selectively detect ampicillin (AMP). In this aptasensor, the mechanism of signal change is attributed to the difference in the oxidase-mimicking activity of MnO2 nanoflowers in the presence of a free sequence. The inclusion of AMP hindered the creation of a double-stranded DNA configuration through its binding to the aptamer, resulting in an observable alteration in absorbance. The relative absorbance varied linearly with the concentration of AMP in the range of 70 pM to 10 nM with a detection limit of 21.7 pM. In general, the colorimetric aptasensor that has been developed exhibits exceptional selectivity and remarkable stability. It also demonstrates favorable performance in human serum, making it a highly reliable diagnostic tool. Additionally, its versatility is noteworthy as it holds great potential for detecting various antibiotics present in complex samples by merely replacing the utilized sequences with new ones.
Collapse
Affiliation(s)
- Masoomeh Esmaelpourfarkhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
8
|
Kusuma SAF, Harmonis JA, Pratiwi R, Hasanah AN. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. SENSORS (BASEL, SWITZERLAND) 2023; 23:8172. [PMID: 37837002 PMCID: PMC10575141 DOI: 10.3390/s23198172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
During the last decade, advances have been made in nanotechnology using nanomaterials, leading to improvements in their performance. Gold nanoparticles (AuNPs) have been widely used in the field of sensor analysis and are also combined with certain materials to obtain the desired characteristics. AuNPs are commonly used as colorimetric sensors in detection methods. In developing an ideal sensor, there are certain characteristics that must be met such as selectivity, sensitivity, accuracy, precision, and linearity, among others. Various methods for the synthesis of AuNPs and conjugation with other components have been carried out in order to obtain good characteristics for their application. AuNPs can be applied in the detection of both heavy metals and biological molecules. This review aimed at observing the role of AuNPs in its application. The synthesis of AuNPs for sensors will also be revealed, along with their characteristics suitable for this role. In the application method, the size and shape of the particles must be considered. AuNPs used in heavy metal detection have a particle size of around 15-50 nm; in the detection of biological molecules, the particle size of AuNPs used is 6-35 nm whereas in pharmaceutical compounds for cancer treatment and the detection of other drugs, the particle size used is 12-30 nm. The particle sizes did not correlate with the type of molecules regardless of whether it was a heavy metal, biological molecule, or pharmaceutical compound but depended on the properties of the molecule itself. In general, the best morphology for application in the detection process is a spherical shape to obtain good sensitivity and selectivity based on previous studies. Functionalization of AuNPs with conjugates/receptors can be carried out to increase the stability, sensitivity, selectivity, solubility, and plays a role in detecting biological compounds through conjugating AuNPs with biological molecules.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Jacko Abiwaqash Harmonis
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| |
Collapse
|
9
|
Wang H, Ma L, Jin Z, Cui Z, Yang H, Miao M. Highly sensitive fluorescence detection of tobacco mosaic virus RNA based on polysaccharide and ARGET ATRP double signal amplification. Talanta 2023; 257:124360. [PMID: 36801566 DOI: 10.1016/j.talanta.2023.124360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Plant diseases caused by tobacco mosaic viruses (TMV) reduce the yield and quality of crops and cause significant losses. Early detection and prevention of TMV has important value of research and reality. Herein, a fluorescent biosensor was constructed for highly sensitive detection of TMV RNA (tRNA) based on the principle of base complementary pairing, polysaccharides and atom transfer radical polymerization by electron transfer activated regeneration catalysts (ARGET ATRP) as double signal amplification strategy. The 5'-end sulfhydrylated hairpin capture probe (hDNA) was first immobilized on amino magnetic beads (MBs) by a cross-linking agent, which specifically recognizes tRNA. Then, chitosan binds to BIBB, providing numerous active sites for fluorescent monomer polymerization, which successfully significantly amplifying the fluorescent signal. Under optimal experimental conditions, the proposed fluorescent biosensor for the detection of tRNA has a wide detection range from 0.1 pM to 10 nM (R2 = 0.998) with a limit of detection (LOD) as low as 1.14 fM. In addition, the fluorescent biosensor showed satisfactory applicability for the qualitative and quantitative analysis of tRNA in real samples, thereby demonstrating the potential in the field of viral RNA detection.
Collapse
Affiliation(s)
- Hesen Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zhenyu Jin
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Zhenzhen Cui
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
10
|
Anbiaee G, Feizpour R, Khoshbin Z, Ramezani M, Alibolandi M, Taghdisi SM, Abnous K. A simple tag-free fluorometric aptasensing assay for sensitive detection of kanamycin. Anal Biochem 2023; 672:115183. [PMID: 37169123 DOI: 10.1016/j.ab.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
A novel label-free and enzyme-free fluorescence aptasensing assay that uses Sybr Green I (SGI) as the signal indicator for the kanamycin determination was designed. An aptamer-complementary strand (Apt/CP) conjugate was formed, which provided the intercalation sites for SGI and, therefore, a considerable fluorescent signal. The introduction of the target led to the separation of Apt from CP due to the high affinity of Apt toward kanamycin. Hence, the suitable intercalation gaps reduced, which resulted in a decrease in the generated fluorescent signal. Under optimized conditions, a broad linear concentration range from 0.05 μM to 20 μM and a limit of detection of 11.76 nM were obtained, confirming the ability of the fabricated aptasensor for sensitive and specific kanamycin detection in real samples such as milk and human serum. The aptasensing method has the potential to be extensively employed in the food industry and veterinary science due to its simplicity, sensitivity, user-friendly, and capability of on-site detection of kanamycin.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Feizpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Zhou X, Li J, Hu Y, Wu Y, Wang Y, Ning G. A novel colorimetric assay for sensitive detection of kanamycin based on the aptamer-regulated peroxidase-mimicking activity of Co 3O 4 nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2441-2447. [PMID: 37157837 DOI: 10.1039/d3ay00304c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Kanamycin is used widely in livestock farming due to its antimicrobial properties and low cost, but has led to antibiotic residues in food, which can damage human health. Therefore, there is an urgent need for convenient technology that can be used to detect kanamycin rapidly. We found that Co3O4 nanoparticles (NPs) possessed peroxidase-like activity that catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine to change color. Interestingly, a target-specific aptamer could regulate the catalytic activity of Co3O4 NPs and inhibit this effect through aptamer-target binding. On the basis of a colorimetric assay combined with an aptamer-regulatory mechanism, the linear range for quantitative detection of kanamycin was 0.1-30 μM, the minimum limit of detection was 44.2 nM, and the total time needed for detection was 55 min. Moreover, this "aptasensor" displayed excellent selectivity and could be applied to detect KAN in milk samples. Our sensor might have promising applications for kanamycin detection in animal husbandry and agricultural products.
Collapse
Affiliation(s)
- Xuan Zhou
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Jiaxin Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yuda Hu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208, Changsha, China.
| |
Collapse
|
12
|
Tu Y, Wu J, Chai K, Hu X, Hu Y, Shi S, Yao T. A turn-on unlabeled colorimetric biosensor based on aptamer-AuNPs conjugates for amyloid-β oligomer detection. Talanta 2023; 260:124649. [PMID: 37167677 DOI: 10.1016/j.talanta.2023.124649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Amyloid-β oligomers (AβO) have been identified as core biomarkers for early diagnosis of Alzheimer's disease (AD). For the first time, a "turn-on" unlabeled colorimetric aptasensor based on aptamer-polythymine (polyT)-polyadenine (polyA)-gold nanoparticles (pA-pT-apt@AuNPs) was developed for highly sensitive and specific detection of amyloid-β1-40 oligomers (Aβ40-O). In this system, polyA sequence could preferentially anchor onto AuNPs surface as well as reduce the non-specific adsorption, and the aptamer could form upright conformation for the specific recognition of Aβ40-O. The aggregation of pA-pT-apt@AuNPs was induced by MgCl2. However, the addition of Aβ40-O enabled the aptamer fold adaptively upon recognition and aptamer-Aβ40-O complex formed surrounding AuNPs, effectively stabilizing pA-pT-apt@AuNPs against salt-induced aggregation, therefore the color of pA-pT-apt@AuNPs solution still retained red. Based on this principle, the proposed aptasensor exhibited high sensitivity with the limit of detection of 3.03 nM and a linear detectable range from 10.00 nM to 100.0 nM. The superb sensitivity was achieved via the optimization of the length of polyA and polyT spacer. This pA-pT-apt@AuNPs based colorimetric aptasensor provides a rapid, cost-effective, highly sensitive detection method for Aβ40-O, which is valuable for the early diagnosis of AD.
Collapse
Affiliation(s)
- Ying Tu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China
| | - Junjie Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China
| | - Keke Chai
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China
| | - Xiaochun Hu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China
| | - Yuan Hu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China
| | - Shuo Shi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China
| | - Tianming Yao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping R.d., Shanghai, 200092, PR China.
| |
Collapse
|
13
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
14
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
15
|
Esmaelpourfarkhani M, Mohammad Danesh N, Ramezani M, Alibolandi M, Khakshour Abdolabadi A, Abnous K, Mohammad Taghdisi S. Split aptamer-based fluorescent biosensor for ultrasensitive detection of cocaine using N-methyl mesoporphyrin IX as fluorophore. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
16
|
Chovelon B, Peyrin E, Ragot M, Salem N, Nguyen TG, Auvray B, Henry M, Petrillo MA, Fiore E, Bessy Q, Faure P, Ravelet C. Nile blue as reporter dye in salt aggregation based-colorimetric aptasensors for peptide, small molecule and metal ion detection. Anal Chim Acta 2023; 1243:340840. [PMID: 36697182 DOI: 10.1016/j.aca.2023.340840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Herein, we report a novel approach for the design of a colorimetric aptasensor, relying on a Dye Salt Aggregation-based Colorimetric Oligonucleotide assay (DYSACO assay). This method is based on the use of an intercalating agent, Nile Blue (NB), whose aggregation capacities (and thus modification of its absorption spectrum) are drastically amplified by adding salts to the working solution. The presence of an aptamer could protect NB from such aggregation process due to its intercalation into double-stranded DNA and/or interaction with nucleobases. In response to the addition of the specific ligand, the competition between NB and the target for binding to the aptamer occurs, resulting in an increase in the dye salt aggregation and then in the blue-to-blank color change of the solution. The proof-of-principle was demonstrated by employing the anti-l-tyrosinamide aptamer and the assay was successfully applied to the trace enantiomer detection, allowing the detection of an enantiomeric impurity down to approximately 2% in a non-racemic sample. Through a reversed mechanism based on the increased capture of NB by DNA upon analyte binding, the sensing platform was further demonstrated for the Hg(II) detection. Water samples of different origin were spiked with Hg(II) analyte at final range concentrations comprised between (0.5-15 μM). An excellent overall recovery of 122 ± 14%; 105 ± 14%; 99 ± 9%; was respectively obtained from river, tap and mineral water, suggesting that the sensor can be used under real sample conditions. The assay was also shown to work for sensing the ochratoxin A and d-arginine vasopressin compounds, revealing its simplicity and generalizability potentialities.
Collapse
Affiliation(s)
- Benoît Chovelon
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France; Département de Biochimie, Toxicologie et Pharmacologie, CHU de Grenoble Site Nord - Institut de Biologie et de Pathologie, F-38041, Grenoble, France
| | - Eric Peyrin
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France.
| | - Mailys Ragot
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Nassim Salem
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Truong Giang Nguyen
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Benjamin Auvray
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Mickael Henry
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Mel-Alexandre Petrillo
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Emmanuelle Fiore
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Quentin Bessy
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France
| | - Patrice Faure
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France; Département de Biochimie, Toxicologie et Pharmacologie, CHU de Grenoble Site Nord - Institut de Biologie et de Pathologie, F-38041, Grenoble, France
| | - Corinne Ravelet
- Département de Pharmacochimie Moléculaire, UMR 5063, Grenoble Alpes University - CNRS, France.
| |
Collapse
|
17
|
Liu Y, Guan B, Xu Z, Wu Y, Wang Y, Ning G. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121953. [PMID: 36242838 DOI: 10.1016/j.saa.2022.121953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Kanamycin was a group of essential antibiotics generally served in treating infections of animals which leached into the environment residual in food, causing health concerns. Thus, selective and sensitive monitoring of kanamycin was significant for food safety. In this work, split aptamers were used as templates to prepare fluorescent Cu/Ag NCs for detection of kanamycin. According to the impressive affinity of the aptamer to kanamycin, two different detection modes were designed using kanamycin aptamer as a recognition molecule, in which one was to combine split aptamer Apt-1 with Apt-2 to form an entangled DNA as a Cu/Ag NCs template, the other was to associate the normal aptamer after encirclement to form Cu/Ag NCs templates. After the addition of kanamycin, the fluorescence signals of the Cu/Ag NCs synthesized in the two modes were both enhanced, but the approach with split aptamer exhibited a superior observable sensitivity than that of the normal type. The detection range showed a well linear relationship between 80 nM and 10 μM when the emission wavelength was 560 nm, and the detection limit was 13.3 nM. In addition, when streptomycin, oxytetracycline, chloramphenicol and chlortetracycline were involved in the selective interference experiment under the same conditions, the fluorescence intensity of the system performed no significant changes. The results demonstrated that this method possessed favorable specificity and selectivity for the assay of kanamycin, proficiently achieving efficient, rapid and sensitive evaluation of kanamycin in the milk samples.
Collapse
Affiliation(s)
- Yan Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China; School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Baibing Guan
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China
| | - Ziqi Xu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208 Changsha, China.
| |
Collapse
|
18
|
Qi X, Zhang L, Wang X, Chen S, Wang X. A label-free colorimetric aptasensor based on an engineered chimeric aptamer and Au@FeP nanocomposites for the detection of kanamycin. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Zhou J, Wang Y, Zhou C, Zheng L, Fu L. A ratiometric fluorescent aptasensor based on EXPAR to detect shellfish tropomyosin in food system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chi Z, Wang Q, Gu J. Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity. Analyst 2023; 148:487-506. [PMID: 36484756 DOI: 10.1039/d2an01850k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nanozymes have been widely used to construct colorimetric sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. The emergence of nanozymes greatly enhanced the detection sensitivity and stability of the colorimetric sensing platform. Recent significant research has focused on designing various sensors based on nanozymes with peroxidase-like activity for colorimetric analysis. However, with the deepening of research, nanozymes with peroxidase-like activity has also exposed some problems, such as weak affinity and low catalytic activity. In view of the above issues, existing investigations have shown that the catalytic properties of nanozymes can be improved by adding surface modification and changing the structure of nanomaterials. In this review, we summarize the recent trends and advances of colorimetric sensors based on several typical nanozymes with peroxidase-like activities, including noble metals, metal oxides, metal sulfides/metal selenides, and carbon and metal-organic frameworks (MOF). Finally, the current challenges and prospects of colorimetric sensors based on nanozymes with peroxidase-like activity are summarized and discussed to provide a reference for researchers in related fields.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
21
|
Zhan H, Yang S, Li C, Liu R, Chen W, Wang X, Zhao Y, Xu K. A highly sensitive competitive aptasensor for AFB 1 detection based on an exonuclease-assisted target recycling amplification strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:70-78. [PMID: 36477094 DOI: 10.1039/d2ay01617f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a typical mycotoxin found in agricultural products, and poses a huge threat to both humans and animals. Accurate and rapid measurement of AFB1 is essential for environmental analysis and food safety. Based on molecular docking simulation design and exonuclease-assisted target recycling amplification, we designed a competitive fluorescence aptasensor to detect AFB1 rapidly and sensitively. According to the molecular docking simulations, a complementary strand (cDNA) was designed by searching for potential binding sites of the aptamer, which had the lowest binding energy. Magnetic beads modified with biotin-Apt were used as the capture probe, while FAM-labeled cDNA acted as the reporter probe. By using EXO I for target recycling amplification, this aptasensor was highly sensitive and selective for AFB1. The detection limit of the suggested aptasensor under optimal conditions was 0.36 ng mL-1 (S/N = 3) in the range of 1-1000 ng mL-1 (R2 = 0.991). The developed aptasensor was successfully used to analyze AFB1 in oil samples.
Collapse
Affiliation(s)
- Hongyan Zhan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Si Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Rong Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Wenliang Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yansong Zhao
- Department of Ophthalmology, Clinical Medical Institute, Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261031, China
| | - Kexin Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
22
|
Moabelo KL, Lerga TM, Jauset-Rubio M, Sibuyi NRS, O’Sullivan CK, Meyer M, Madiehe AM. A Label-Free Gold Nanoparticles-Based Optical Aptasensor for the Detection of Retinol Binding Protein 4. BIOSENSORS 2022; 12:1061. [PMID: 36551028 PMCID: PMC9775657 DOI: 10.3390/bios12121061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 05/31/2023]
Abstract
Retinol-binding protein 4 (RBP4) has been implicated in insulin resistance in rodents and humans with obesity and T2DM, making it a potential biomarker for the early diagnosis of T2DM. However, diagnostic tools for low-level detection of RBP4 are still lagging behind. Therefore, there is an urgent need for the development of T2DM diagnostics that are rapid, cost-effective and that can be used at the point-of-care (POC). Recently, nano-enabled biosensors integrating highly selective optical detection techniques and specificity of aptamers have been widely developed for the rapid detection of various targets. This study reports on the development of a rapid gold nanoparticles (AuNPs)-based aptasensor for the detection of RBP4. The retinol-binding protein aptamer (RBP-A) is adsorbed on the surface of the AuNPs through van der Waals and hydrophobic interactions, stabilizing the AuNPs against sodium chloride (NaCl)-induced aggregation. Upon the addition of RBP4, the RBP-A binds to RBP4 and detaches from the surface of the AuNPs, leaving the AuNPs unprotected. Addition of NaCl causes aggregation of AuNPs, leading to a visible colour change of the AuNPs solution from ruby red to purple/blue. The test result was available within 5 min and the assay had a limit of detection of 90.76 ± 2.81 nM. This study demonstrates the successful development of a simple yet effective, specific, and colorimetric rapid assay for RBP4 detection.
Collapse
Affiliation(s)
- Koena L. Moabelo
- Nanobiotechnology Research Group, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| | - Teresa M. Lerga
- Interfibio Research Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- Interfibio Research Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| | - Ciara K. O’Sullivan
- Interfibio Research Group, Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| | - Abram M. Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of Western Cape, Bellville 7535, South Africa
| |
Collapse
|
23
|
Liu Z, Deng K, Zhang H, Li C, Wang J, Huang H, Yi Q, Zhou H. Dual-mode photoelectrochemical/electrochemical sensor based on Z-scheme AgBr/AgI-Ag-CNTs and aptamer structure switch for the determination of kanamycin. Mikrochim Acta 2022; 189:417. [PMID: 36242691 DOI: 10.1007/s00604-022-05523-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 10/17/2022]
Abstract
A "signal-on" dual-mode aptasensor based on photoelectrochemical (PEC) and electrochemical (EC) signals was established for kanamycin (Kana) assay by using a novel Z-scheme AgBr/AgI-Ag-CNTs composite as sensing platform, an aptamer structure switch, and K3[Fe(CN)6] as photoelectron acceptor and electrochemical signal indicator. The aptamer structure switch was designed to obtain a "signal-off" state, which included an extended Kana aptamer (APT), one immobilized probe (P1), and one blocking probe (P2) covalently linked with graphdiyne oxide (GDYO) nanosheets. P1, P2, and aptamer formed the double helix structure, which resulted in the inhibited photocurrent intensity because of the weak conductivity of double helix layer and serious electrostatic repulsion of GDYO towards K3[Fe(CN)6]. In the presence of Kana, APT specifically bound to the target and dissociated from P1 and P2, and thus, a "signal-on" state was initiated by releasing P2-GDYO from the platform. Based on the sensing platform and the aptamer structure switch, the dual-mode aptasensor realized the linear determination ranges of 1.0 pM-2.0 μM with a detection limit (LOD) of 0.4 pM (for PEC method) and 10 pM-5.0 μM with a LOD of 5 pM (for EC method). The aptasensor displayed good application potential for Kana test in real samples.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.,Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China. .,Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Heng Zhang
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chunxiang Li
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jinglun Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Qingfeng Yi
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hu Zhou
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
24
|
Target-induced gold nanoparticles colorimetric sensing coupled with aptamer for rapid and high-sensitivity detecting kanamycin. Anal Chim Acta 2022; 1230:340377. [DOI: 10.1016/j.aca.2022.340377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
25
|
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022; 414:8255-8261. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Based on aptamer recognition and target-mediated competitive hybridization of hairpin probes, we developed a fluorescence sensor for kanamycin (KAN) detection. The aptamer and KAN binding will open hairpin H1 to release the trigger DNA fragment, which can initiate the competitive hybridization between hairpins H2 and H3. Then, exonuclease III (Exo III) can cleave H2 and H3 to produce numerous DNA3 and DNA4. Through the synergetic hybridization among DNA1, DNA2, DNA3, and DNA4, an active Mg2+-DNAzyme can be formed. The cleavage reaction toward FAM-BHQ-modified DNA2 will produce a high fluorescence signal for KAN assay. Through Exo III-guided cleavage and Mg2+-DNAzyme-based catalysis, the sensor exhibits high sensitivity, with a detection limit of 3.1 fM. This method is robust and has been applied to the detection of KAN in milk and water samples with good accuracy and reliability. Our developed fluorescence sensor exhibits the advantages of simple operation, high sensitivity, and good robustness, which are beneficial for KAN detection in food samples.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
26
|
Gao X, Sun Z, Wang X, Zhang W, Xu D, Sun X, Guo Y, Xu S, Li F. Construction of a dual-model aptasensor based on G-quadruplexes generated via rolling circle amplification for visual/sensitive detection of kanamycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156276. [PMID: 35644384 DOI: 10.1016/j.scitotenv.2022.156276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
A dual-model colorimetric and electrochemical aptasensor was designed using a large number of G-quadruplexes generated by rolling circle amplification (RCA). Specific binding between target and aptamer during RCA yielded large numbers of G-quadruplexes. A colorimetric sensor was fabricated based on the interaction between the G-quadruplex and hemin, which altered the 3,3',5,5'-Tetramethylbenzidine (TMB)-catalyzed color reaction and facilitated the visual and semi-quantitative detection of kanamycin. An electrochemical sensor was constructed based on the strong interaction between the G-quadruplex and the methylene blue electrical signal molecule. Combining nanocomposites multi-walled carbon nanotubes-chitosan/gold nanoparticles (MWCNTs-CS/AuNPs) and RCA realized double-amplified electrochemical signals. Under optimized conditions, a linear relationship was obtained as the logarithm of different concentrations of kanamycin (KAN). The colorimetric aptasensor had a linear range of 1 × 102 nM to 1 × 103 nM with a detection limit of 1.949 nM. The electrochemical aptasensor had wider a linear range from 1 × 10-3 nM to 2.5 × 103 nM and a lower detection limit of 0.333 pM. The sensor combined the advantages of simple colorimetric visualization with the ultra-precision of electrochemical methods. Aptasensor showed good specificity and prevented interference. Furthermore, the prepared dual-model aptasensor facilitated the practical monitoring of KAN in milk.
Collapse
Affiliation(s)
- Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xiaoyang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China.
| |
Collapse
|
27
|
Ma Q, Qiao J, Liu Y, Qi L. Poly(N,N-dimethylacrylamide)-stabilized gold nanoparticles as nanozymes with enhancement of catalytic activity for detection of lomefloxacin. Anal Bioanal Chem 2022; 414:6047-6054. [PMID: 35687152 DOI: 10.1007/s00216-022-04164-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Recently, polymer-protected gold nanoparticles (AuNPs) have attracted extensive attention due to their good catalytic activities. However, how to regulate their catalytic activities by changing the polymer chain morphologies or the interactions between the ligands and the analytes through external stimuli is still a great challenge. This study describes a simple synthesis of AuNPs capped by thermo-responsive poly(N,N-dimethylacrylamide) (PDMAM). In comparison with three kinds of PDMAMs@AuNPs, PDMAM-2@AuNPs exhibited better peroxidase-mimic ability via the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) to generate oxidized TMB (oxTMB). Interestingly, its catalytic activity could be regulated by changing environmental temperature. Importantly, the addition of the antibiotic lomefloxacin endowed the PDMAM-2@AuNPs with enhancement in catalytic efficiency due to electrostatic interactions and the increased levels of reactive oxygen species. Based on this principle, a protocol for highly selective and sensitive monitoring of lomefloxacin has been constructed with the color change from pale blue to deep blue. The ultraviolet-visible absorbance of oxTMB at the wavelength of 650 nm showed a good linear relationship with antibiotic concentration in the range of 0.25-10.0 µM (R2 = 0.990). The limit of detection was 0.1 µM. The practical application of the proposed protocol with the promoted peroxidase-mimic activity for the measurement of lomefloxacin in capsules was realized.
Collapse
Affiliation(s)
- Qian Ma
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-Systems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Juan Qiao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-Systems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yufei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-Systems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
28
|
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022; 63:9098-9110. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibiotic contamination is becoming a prominent global issue. Therefore, sensitive, specific and simple technology is desirable the demand for antibiotics detection. Biosensors based on split aptamer has gradually attracted extensive attention for antibiotic detection due to its higher sensitivity, lower cost, false positive/negative avoidance and flexibility in sensor design. Although many of the reported split aptamers are antibiotics aptamers, the acquisition and mechanism of splitting is still unknow. In this review, six reported split aptamers in antibiotics are outlined, including Enrofloxacin, Kanamycin, Tetracycline, Tobramycin, Neomycin, Streptomycin, which have contributed to promote interest, awareness and thoughts into this emerging research field. The study introduced the pros and cons of split aptamers, summarized the assembly principle of split aptamer and discussed the intermolecular binding of antibiotic-aptamer complexes. In addition, the recent application of split aptamers in antibiotic detection are introduced. Split aptamers have a promising future in the design and development of biosensors for antibiotic detection in food and other field. The development of the antibiotic split aptamer meets many challenges including mechanism discovery, stability improvement and new biosensor development. It is believed that split aptamer could be a powerful molecular probe and plays an important role in aptamer biosensor.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhixin Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | | | - Sobia Niazi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Li J, Luo M, Yang H, Ma C, Cai R, Tan W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal Chem 2022; 94:6410-6416. [PMID: 35420408 DOI: 10.1021/acs.analchem.2c01163] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Mengyu Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, Texas 78712, USA
| | - Chao Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Ye T, Zhu D, Hao L, Yuan M, Cao H, Wu X, Yin F, Xu F. Poly-adenine-mediated spherical nucleic acids for interfacial recognition of kanamycin. Mikrochim Acta 2022; 189:151. [PMID: 35316405 DOI: 10.1007/s00604-022-05235-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
Kanamycin fluorescence aptasensors were created using a series of di-block oligonucleotide modified gold nanoparticles with various lengths of poly-adenine. In the presence of kanamycin, the double strand structure of the aptamer-reporter strand complex is disrupted, and the dye-labelled reporter strand detaches from the surface of gold nanoparticles, resulting in fluorescence recovery (Ex/Em = 485/520 nm). By adjusting the number of consecutive adenines, the programable aptamer density can be implemented on the gold nanoparticle surface, and the conformation of nucleic acid changed from lying-down to up-right. The apparent binding constant, binding kinetics, and limit of detection of the prepared aptasensors were carefully examined to explore the influence of surface density. Under the optimum condition, the aptasensor had a tenfold lower limit of detection than the thiolated aptamer modified one, as low as 23.6 nM, when a di-block oligonucleotide with twenty consecutive adenines tailed. In addition, satisfactory recoveries ranging from 96.33 to 99.47% were achieved in spiked milk samples with relative standard deviation of 1.2-6.9% (n = 3). This surface density regulation strategy holds great promise in other aptamer-based interfacial recognition and sensing. Schematic presentation of di-block oligonucleotide modified gold nanoparticle with different surface densities and its kanamycin sensing application.
Collapse
Affiliation(s)
- Tai Ye
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dongdong Zhu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Liling Hao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Min Yuan
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Cao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiuxiu Wu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fengqin Yin
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
31
|
Divya, Dkhar DS, Kumari R, Mahapatra S, Kumar R, Chandra P. Ultrasensitive Aptasensors for the Detection of Viruses Based on Opto-Electrochemical Readout Systems. BIOSENSORS 2022; 12:81. [PMID: 35200341 PMCID: PMC8869721 DOI: 10.3390/bios12020081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
Viral infections are becoming the foremost driver of morbidity, mortality and economic loss all around the world. Treatment for diseases associated to some deadly viruses are challenging tasks, due to lack of infrastructure, finance and availability of rapid, accurate and easy-to-use detection methods or devices. The emergence of biosensors has proven to be a success in the field of diagnosis to overcome the challenges associated with traditional methods. Furthermore, the incorporation of aptamers as bio-recognition elements in the design of biosensors has paved a way towards rapid, cost-effective, and specific detection devices which are insensitive to changes in the environment. In the last decade, aptamers have emerged to be suitable and efficient biorecognition elements for the detection of different kinds of analytes, such as metal ions, small and macro molecules, and even cells. The signal generation in the detection process depends on different parameters; one such parameter is whether the labelled molecule is incorporated or not for monitoring the sensing process. Based on the labelling, biosensors are classified as label or label-free; both have their significant advantages and disadvantages. Here, we have primarily reviewed the advantages for using aptamers in the transduction system of sensing devices. Furthermore, the labelled and label-free opto-electrochemical aptasensors for the detection of various kinds of viruses have been discussed. Moreover, numerous globally developed aptasensors for the sensing of different types of viruses have been illustrated and explained in tabulated form.
Collapse
Affiliation(s)
| | | | | | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (D.S.D.); (R.K.); (S.M.); (R.K.)
| |
Collapse
|