1
|
Liu H, Li Y, Wang S, Zhang S, Zhang G, Zhao Y. Zeolitic imidazolate framework functionalized magnetic multiwalled carbon nanotubes as efficient adsorbents for rapid extraction of fluoroquinolones. Food Chem 2025; 464:141619. [PMID: 39423527 DOI: 10.1016/j.foodchem.2024.141619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Herein, a new, environmentally friendly, and economical magnetic solid-phase extraction method for fluoroquinolones (FQs) from milk samples was developed using novel recyclable zeolitic imidazolate framework functionalized magnetic multiwalled carbon nanotubes (Fe3O4@MWCNTs@SiO2@ZIF-8) as adsorbents. Various characterization techniques, including scanning electron microscopy, N2 adsorption-desorption analysis, and vibrating sample magnetometry, demonstrated that the adsorbent possessed a remarkable specific surface area, pore volume, and superparamagnetic properties, rendering it an excellent adsorbent. Combined with high-performance liquid chromatography, this method exhibited excellent linearity (R2 ≥ 0.9991) over the concentration range of 0.5-500 μg L-1, low limits of detection (0.10-0.34 μg kg-1), and low limits of quantification (0.30-1.00 μg kg-1). Finally, the developed method was successfully applied to analyze FQs in milk samples with recoveries ranging from 83.3% to 107.7% and relative standard deviations below 4.2%. The high efficiency and sensitivity of this method highlight the potential application of Fe3O4@MWCNTs@SiO2@ZIF-8 for analyzing FQs in complex matrices.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Yue Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Sisi Zhang
- School of Science, Xihua University, Chengdu 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China.
| |
Collapse
|
2
|
Lin S, Lv YK, Zhu A, Su M, Li X, Liang SX. Development of a NiFe 2O 4 covalent organic framework based magnetic solid-phase extraction approach for specific capture of quinolones in animal innards prior to UHPLC-Q-Orbitrap HRMS detection. Food Chem 2024; 454:139796. [PMID: 38797102 DOI: 10.1016/j.foodchem.2024.139796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to present a selective and effective method for analyzing quinolones (QNs) in food matrix. Herein, a NiFe2O4-based magnetic sodium disulfonate covalent organic framework (NiFe2O4/COF) was prepared using a simple solvent-free grinding method, and was adopted as a selective adsorbent for magnetic solid phase extraction of QNs. Coupled with UHPLC-Q-Orbitrap HRMS, an efficient method for simultaneous detection of 18 kinds of QNs was established. The method exhibited good linearity (0.01-100 ng g-1), high sensitivity (LODs ranging from 0.0011 to 0.0652 ng g-1) and precision (RSDs below 9.5%). Successful extraction of QNs from liver and kidney samples was achieved with satisfactory recoveries ranging from 82.2% to 108.4%. The abundant sulfonate functional groups on NiFe2O4/COF facilitated strong affinity to QNs through electrostatic and hydrogen bonding interactions. The proposed method provides a new idea for the extraction of contaminants with target selectivity.
Collapse
Affiliation(s)
- Shumin Lin
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Yun-Kai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China
| | - Aixue Zhu
- Large Scale Instruments Shared Service Platform, Hebei University, Baoding 071002, PR China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China
| | - Xiliang Li
- School of Public Health, Hebei University, Baoding 071002, China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China.
| |
Collapse
|
3
|
Tang F, Zou T, Wang Z, Zhang J. Fabrication of fluorinated triazine-based covalent organic frameworks for selective extraction of fluoroquinolone in milk. J Chromatogr A 2024; 1730:465078. [PMID: 38889582 DOI: 10.1016/j.chroma.2024.465078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
A novel fluorinated triazine-based covalent organic frameworks (F-CTFs) was designed and synthesized by using melamine and 2,3,5,6-tetrafluoroterephthalaldehydeas as organic ligands for selective pipette tip solid-phase extraction (PT-SPE) of amphiphilic fluoroquinolones (FQs). The competitive adsorption experiment and mechanism study were carried out and verified that this F-CTFs possesses favorable adsorption affinity for FQs. The abundant fluorine affinity sites endowed the F-CTFs high selectivity to FQs extraction through F-F interactions. The adsorption capacity of F-CTFs can reach up to 109.1 mg g-1 for enrofloxacin. The detailed characterization of the F-CTFs adsorbent involved the application of various techniques to examine its morphology and structure. Under optimized conditions, a method combining F-CTF-based PT-SPE with high-performance liquid chromatography (PT-SPE-HPLC) was established, which exhibited a broad linear range, excellent precision, and an impressively low limit of detection, and could be used for the determination of six FQs in milk, with LODs as low as 0.0010 μg mL-1. The recovery rates during extraction varied between 92.1% and 111.4%, exhibiting RSDs below 6.8% at different spiked concentrations.
Collapse
Affiliation(s)
- Furong Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ting Zou
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ziyi Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; School of Chemical Engineering and Pharmacy, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
4
|
Yao T, Song J, Zhou C, Shi X. Recent progress of the applications of functionalized magnetic ionic liquids in sample pretreatment. Sep Purif Technol 2024; 341:126979. [DOI: 10.1016/j.seppur.2024.126979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Qi L, Wang Z, Chen J, Xie JW. Development and validation of a QuEChERS-HPLC-DAD method using polymer-functionalized melamine sponges for the analysis of antipsychotic drugs in milk. Food Chem 2024; 444:138553. [PMID: 38309075 DOI: 10.1016/j.foodchem.2024.138553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The prohibition of antipsychotic drugs in animal foodstuffs has raised significant concerns. In this study, a novel matrix purification adsorbent comprising a polymer (polyaniline and polypyrrole)-functionalized melamine sponge (Ms) was employed for the high performance liquid chromatography-diode array detector (HPLC-DAD) detection of three phenothiazines (chlorpromazine, thioridazine, and promethazine), and a tricyclic imipramine in milk. The as-prepared functionalized Ms was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. Excellent linearity with a coefficient of determination (R2) of 0.999 was achieved for all drugs within the concentration range of 0.01-47.00 μg mL-1. The recoveries of the four analytes ranged from 92.1 % to 106.9 % at the three spiked levels. These results demonstrate the successful application of the proposed method for the determination of the four drugs. Cost-effective polymer-functionalized Ms is a viable alternative for matrix purification, enabling rapid determination of drug residues in diverse food samples.
Collapse
Affiliation(s)
- Liang Qi
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhe Wang
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian-Wu Xie
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Cao J, Shi L, He Y, Wang T, Zeng B, Zhao F. An effervescence-assisted microextraction for parabens in foodstuffs based on deep eutectic solvent composed of methyltrioctyl ammonium chloride and decanoic acid. Food Chem 2024; 433:137348. [PMID: 37683492 DOI: 10.1016/j.foodchem.2023.137348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
An efficient and ecofriendly effervescence-assisted emulsification microextraction approach based on hydrophobic deep eutectic solvent (EA-EME-DES) was developed for the sensitive chromatographic determination of parabens (i.e., methyl-, ethyl-, propyl- and butylparaben) in foodstuffs. The DES extractant consisted of methyltrioctyl ammonium chloride (MTAC) and decanoic acid (DecA) (1:3, mol/mol), and had high hydrophobicity, solubility and stability. During the microextraction procedure, sodium carbonate was introduced to facilitate the dissolution of parabens in aqueous solution, DES dispersion and phase separation by enhancing solution pH and generating CO2 bubbles. The developed method exhibited satisfactory linearity (R2 ≥ 0.9986), detection limits (0.01-0.03 μg/g), quantitation limits (0.04-0.09 μg/g), recoveries (87.8% to 111%, with RSDs of 0.8% to 5%) and negligible matrix effects, hence it had remarkable effectiveness and applicability in determining parabens in complex foodstuffs.
Collapse
Affiliation(s)
- Jiangping Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Lei Shi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yifei He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Tingting Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
7
|
Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali AMBH. A novel microextraction technique aided by air agitation using a natural hydrophobic deep eutectic solvent for the extraction of fluvastatin and empagliflozin from plasma samples: application to pharmacokinetic and drug-drug interaction study. RSC Adv 2023; 13:31201-31212. [PMID: 37881757 PMCID: PMC10595561 DOI: 10.1039/d3ra05929d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
This study focuses on the interaction between the antihyperlipidemic drug fluvastatin (FLV) and the antidiabetic drug empagliflozin (EMP), which are commonly co-administered medications. EMP's impact on FLV levels is attributed to its inhibition of organic anion transporting polypeptide 1B1 (OATP1B1), responsible for FLV liver uptake, consequently elevating FLV concentrations in blood. Traditional extraction methods for FLV faced difficulties due to its high hydrophobicity. In this study, a hydrophobic natural deep eutectic solvent (NDES) using air assisted dispersive liquid-liquid microextraction (AA-DLLME) was utilized as an excellent choice for achieving the highest extraction recovery, reaching 96% for FLV and 92% for EMP. The NDES was created through the combination of menthol and hippuric acid in a 4 : 1 ratio, making it a green and cost-effective pathway. Liquid phase microextraction followed by spectrofluorometric measurements of FLV at λem = 395 nm and EMP at λem = 303 nm, with excitation at a single wavelength of 275 nm was carried out. Response surface methodology (RSM) relying on central composite design (CCD) was used to optimize the variables affecting the AA-NDES-DLLME. The optimized conditions for extraction are: NDES volume of 200 μL, centrifugation time of 15 minutes, air-agitation cycle of 6 cycles, and sample pH of 4.0. Under these optimized conditions, the developed method exhibited good linearity and precision. The method showed good recoveries from rabbit plasma samples spiked at varying concentrations of the analyzed compounds. To assess the applicability and effectiveness of the hydrophobic DES, the validated method was applied to extract the studied drugs from rabbit plasma samples after oral administration of FLV alone and in combination with EMP. The pharmacokinetic parameters of FLV were calculated in both cases to investigate any changes and determine the need for dose adjustment.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| |
Collapse
|
8
|
Gao X, Lin J, Li T, Zhang X, Zeng B, Wang X, Zhao F. A magnetic porous carbon material derived from an MIL-101(Fe) complex for efficient magnetic solid phase extraction of fluoroquinolone antibiotics. Analyst 2023; 148:4203-4212. [PMID: 37539587 DOI: 10.1039/d3an01060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Extraction and determination of trace hazardous components from complex matrices continue to attract public attention. In this work, magnetic porous carbon (MPC) was prepared for efficient magnetic solid phase extraction (MSPE) of fluoroquinolone (FQ) antibiotics in food and water samples. To prepare the MPC, an Fe-based metal-organic framework (MIL-101(Fe)) was grown on a network of graphene oxide and multi-walled carbon nanotubes through a hydrothermal method, and then a carbonization process under a nitrogen atmosphere was carried out to obtain the MPC with high specific surface area and good magnetism. Four target FQs including ciprofloxacin (CIP), enrofloxacin (ENO), lomefloxacin (LOM) and ofloxacin (OFX) were enriched using the as-prepared MPC and determined by coupled high-performance liquid chromatography. Under the optimal conditions, the established MSPE-HPLC-UV detection method exhibited a linear range of 0.5-800 μg L-1 and detection limits of 0.11-0.18 μg L-1 with relative standard deviations (RSDs) of 0.5-4.8%. When applied in the determination of the above four FQs in real samples such as lake water, milk and pork, good recoveries between 85.2 and 103.7% were obtained, and the RSDs were less than 4.8%. This work indicates that the MPC material can be a good adsorption material and has good application prospects in antibiotics enrichment and/or removal from complex samples.
Collapse
Affiliation(s)
- Xuening Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Jingwen Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Tianning Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Xiaoqing Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Xiaoling Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China.
| |
Collapse
|
9
|
Song Y, Yang M, Zhang F, Xu M, Feng X. Zinc (Ⅱ) functionalized magnetic geopolymer as sorbents for rapid extraction of Fluoroquinolones in food prior to quantification by UHPLC-MS/MS. Food Chem 2023; 428:136750. [PMID: 37441936 DOI: 10.1016/j.foodchem.2023.136750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
A novel Zn@MGeo sorbent was easily constructed and can bind with FQs through the synergistic effect of electrostatic interaction and coordination. With the Zn@MGeo as sorbent, a MSPE-UHPLC-MS/MS method was established for simultaneous detection of FQs in complex matrices. The whole extraction process could be completed using 6.0 mg sorbent within 10 min under the optimal conditions. The established quantitative method obtained a wide linear range (0.01-200 μg/kg, R2 > 0.9987), high sensitivity (LODs: 0.005-0.05 μg/kg) and negligible matrix effect. The method was applied for analysis of real samples, with recoveries between 75.6% and 103.7%. In addition, the sorbent could be reused at least 9 times without reducing the adsorption performance. In general, the established method not only proposes a novel sorbent for FQs extraction, but also provides a powerful tool for rapid and sensitive detection of FQs in food matrices with practical application value.
Collapse
Affiliation(s)
- Yang Song
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China; School of Phamacy, China Medical University, Shenyang, 110122, Liaoning, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China.
| | - Meixia Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xuesong Feng
- School of Phamacy, China Medical University, Shenyang, 110122, Liaoning, China
| |
Collapse
|
10
|
López-Ruiz I, Lasarte-Aragonés G, Lucena R, Cárdenas S. Deep eutectic solvent coated paper: Sustainable sorptive phase for sample preparation. J Chromatogr A 2023; 1698:464003. [PMID: 37094540 DOI: 10.1016/j.chroma.2023.464003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Paper-based sorptive phases have gained attention recently due to the low-cost and sustainable character of the cellulosic substrate. However, the sustainability of the resulting phase can be limited by type of coating used for analytes isolation. In this article, this limitation is overcome by using deep eutectic solvents (DES) as coating. To this aim, a Thymol-Vanillin DES is synthesized and deposited on pre-cut cellulose paper strips. The paper-supported DES is employed as sorptive phase for the isolation of selected triazine herbicides for environmental waters analysis. The isolated analytes are finally determined by gas chromatography-mass spectrometry using selected ion monitoring. The method is optimized according to the critical variables that potentially affect its analytical performance such as sample volume, extractant amount, extraction time and sample ionic strength. The method was characterized in terms of sensitivity, accuracy and precision and its applicability was evaluated for the analysis of real environmental water samples. Good linearity values (R2>0.995) were obtained for all the analytes. Limits of detection (LODs) ranged from 0.4 to 0.6 µg L-1 and the precision, expressed as relative standard deviation (RSD) was better than 14.7%. The relative recoveries, calculated in spiked well and river samples, were in the range 90-106%.
Collapse
Affiliation(s)
- Inmaculada López-Ruiz
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Guillermo Lasarte-Aragonés
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain.
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain.
| |
Collapse
|
11
|
Xu XL, Wang B, Liu YW, Li WX, Wu JY, Yuan H, Xu X, Chen D. In-pipette-tip natural-feather-supported liquid microextraction for conveniently extracting hydrophobic compounds in aqueous samples: A proof-of-concept study. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Kamal El-Deen A, Elmansi H, Shimizu K. Natural hydrophobic deep eutectic solvent for vortex-assisted dispersive liquid-liquid microextraction of anti-prostate cancer triple therapy from water and human plasma. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Sportiello L, Favati F, Condelli N, Di Cairano M, Carmela Caruso M, Simonato B, Tolve R, Galgano F. Hydrophobic Deep Eutectic Solvents in the food sector: focus on their use for the extraction of bioactive compounds. Food Chem 2022; 405:134703. [DOI: 10.1016/j.foodchem.2022.134703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|