1
|
Tancer R, Pawar S, Wang Y, Ventura CR, Wiedman G, Xue C. Improved Broad Spectrum Antifungal Drug Synergies with Cryptomycin, a Cdc50-Inspired Antifungal Peptide. ACS Infect Dis 2024; 10:3973-3993. [PMID: 39475550 PMCID: PMC11555678 DOI: 10.1021/acsinfecdis.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024]
Abstract
Fungal infections in humans are difficult to treat, with very limited drug options. Due to a confluence of factors, there is an urgent need for innovation in the antifungal drug space, particularly to combat increasing antifungal drug resistance. Our previous studies showed that Cdc50, a subunit of fungal lipid translocase (flippase), is essential for Cryptococcus neoformans virulence and required for antifungal drug resistance, suggesting that fungal lipid flippase could be a novel drug target. Here, we characterized an antifungal peptide, Cryptomycinamide (KKOO-NH2), derived from a 9-amino acid segment of the C. neoformans Cdc50 protein. A fungal killing assay indicated that KKOO-NH2 is fungicidal against C. neoformans. The peptide has antifungal activity against multiple major fungal pathogens with a minimum inhibitory concentration (MIC) of 8 μg/mL against C. neoformans and Candida glabrata, 16 μg/mL against Candida albicans and C. auris, and 32 μg/mL against Aspergillus fumigatus. The peptide has low cytotoxicity against host cells based on our hemolysis assays and vesicle leakage assays. Strikingly, the peptide exhibits strong drug synergy with multiple antifungal drugs, including amphotericin B, itraconazole, and caspofungin, depending on the specific species on which the combinations were assayed. The fluorescently labeled peptide was detected to localize to the plasma membrane, likely inhibiting key interactions of Cdc50 with membrane proteins such as P4 ATPases. Cryptococcus cells exposed to sub-MIC of peptide showed increased reactive oxygen species production and intracellular calcium levels, indicating a peptide-induced stress response. Decreased intracellular proliferation within macrophages was observed after 30 min of peptide exposure and 24 h coincubation with macrophages, providing a potential translational mechanism to explore further in vivo. In aggregate, the synergistic activity of our KKOO-NH2 peptide may offer a potential novel candidate for combination therapy with existing antifungal drugs.
Collapse
Affiliation(s)
- Robert
J. Tancer
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Siddhi Pawar
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Yina Wang
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| | - Cristina R. Ventura
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Gregory Wiedman
- Department
of Chemistry and Biochemistry, Seton Hall
University, South
Orange, New Jersey 07079, United States
| | - Chaoyang Xue
- Public
Health Research Institute and Department of Microbiology, Biochemistry,
and Molecular Genetics, New Jersey Medical
School, Rutgers University, Newark, New Jersey 07103, United States
| |
Collapse
|
2
|
Pocognoni CA, Nawara T, Bhatt JM, Lee E, Jian X, Randazzo P, Sztul E. The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network. Arch Biochem Biophys 2024; 758:110049. [PMID: 38879142 PMCID: PMC11264237 DOI: 10.1016/j.abb.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.
Collapse
Affiliation(s)
- Cristian A Pocognoni
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza 5500, Argentina.
| | - Tomasz Nawara
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| | - Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paul Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 731, Birmingham, AL, 35233-2008, USA
| |
Collapse
|
3
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Pukyšová V, Sans Sánchez A, Rudolf J, Nodzyński T, Zwiewka M. Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4959-4977. [PMID: 37353222 PMCID: PMC10498020 DOI: 10.1093/jxb/erad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Collapse
Affiliation(s)
- Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Rudolf
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| |
Collapse
|
5
|
Anari M, Montgomery MK. Phospholipid metabolism in the liver - Implications for phosphatidylserine in non-alcoholic fatty liver disease. Biochem Pharmacol 2023; 213:115621. [PMID: 37217141 DOI: 10.1016/j.bcp.2023.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Mammalian cells contain more than a thousand different glycerophospholipid species that are essential membrane components and signalling molecules, with phosphatidylserine (PS) giving membranes their negative surface charge. Depending on the tissue, PS is important in apoptosis, blood clotting, cancer pathogenesis, as well as muscle and brain function, processes that are dependent on the asymmetrical distribution of PS on the plasma membrane and/or the capacity of PS to act as anchorage for various signalling proteins. Recent studies have implicated hepatic PS in the progression of non-alcoholic fatty liver disease (NAFLD), either as beneficial in the context of suppressing hepatic steatosis and fibrosis, or on the other hand as a potential contributor to the progression of liver cancer. This review provides an extensive overview of hepatic phospholipid metabolism, including its biosynthetic pathways, intracellular trafficking and roles in health and disease, further taking a deeper dive into PS metabolism, including associate and causative evidence of the role of PS in advanced liver disease.
Collapse
Affiliation(s)
- Marziyeh Anari
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
6
|
Functional Analysis of the P-Type ATPases Apt2-4 from Cryptococcus neoformans by Heterologous Expression in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:jof9020202. [PMID: 36836316 PMCID: PMC9966271 DOI: 10.3390/jof9020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Lipid flippases of the P4-ATPase family actively transport phospholipids across cell membranes, an activity essential for key cellular processes such as vesicle budding and membrane trafficking. Members of this transporter family have also been implicated in the development of drug resistance in fungi. The encapsulated fungal pathogen Cryptococcus neoformans contains four P4-ATPases, among which Apt2-4p are poorly characterized. Using heterologous expression in the flippase-deficient S. cerevisiae strain dnf1Δdnf2Δdrs2Δ, we tested their lipid flippase activity in comparison to Apt1p using complementation tests and fluorescent lipid uptake assays. Apt2p and Apt3p required the co-expression of the C. neoformans Cdc50 protein for activity. Apt2p/Cdc50p displayed a narrow substrate specificity, limited to phosphatidylethanolamine and -choline. Despite its inability to transport fluorescent lipids, the Apt3p/Cdc50p complex still rescued the cold-sensitive phenotype of dnf1Δdnf2Δdrs2Δ, suggesting a functional role for the flippase in the secretory pathway. Apt4p, the closest homolog to Saccharomyces Neo1p, which does not require a Cdc50 protein, was unable to complement several flippase-deficient mutant phenotypes, neither in the presence nor absence of a β-subunit. These results identify C. neoformans Cdc50 as an essential subunit for Apt1-3p and provide a first insight into the molecular mechanisms underlying their physiological functions.
Collapse
|
7
|
Li J, Zhao Y, Wang N. Physiological and Pathological Functions of TMEM30A: An Essential Subunit of P4-ATPase Phospholipid Flippases. J Lipids 2023; 2023:4625567. [PMID: 37200892 PMCID: PMC10188266 DOI: 10.1155/2023/4625567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023] Open
Abstract
Phospholipids are asymmetrically distributed across mammalian plasma membrane. The function of P4-ATPases is to maintain the abundance of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in the inner leaflet as lipid flippases. Transmembrane protein 30A (TMEM30A, also named CDC50A), as an essential β subunit of most P4-ATPases, facilitates their transport and functions. With TMEM30A knockout mice or cell lines, it is found that the loss of TMEM30A has huge influences on the survival of mice and cells because of PS exposure-triggered apoptosis signaling. TMEM30A is a promising target for drug discovery due to its significant roles in various systems and diseases. In this review, we summarize the functions of TMEM30A in different systems, present current understanding of the protein structures and mechanisms of TMEM30A-P4-ATPase complexes, and discuss how these fundamental aspects of TMEM30A may be applied to disease treatment.
Collapse
Affiliation(s)
- Jingyi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue Zhao
- Clinical Medical Laboratory, Wenjiang Hospital of Sichuan Provincial People's Hospital, Chengdu, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Ren H, Li X, Li Y, Li M, Sun J, Wang F, Zeng J, Chen Y, Wang L, Yan X, Fan Y, Jin D, Pei Y. Loss of function of VdDrs2, a P4-ATPase, impairs the toxin secretion and microsclerotia formation, and decreases the pathogenicity of Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:944364. [PMID: 36072318 PMCID: PMC9443849 DOI: 10.3389/fpls.2022.944364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Four P4-ATPase flippase genes, VdDrs2, VdNeo1, VdP4-4, and VdDnf1 were identified in Verticillium dahliae, one of the most devastating phytopathogenic fungi in the world. Knock out of VdDrs2, VdNeo1, and VdP4-4, or knock down of VdDnf1 significantly decreased the pathogenicity of the mutants in cotton. Among the mutants, the greatest decrease in pathogenicity was observed in ΔVdDrs2. VdDrs2 was localized to plasma membrane, vacuoles, and trans-Golgi network (TGN). In vivo observation showed that the infection of the cotton by ΔVdDrs2 was significantly delayed. The amount of two known Verticillium toxins, sulfacetamide, and fumonisin B1 in the fermentation broth produced by the ΔVdDrs2 strain was significantly reduced, and the toxicity of the crude Verticillium wilt toxins to cotton cells was attenuated. In addition, the defect of VdDrs2 impaired the synthesis of melanin and the formation of microsclerotia, and decreased the sporulation of V. dahliae. Our data indicate a key role of P4 ATPases-associated vesicle transport in toxin secretion of disease fungi and support the importance of mycotoxins in the pathogenicity of V. dahliae.
Collapse
|
9
|
Kriegenburg F, Huiting W, van Buuren-Broek F, Zwilling E, Hardenberg R, Mari M, Kraft C, Reggiori F. The lipid flippase Drs2 regulates anterograde transport of Atg9 during autophagy. AUTOPHAGY REPORTS 2022; 1:345-367. [PMID: 38106996 PMCID: PMC7615381 DOI: 10.1080/27694127.2022.2104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway during which cellular material is sequestered within newly formed double-membrane vesicles called autophagosomes and delivered to the lytic compartment of eukaryotic cells for degradation. Autophagosome biogenesis depends on the core autophagy-related (Atg) machinery, and involves a massive supply and remodelling of membranes. To gain insight into the lipid remodelling mechanisms during autophagy, we have systematically investigated whether lipid flippases are required for this pathway in the yeast Saccharomyces cerevisiae. We found that the flippase Drs2, which transfers phosphatidylserine and phosphatidylethanolamine from the lumenal to the cytosolic leaflet of the limiting membrane at the trans-Golgi network, is required for normal progression of autophagy. We also show that Drs2 is important for the trafficking of the core Atg protein Atg9. Atg9 is a transmembrane protein important for autophagosome biogenesis and its anterograde transport from its post-Golgi reservoirs to the site of autophagosome formation is severely impaired in the absence of Drs2. Thus, our results identify a novel autophagy player and highlight that membrane asymmetry regulates early autophagy steps.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Fleur van Buuren-Broek
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Emma Zwilling
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | - Ralph Hardenberg
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University medical Centre Groningen, 9713AV Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Hasegawa J, Uchida Y, Mukai K, Lee S, Matsudaira T, Taguchi T. A Role of Phosphatidylserine in the Function of Recycling Endosomes. Front Cell Dev Biol 2022; 9:783857. [PMID: 35004683 PMCID: PMC8740049 DOI: 10.3389/fcell.2021.783857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cells internalize proteins and lipids in the plasma membrane (PM) and solutes in the extracellular space by endocytosis. The removal of PM by endocytosis is constantly balanced by the replenishment of proteins and lipids to PM through recycling pathway. Recycling endosomes (REs) are specific subsets of endosomes. Besides the established role of REs in recycling pathway, recent studies have revealed unanticipated roles of REs in membrane traffic and cell signalling. In this review, we highlight these emerging issues, with a particular focus on phosphatidylserine (PS), a phospholipid that is highly enriched in the cytosolic leaflet of RE membranes. We also discuss the pathogenesis of Hermansky Pudlak syndrome type 2 (HPS2) that arises from mutations in the AP3B1 gene, from the point of view of dysregulated RE functions.
Collapse
Affiliation(s)
- Junya Hasegawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kojiro Mukai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Shoken Lee
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nat Commun 2021; 12:6426. [PMID: 34741039 PMCID: PMC8571369 DOI: 10.1038/s41467-021-26727-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.
Collapse
|
12
|
Bai L, Jain BK, You Q, Duan HD, Takar M, Graham TR, Li H. Structural basis of the P4B ATPase lipid flippase activity. Nat Commun 2021; 12:5963. [PMID: 34645814 PMCID: PMC8514546 DOI: 10.1038/s41467-021-26273-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory β-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a β-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1’s ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport. The P4 ATPase lipid flippases play a crucial role in membrane biogenesis. Here the authors report the structure of the monomeric P4B ATPase Neo1 in several states, clarifying the mechanism of substrate transport.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
13
|
Boukhari SE, Chahid M. Dynamic structure factors of fluid membranes exhibiting lateral and flip-flop transitions: Effects of inclusions and the presence of an interacting wall. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Boukhari SE, Chahid M. Effects of inclusions and the presence of an adsorbing surface on lateral and flip-flop phase transitions in fluid membranes. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Yang Y, Sun K, Liu W, Li X, Tian W, Shuai P, Zhu X. The phosphatidylserine flippase β-subunit Tmem30a is essential for normal insulin maturation and secretion. Mol Ther 2021; 29:2854-2872. [PMID: 33895325 PMCID: PMC8417432 DOI: 10.1016/j.ymthe.2021.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The processing, maturation, and secretion of insulin are under precise regulation, and dysregulation causes profound defects in glucose handling, leading to diabetes. Tmem30a is the β subunit of the phosphatidylserine (PS) flippase, which maintains the membrane asymmetric distribution of PS. Tmem30a regulates cell survival and the localization of subcellular structures and is thus critical to the normal function of multiple physiological systems. Here, we show that conditional knockout of Tmem30a specifically in pancreatic islet β cells leads to obesity, hyperglycemia, glucose intolerance, hyperinsulinemia, and insulin resistance in mice, due to insufficient insulin release. Moreover, we reveal that Tmem30a plays an essential role in clathrin-mediated vesicle transport between the trans Golgi network (TGN) and the plasma membrane (PM), which comprises immature secretory granule (ISG) budding at the TGN. We also find that Tmem30a deficiency impairs clathrin-mediated vesicle budding and thus blocks both insulin maturation in ISGs and the transport of glucose-sensing Glut2 to the PM. Collectively, these disruptions compromise both insulin secretion and glucose sensitivity, thus contributing to impairments in glucose-stimulated insulin secretion. Taken together, our data demonstrate an important role of Tmem30a in insulin maturation and glucose metabolic homeostasis and suggest the importance of membrane phospholipid distribution in metabolic disorders.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wanli Tian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China; Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Hennan 476100, China.
| |
Collapse
|
16
|
Lete MG, Tripathi A, Chandran V, Bankaitis VA, McDermott MI. Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Adv Biol Regul 2020; 78:100740. [PMID: 32992233 PMCID: PMC7986245 DOI: 10.1016/j.jbior.2020.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Cellular membranes are critical platforms for intracellular signaling that involve complex interfaces between lipids and proteins, and a web of interactions between a multitude of lipid metabolic pathways. Membrane lipids impart structural and functional information in this regulatory circuit that encompass biophysical parameters such as membrane thickness and fluidity, as well as chaperoning the interactions of protein binding partners. Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play key roles in intracellular membrane signaling, and these involvements are translated into an impressively diverse set of biological outcomes. The phosphatidylinositol transfer proteins (PITPs) are key regulators of phosphoinositide signaling. Found in a diverse array of organisms from plants, yeast and apicomplexan parasites to mammals, PITPs were initially proposed to be simple transporters of lipids between intracellular membranes. It now appears increasingly unlikely that the soluble versions of these proteins perform such functions within the cell. Rather, these serve to facilitate the activity of intrinsically biologically insufficient inositol lipid kinases and, in so doing, promote diversification of the biological outcomes of phosphoinositide signaling. The central engine for execution of such functions is the lipid exchange cycle that is a fundamental property of PITPs. How PITPs execute lipid exchange remains very poorly understood. Molecular dynamics simulation approaches are now providing the first atomistic insights into how PITPs, and potentially other lipid-exchange/transfer proteins, operate.
Collapse
Affiliation(s)
- Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Institute Biofisika (UPV/EHU, CSIC) and University of the Basque Country, Leioa, Spain
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vijay Chandran
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Mark I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
17
|
Yun Y, Guo P, Zhang J, You H, Guo P, Deng H, Hao Y, Zhang L, Wang X, Abubakar YS, Zhou J, Lu G, Wang Z, Zheng W. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2020; 21:1307-1321. [PMID: 32881238 PMCID: PMC7488471 DOI: 10.1111/mpp.12985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 05/03/2023]
Abstract
The membrane trafficking system is important for compartmentalization of the biosynthesis pathway and secretion of deoxynivalenol (DON) mycotoxin (a virulence factor) in Fusarium graminearum. Flippases are transmembrane lipid transporters and mediate a number of essential physiological steps of membrane trafficking, including vesicle budding, charging, and protein diffusion within the membrane. However, the roles of flippases in secondary metabolism remain unknown in filamentous fungi. Herein, we identified five flippases (FgDnfA, FgDnfB, FgDnfC1, FgDnfC2, and FgDnfD) in F. graminearum and established their specific and redundant functions in the development and pathogenicity of this phytopathogenic fungus. Our results demonstrate that FgDnfA is critical for normal vegetative growth while the other flippases are dispensable. FgDnfA and FgDnfD were found crucial for the fungal pathogenesis, and a remarkable reduction in DON production was observed in ΔFgDNFA and ΔFgDNFD. Deletion of the FgDNFB gene increased DON production to about 30 times that produced by the wild type. Further analysis showed that FgDnfA and FgDnfD have positive roles in the regulation of trichothecene (TRI) genes (TRI1, TRI4, TRI5, TRI6, TRI12, and TRI101) expression and toxisome reorganization, while FgDnfB acts as a negative regulator of DON synthesis. In addition, FgDnfB and FgDnfD have redundant functions in the regulation of phosphatidylcholine transport, and double deletion of FgDNFB and FgDNFD showed serious defects in fungal development, DON synthesis, and virulence. Collectively, our findings reveal the distinct and specific functions of flippase family members in F. graminearum and principally demonstrate that FgDnfA, FgDnfD, and FgDnfB have specific spatiotemporal roles during toxisome biogenesis.
Collapse
Affiliation(s)
- Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pusheng Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Haixia You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingting Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huobin Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yixin Hao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Limei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xueyu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | | | - Jie Zhou
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Ocean ScienceMinjiang UniversityFuzhouChina
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
18
|
Disease Mutation Study Identifies Critical Residues for Phosphatidylserine Flippase ATP11A. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7342817. [PMID: 32596364 PMCID: PMC7288202 DOI: 10.1155/2020/7342817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Phosphatidylserine flippase (P4-ATPase) transports PS from the outer to the inner leaflet of the lipid bilayer in the membrane to maintain PS asymmetry, which is important for biological activities of the cell. ATP11A is expressed in multiple tissues and plays a role in myotube formation. However, the detailed cellular function of ATP11A remains elusive. Mutation analysis revealed that I91, L308, and E897 residues in ATP8A2 are important for flippase activity. In order to investigate the roles of these corresponding amino acid residues in ATP11A protein, we assessed the expression and cellular localization of the respective ATP11A mutant proteins. ATP11A mainly localizes to the Golgi and plasma membrane when coexpressed with the β-subunit of the complex TMEM30A. Y300F mutation causes reduced ATP11A expression, and Y300F and D913K mutations affect correct localization of the Golgi and plasma membrane. In addition, Y300F and D913K mutations also affect PS flippase activity. Our data provides insight into important residues of ATP11A.
Collapse
|
19
|
Calpain cleaves phospholipid flippase ATP8A1 during apoptosis in platelets. Blood Adv 2020; 3:219-229. [PMID: 30674456 DOI: 10.1182/bloodadvances.2018023473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/16/2018] [Indexed: 01/01/2023] Open
Abstract
The asymmetric distribution of phospholipids in the plasma/organellar membranes is generated and maintained through phospholipid flippases in resting cells, but becomes disrupted in apoptotic cells and activated platelets, resulting in phosphatidylserine (PS) exposure on the cell surface. Stable PS exposure during apoptosis requires inactivation of flippases to prevent PS from being reinternalized. Here we show that flippase ATP8A1 is highly expressed in both murine and human platelets, but is not present in the plasma membrane. ATP8A1 is cleaved by the cysteine protease calpain during apoptosis, and the cleavage is prevented indirectly by caspase inhibition, involving blockage of calcium influx into platelets and subsequent calpain activation. In contrast, in platelets activated with thrombin and collagen and exposing PS, ATP8A1 remains intact. These data reveal a novel mechanism of flippase cleavage and suggest that flippase activity in intracellular membranes differs between platelets undergoing apoptosis and activation.
Collapse
|
20
|
Varga K, Jiang ZJ, Gong LW. Phosphatidylserine is critical for vesicle fission during clathrin-mediated endocytosis. J Neurochem 2019; 152:48-60. [PMID: 31587282 DOI: 10.1111/jnc.14886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Collapse
Affiliation(s)
- Kelly Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of North Texas at Dallas, Dallas, Texas, USA
| | - Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Siggel M, Bhaskara RM, Hummer G. Phospholipid Scramblases Remodel the Shape of Asymmetric Membranes. J Phys Chem Lett 2019; 10:6351-6354. [PMID: 31566982 DOI: 10.1021/acs.jpclett.9b02531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell membrane and many organellar membranes are asymmetric and highly curved. In experiments, it is challenging to reconstitute and characterize membranes that differ in the lipid composition of their leaflets. Here we use molecular dynamics simulations to study the large-scale membrane shape changes associated with lipid shuttling between asymmetric leaflets. We exploit leaflet asymmetry to create a stable, near-spherical vesicle bud connected to a flat bilayer under periodic boundary conditions. Then we demonstrate how the lipid scramblase nhTMEM16 relaxes the lipid-number asymmetry. By mediating the flipping of lipids, this transmembrane protein dissipates the mechanochemical gradient between the leaflets and drives a large-scale membrane reorganization, converting the vesicle bud into a flat membrane. Our procedure to exploit bilayer asymmetry for simulations of highly curved membranes can be used to study the function of other lipid transporters and membrane-shaping proteins.
Collapse
Affiliation(s)
- Marc Siggel
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany
| | - Ramachandra M Bhaskara
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Str. 3 , 60438 Frankfurt am Main , Germany
- Institute of Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| |
Collapse
|
22
|
Kay JG, Fairn GD. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun Signal 2019; 17:126. [PMID: 31615534 PMCID: PMC6792266 DOI: 10.1186/s12964-019-0438-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylserine (PtdSer), an essential constituent of eukaryotic membranes, is the most abundant anionic phospholipid in the eukaryotic cell accounting for up to 10% of the total cellular lipid. Much of what is known about PtdSer is the role exofacial PtdSer plays in apoptosis and blood clotting. However, PtdSer is generally not externally exposed in healthy cells and plays a vital role in several intracellular signaling pathways, though relatively little is known about the precise subcellular localization, transmembrane topology and intracellular dynamics of PtdSer within the cell. The recent development of new, genetically-encoded probes able to detect phosphatidylserine is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of recent developments in our understanding of the role of PtdSer in intracellular signaling events derived from the use of these recently developed methods of phosphatidylserine detection.
Collapse
Affiliation(s)
- Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada. .,Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
23
|
Assessment of Transport of Lipid Metabolites Within Trabecular Meshwork Cells. Methods Mol Biol 2019. [PMID: 31127557 DOI: 10.1007/978-1-4939-9488-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipids from trabecular meshwork (TM) cells are of particular interest to ophthalmological researchers as a therapeutic target for lowering intraocular pressure (IOP) in glaucomatous eyes. Fluorescence-based lipid transport assays (FBLTA) and immunocytochemistry (ICC) are dynamic fluorescence analysis techniques that allow for quantitative and qualitative comparisons, respectively, between multiple samples. Here we describe methods for FBLTA, ICC, and mass spectroscopy designed to measure the kinetics and localization of lipid metabolites within the trabecular meshwork.
Collapse
|
24
|
Marcos AL, Corradi GR, Mazzitelli LR, Casali CI, Fernández Tome MDC, Adamo HP, de Tezanos Pinto F. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182993. [PMID: 31132336 DOI: 10.1016/j.bbamem.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.
Collapse
Affiliation(s)
- Alejandra Lucía Marcos
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Gerardo Raul Corradi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Luciana Romina Mazzitelli
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo Pedro Adamo
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
25
|
Yang Y, Liu W, Sun K, Jiang L, Zhu X. Tmem30a deficiency leads to retinal rod bipolar cell degeneration. J Neurochem 2019; 148:400-412. [PMID: 30548540 DOI: 10.1111/jnc.14643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
Phospholipids are asymmetrically distributed across the mammalian plasma membrane, with phosphatidylserine (PS) and phosphatidylethanolamine concentrated in the cytoplasmic leaflet of the membrane bilayer and phosphatidylcholine in the exoplasmic leaflet. This asymmetric distribution is dependent on a group of P4 ATPases called PS flippases. The proper transport and function of PS flippases require a β-subunit transmembrane protein 30A (TMEM30A). Disruption of PS flippases leads to several human diseases. Tmem30a is essential for photoreceptor survival. However, the roles of Tmem30a in the retinal rod bipolar cells (RBC) remain elusive. To investigate the role of Tmem30a in the RBCs, we generated a RBC-specific Tmem30a knockout (cKO) mouse model using PCP2-Cre line. The Tmem30a cKO mice exhibited defect in RBC function and progressive RBC death. PKCα staining of retinal cryosections from cKO mice revealed a remarkable dendritic sprouting of rod bipolar cells during the early degenerative process. Immunostaining analysis of PSD95 and mGluT6 expression demonstrated that rod bipolar cells in Tmem30a cKO retinas exhibited aberrant dendritic sprouting as a result of impaired synaptic efficacy, which implied a crucial role for Tmem30a in synaptic transmission in the retina. In addition, loss of Tmem30a led to reactive gliosis with increased expression of glial fibrillary acidic protein and CD68. TUNEL staining suggested that apoptotic cell death occurred in the retinal inner nuclear layer (INL). Our data show that loss of Tmem30a in RBCs results in dendritic sprouting of rod bipolar cells, increased astrogliosis and RBC death. Taken together, our studies demonstrate an essential role for Tmem30a in the retinal bipolar cells. Cover Image for this issue: doi: 10.1111/jnc.14492.
Collapse
Affiliation(s)
- Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wenjing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Li Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Department of Ophthalmology, Shangqiu First Municipal People's Hospital, Shangqiu, Henan, China.,Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, China
| |
Collapse
|
26
|
Bourgoint C, Rispal D, Berti M, Filipuzzi I, Helliwell SB, Prouteau M, Loewith R. Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae. J Biol Chem 2018; 293:12043-12053. [PMID: 29895620 PMCID: PMC6078453 DOI: 10.1074/jbc.ra117.001615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Target of rapamycin complex 2 (TORC2) is a widely conserved serine/threonine protein kinase. In the yeast Saccharomyces cerevisiae, TORC2 is essential, playing a key role in plasma membrane homeostasis. In this role, TORC2 regulates diverse processes, including sphingolipid synthesis, glycerol production and efflux, polarization of the actin cytoskeleton, and endocytosis. The major direct substrate of TORC2 is the AGC-family kinase Ypk1. Ypk1 connects TORC2 signaling to actin polarization and to endocytosis via the flippase kinases Fpk1 and Fpk2. Here, we report that Fpk1 mediates TORC2 signaling to control actin polarization, but not endocytosis, via aminophospholipid flippases. To search for specific targets of these flippase kinases, we exploited the fact that Fpk1 prefers to phosphorylate Ser residues within the sequence RXS(L/Y)(D/E), which is present ∼90 times in the yeast proteome. We observed that 25 of these sequences are phosphorylated by Fpk1 in vitro We focused on one sequence hit, the Ark/Prk-family kinase Akl1, as this kinase previously has been implicated in endocytosis. Using a potent ATP-competitive small molecule, CMB4563, to preferentially inhibit TORC2, we found that Fpk1-mediated Akl1 phosphorylation inhibits Akl1 activity, which, in turn, reduces phosphorylation of Pan1 and of other endocytic coat proteins and ultimately contributes to a slowing of endocytosis kinetics. These results indicate that the regulation of actin polarization and endocytosis downstream of TORC2 is signaled through separate pathways that bifurcate at the level of the flippase kinases.
Collapse
Affiliation(s)
- Clélia Bourgoint
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Delphine Rispal
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marina Berti
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ireos Filipuzzi
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Manoël Prouteau
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| | - Robbie Loewith
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), National Center for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
27
|
Vance JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J Lipid Res 2018; 59:923-944. [PMID: 29661786 DOI: 10.1194/jlr.r084004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
28
|
Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin HW. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J 2018; 37:embj.201797705. [PMID: 29599178 DOI: 10.15252/embj.201797705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/09/2022] Open
Abstract
P4-ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4-ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid-flipping activity of P4-ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine-flippase activity at the PM due to expression of ATP10A, a member of the P4-ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM This is the important evidence that changes in the transbilayer lipid composition induced by P4-ATPases can deform biological membranes.
Collapse
Affiliation(s)
- Naoto Takada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomoki Naito
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
29
|
Milosevic I. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Front Cell Neurosci 2018; 12:27. [PMID: 29467622 PMCID: PMC5807904 DOI: 10.3389/fncel.2018.00027] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Without robust mechanisms to efficiently form new synaptic vesicles (SVs), the tens to hundreds of SVs typically present at the neuronal synapse would be rapidly used up, even at modest levels of neuronal activity. SV recycling is thus critical for synaptic physiology and proper function of sensory and nervous systems. Yet, more than four decades after it was originally proposed that the SVs are formed and recycled locally at the presynaptic terminals, the mechanisms of endocytic processes at the synapse are heavily debated. Clathrin-mediated endocytosis, a type of endocytosis that capitalizes on the clathrin coat, a number of adaptor and accessory proteins, and the GTPase dynamin, is well understood, while the contributions of clathrin-independent fast endocytosis, kiss-and-run, bulk endocytosis and ultrafast endocytosis are still being evaluated. This review article revisits and summarizes the current knowledge on the SV reformation with a focus on clathrin-mediated endocytosis, and it discusses the modes of SV formation from endosome-like structures at the synapse. Given the importance of this topic, future advances in this active field are expected to contribute to better comprehension of neurotransmission, and to have general implications for neuroscience and medicine.
Collapse
Affiliation(s)
- Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
30
|
de Tezanos Pinto F, Adamo HP. The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal. Neurochem Int 2018; 112:108-113. [DOI: 10.1016/j.neuint.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
|
31
|
Dalton LE, Bean BDM, Davey M, Conibear E. Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes. Mol Biol Cell 2017; 28:1539-1550. [PMID: 28404745 PMCID: PMC5449152 DOI: 10.1091/mbc.e16-11-0772] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.
Collapse
Affiliation(s)
- Lauren E Dalton
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Hu G, Caza M, Bakkeren E, Kretschmer M, Bairwa G, Reiner E, Kronstad J. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2017; 19. [PMID: 28061020 DOI: 10.1111/cmi.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 12/29/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans delivers virulence factors such as capsule polysaccharide to the cell surface to cause disease in vertebrate hosts. In this study, we screened for mutants sensitive to the secretion inhibitor brefeldin A to identify secretory pathway components that contribute to virulence. We identified an ortholog of the cell division control protein 50 (Cdc50) family of the noncatalytic subunit of type IV P-type ATPases (flippases) that establish phospholipid asymmetry in membranes and function in vesicle-mediated trafficking. We found that a cdc50 mutant in C. neoformans was defective for survival in macrophages, attenuated for virulence in mice and impaired in iron acquisition. The mutant also showed increased sensitivity to drugs associated with phospholipid metabolism (cinnamycin and miltefosine), the antifungal drug fluconazole and curcumin, an iron chelator that accumulates in the endoplasmic reticulum. Cdc50 is expected to function with catalytic subunits of flippases, and we previously documented the involvement of the flippase aminophospholipid translocases (Apt1) in virulence factor delivery. A comparison of phenotypes with mutants defective in genes encoding candidate flippases (designated APT1, APT2, APT3, and APT4) revealed similarities primarily between cdc50 and apt1 suggesting a potential functional interaction. Overall, these results highlight the importance of membrane composition and homeostasis for the ability of C. neoformans to cause disease.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erik Bakkeren
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Institute of Microbiology, Zurich, Switzerland
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Gaurav Bairwa
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ethan Reiner
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Ejzykowicz DE, Locken KM, Ruiz FJ, Manandhar SP, Olson DK, Gharakhanian E. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function. Curr Genet 2016; 63:531-551. [PMID: 27812735 DOI: 10.1007/s00294-016-0660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.
Collapse
Affiliation(s)
- Daniele E Ejzykowicz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Kristopher M Locken
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Fiona J Ruiz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Daniel K Olson
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Inouye Center for Microbial Oceanography, Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
| |
Collapse
|
34
|
Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, Takatsu H, Shin HW. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell 2016; 27:3883-3893. [PMID: 27733620 PMCID: PMC5170610 DOI: 10.1091/mbc.e16-08-0586] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
ATP9A is localized to phosphatidylserine-positive early and recycling endosomes, but not late endosomes, in HeLa cells. ATP9A plays a crucial role in recycling of transferrin and glucose transporter 1 from endosomes to the plasma membrane. Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Yoshiki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Natsuki Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Shima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gaku Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase. Proc Natl Acad Sci U S A 2016; 113:E4460-6. [PMID: 27432949 DOI: 10.1073/pnas.1525730113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipid flippases in the type IV P-type ATPase (P4-ATPases) family establish membrane asymmetry and play critical roles in vesicular transport, cell polarity, signal transduction, and neurologic development. All characterized P4-ATPases flip glycerophospholipids across the bilayer to the cytosolic leaflet of the membrane, but how these enzymes distinguish glycerophospholipids from sphingolipids is not known. We used a directed evolution approach to examine the molecular mechanisms through which P4-ATPases discriminate substrate backbone. A mutagenesis screen in the yeast Saccharomyces cerevisiae has identified several gain-of-function mutations in the P4-ATPase Dnf1 that facilitate the transport of a novel lipid substrate, sphingomyelin. We found that a highly conserved asparagine (N220) in the first transmembrane segment is a key enforcer of glycerophospholipid selection, and specific substitutions at this site allow transport of sphingomyelin.
Collapse
|
36
|
Van Koninckxloo A, Henoumont C, Laurent S, Muller RN, Vander Elst L. (1) H-NMR relaxometric studies of interaction between apoptosis specific MRI paramagnetic contrast agents and micellar models of apoptotic cells. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:568-574. [PMID: 26647764 DOI: 10.1002/mrc.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/02/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
(1) H-NMR was previously used to analyze the interaction between peptides (E3 and R826) selected by phage display to target apoptotic cells and phospholipidic models of these cells. In order to avoid the use of apoptotic cells and to obtain a fast evaluation of the efficiency of the potential MRI contrast agents obtained by grafting these peptides and their scramble analogs on a paramagnetic gadolinium complex, their proton relaxometric behavior was investigated in the presence of micelles mimicking healthy and apoptotic cells. Their preferential interaction with 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine micelles mimicking apoptotic cells as compared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine micelles modeling healthy cells was shown by nuclear magnetic relaxation dispersion profiles and the enhancement of the transverse proton relaxation rates at 60 MHz. The association constant values confirm the stronger interaction of the selected conjugated peptides (Ka Gd-PMN-E3(gadolinium 2,2',2'',2'''-[((4-carboxy)pyridine-2,6-diyl)bis(methylenenitrilo)]-tetrakis acetate) grafted with E3 peptide): 2.43 10(4) m(-1) ; Ka Gd-DTPA-R826(gadolinium ((1-p-isothiocyanatobenzyl)-diethylenetriaminepentaacetate) grafted with R826 peptide): 2.91 10(4) m(-1) ) as compared with their conjugated scrambles (Ka Gd-PMN-E3sc(gadolinium 2,2',2'',2'''-[((4-carboxy)pyridine-2,6-diyl)bis(methylenenitrilo)]-tetrakis acetate) grafted with E3 scramble peptide): 0.18 10(4) m(-1) ; Ka Gd-DTPA-R826sc(gadolinium ((1-p-isothiocyanatobenzyl)-diethylenetriaminepentaacetate) grafted with R826 scramble peptide): 0.32 10(4) m(-1) ) even if the conjugation of E3 and R826 seems to decrease their interaction. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aurore Van Koninckxloo
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
| | - Céline Henoumont
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
- CMMI - Center for Microscopy and Molecular Imaging, 6041, Gosselies, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
- CMMI - Center for Microscopy and Molecular Imaging, 6041, Gosselies, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 7000, Mons, Belgium
- CMMI - Center for Microscopy and Molecular Imaging, 6041, Gosselies, Belgium
| |
Collapse
|
37
|
Miyano R, Matsumoto T, Takatsu H, Nakayama K, Shin HW. Alteration of transbilayer phospholipid compositions is involved in cell adhesion, cell spreading, and focal adhesion formation. FEBS Lett 2016; 590:2138-45. [PMID: 27277390 DOI: 10.1002/1873-3468.12247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/01/2016] [Accepted: 06/01/2016] [Indexed: 11/11/2022]
Abstract
We previously showed that P4-ATPases, ATP10A/ATP8B1, and ATP11A/ATP11C have flippase activities toward phosphatidylcholine (PC), and aminophospholipids [phosphatidylserine (PS) and phosphatidylethanolamine], respectively. Here, we investigate the effect of PC-specific flippases versus aminophospholipid-specific flippases in cell spreading on the extracellular matrix. Expression of PC-flippases, but not PS-flippases, delayed cell adhesion, cell spreading and inhibited formation of focal adhesions. In addition, overexpression of a PS-binding probe that sequesters PS in the cytoplasmic leaflet delayed cell spreading and inhibited formation of focal adhesions. These results suggest that elevation of PC at the cytoplasmic leaflet of the plasma membrane by expression of PC-flippases may reduce the local concentration of PS or phosphoinositides, required for efficient cell adhesion, focal adhesion formation, and cell spreading.
Collapse
Affiliation(s)
- Rie Miyano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
38
|
Takar M, Wu Y, Graham TR. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane. J Biol Chem 2016; 291:15727-39. [PMID: 27235400 DOI: 10.1074/jbc.m115.686253] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic organisms typically express multiple type IV P-type ATPases (P4-ATPases), which establish plasma membrane asymmetry by flipping specific phospholipids from the exofacial to the cytosolic leaflet. Saccharomyces cerevisiae, for example, expresses five P4-ATPases, including Neo1, Drs2, Dnf1, Dnf2, and Dnf3. Neo1 is thought to be a phospholipid flippase, although there is currently no experimental evidence that Neo1 catalyzes this activity or helps establish membrane asymmetry. Here, we use temperature-conditional alleles (neo1(ts)) to test whether Neo1 deficiency leads to loss of plasma membrane asymmetry. Wild-type (WT) yeast normally restrict most of the phosphatidylserine (PS) and phosphatidylethanolamine (PE) to the inner cytosolic leaflet of the plasma membrane. However, the neo1-1(ts) and neo1-2(ts) mutants display a loss of PS and PE asymmetry at permissive growth temperatures as measured by hypersensitivity to pore-forming toxins that target PS (papuamide A) or PE (duramycin) exposed in the extracellular leaflet. When shifted to a semi-permissive growth temperature, the neo1-1(ts) mutant became extremely hypersensitive to duramycin, although the sensitivity to papuamide A was unchanged, indicating preferential exposure of PE. This loss of asymmetry occurs despite the presence of other flippases that flip PS and/or PE. Even when overexpressed, Drs2 and Dnf1 were unable to correct the loss of asymmetry caused by neo1(ts) However, modest overexpression of Neo1 weakly suppressed loss of membrane asymmetry caused by drs2Δ with a more significant correction of PE asymmetry than PS. These results indicate that Neo1 plays an important role in establishing PS and PE plasma membrane asymmetry in budding yeast.
Collapse
Affiliation(s)
- Mehmet Takar
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Yuantai Wu
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Todd R Graham
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
39
|
Tekcham DS, Tiwari PK. Non-coding RNAs as emerging molecular targets of gallbladder cancer. Gene 2016; 588:79-85. [PMID: 27131889 DOI: 10.1016/j.gene.2016.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/06/2016] [Accepted: 04/24/2016] [Indexed: 01/17/2023]
Abstract
Gallbladder cancer is one of the most common cancers of biliary tract with aggressive pathophysiology, now emerging as a global health issue. Although minority of gallbladder cancer patients could receive such curative resection due to late diagnosis, this increases the survival rate. Lack of potential target molecule (s) for early diagnosis, better prognosis and effective therapy of gallbladder cancer has triggered investigators to look for novel technological or high throughput approaches to identify potential biomarker for gallbladder cancer. Intervention of non-coding RNAs in gallbladder cancer has been revealed recently. Non-coding RNAs are now widely implicated in cancer. Recent reports have revealed association of non-coding RNAs (microRNAs or miRNAs and long non-coding RNAs or lncRNAs) with gallbladder cancer. Here, we present an updated overview on the biogenesis, mechanism of action, role of non-coding RNAs, the identified cellular functions in gallbladder tumorigenesis, their prognostic & therapeutic potentials (efficacies) and future significance in developing effective biomarker(s), in future, for gallbladder.
Collapse
Affiliation(s)
- Dinesh Singh Tekcham
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474 011, MP, India
| | - Pramod Kumar Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474 011, MP, India.
| |
Collapse
|
40
|
Montigny C, Lyons J, Champeil P, Nissen P, Lenoir G. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:767-783. [PMID: 26747647 DOI: 10.1016/j.bbalip.2015.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Joseph Lyons
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Poul Nissen
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Yang B, Liu B, Bi P, Wu T, Wang Q, Zhang J. An integrated analysis of differential miRNA and mRNA expressions in human gallstones. MOLECULAR BIOSYSTEMS 2015; 11:1004-11. [PMID: 25639987 DOI: 10.1039/c4mb00741g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gallstone disease, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we investigated miRNA and mRNA involved in the formation of gallstones, and explored the molecular mechanisms in the development of gallstones. Differentially expressed 17 miRNAs and 525 mRNA were identified based on Illumina sequencing from gallbladder mucosa of patients with or without gallstones, and were validated by randomly selected 6 miRNAs and 8 genes using quantitative RT-PCR. 114 miRNA target genes were identified, whose functions and regulating pathways were related to gallstones. The differentially expressed genes were enriched upon lipoprotein binding and some metabolic pathways, and differentially expressed miRNAs enriched upon ABC transportation and cancer related pathways. A molecular regulatory network consisting of 17 differentially expressed miRNAs, inclusive of their target genes, was constructed. miR-210 and its potential target gene ATP11A were found to be differentially expressed in both miRNA and mRNA profiles. ATP11A was a direct target of miR-210, which was predicted to regulate the ABC-transporters pathway. The expression levels of ATP11A in the gallstone showed inverse correlation with miR-210 expression, and up-regulation of miR-210 could reduce ATP11A expression in HGBEC. This is the first report that indicates the existence of differences in miRNA and mRNA expression in patients with or without gallstones. Our data shed light on further investigating the mechanisms of gallstone formation.
Collapse
Affiliation(s)
- Bin Yang
- Department of Hepatobiliary Surgery, the 1st Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | | | | | | | | |
Collapse
|
42
|
Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Mol Biol Cell 2015; 26:4674-85. [PMID: 26466678 PMCID: PMC4678023 DOI: 10.1091/mbc.e15-07-0487] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
Protein sorting into exocytic vesicles at the yeast trans-Golgi network is believed to be mediated by their coalescence with specific lipids, but how this event is regulated is poorly understood. It is shown that phosphatidylserine flip by Drs2 is required for efficient sorting of the plasma membrane proteins Pma1 and Can1 into exocytic vesicles. Sorting of plasma membrane proteins into exocytic vesicles at the yeast trans-Golgi network (TGN) is believed to be mediated by their coalescence with specific lipids, but how these membrane-remodeling events are regulated is poorly understood. Here we show that the ATP-dependent phospholipid flippase Drs2 is required for efficient segregation of cargo into exocytic vesicles. The plasma membrane proteins Pma1 and Can1 are missorted from the TGN to the vacuole in drs2∆ cells. We also used a combination of flippase mutants that either gain or lose the ability to flip phosphatidylserine (PS) to determine that PS flip by Drs2 is its critical function in this sorting event. The primary role of PS flip at the TGN appears to be to control the oxysterol-binding protein homologue Kes1/Osh4 and regulate ergosterol subcellular distribution. Deletion of KES1 suppresses plasma membrane–missorting defects and the accumulation of intracellular ergosterol in drs2 mutants. We propose that PS flip is part of a homeostatic mechanism that controls sterol loading and lateral segregation of protein and lipid domains at the TGN.
Collapse
Affiliation(s)
- Hannah M Hankins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Yves Y Sere
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Nicholas S Diab
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
43
|
Takada N, Takatsu H, Miyano R, Nakayama K, Shin HW. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells. J Lipid Res 2015; 56:2151-7. [PMID: 26420878 DOI: 10.1194/jlr.m062547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/24/2022] Open
Abstract
Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells.
Collapse
Affiliation(s)
- Naoto Takada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku; Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku; Kyoto 606-8501, Japan
| | - Rie Miyano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku; Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku; Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku; Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Korneenko TV, Pestov NB, Okkelman IA, Modyanov NN, Shakhparonov MI. [P4-ATP-ase Atp8b1/FIC1: structural properties and (patho)physiological functions]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:3-12. [PMID: 26050466 DOI: 10.1134/s1068162015010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P4-ATP-ases comprise an interesting family among P-type ATP-ases, since they are thought to play a major role in the transfer of phospholipids such as phosphatydylserine from the outer leaflet to the inner leaflet. Isoforms of P4-ATP-ases are partially interchangeable but peculiarities of tissue-specific expression of their genes, intracellular localization of proteins, as well as regulatory pathways lead to the fact that, on the organismal level, serious pathologies may develop in the presence of structural abnormalities in certain isoforms. Among P4-ATP-ases a special place is occupied by ATP8B1, for which several mutations are known that lead to serious hereditary diseases: two forms of congenital cholestasis (PFIC1 or Byler disease and benign recurrent intrahepatic cholestasis) with extraliver symptoms such as sensorineural hearing loss. The physiological function of the Atp8b1/FIC1 protein is known in general outline: it is responsible for transport of certain phospholipids (phosphatydylserine, cardiolipin) for the outer monolayer of the plasma membrane to the inner one. It is well known that perturbation of membrane asymmetry, caused by the lack of Atp8B1 activity, leads to death of hairy cells of the inner ear, dysfunction of bile acid transport in liver-cells that causes cirrhosis. It is also probable that insufficient activity of Atp8b1/FIC1 increases susceptibility to bacterial pneumonia.Regulatory pathways of Atp8b1/FIC1 activity in vivo remain to be insufficiently studied and this opens novel perspectives for research in this field that may allow better understanding of molecular processes behind the development of certain pathologies and to reveal novel therapeutical targets.
Collapse
|
45
|
Panatala R, Hennrich H, Holthuis JCM. Inner workings and biological impact of phospholipid flippases. J Cell Sci 2015; 128:2021-32. [PMID: 25918123 DOI: 10.1242/jcs.102715] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The plasma membrane, trans-Golgi network and endosomal system of eukaryotic cells are populated with flippases that hydrolyze ATP to help establish asymmetric phospholipid distributions across the bilayer. Upholding phospholipid asymmetry is vital to a host of cellular processes, including membrane homeostasis, vesicle biogenesis, cell signaling, morphogenesis and migration. Consequently, defining the identity of flippases and their biological impact has been the subject of intense investigations. Recent work has revealed a remarkable degree of kinship between flippases and cation pumps. In this Commentary, we review emerging insights into how flippases work, how their activity is controlled according to cellular demands, and how disrupting flippase activity causes system failure of membrane function, culminating in membrane trafficking defects, aberrant signaling and disease.
Collapse
Affiliation(s)
- Radhakrishnan Panatala
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands Molecular Cell Biology Division, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hanka Hennrich
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands
| | - Joost C M Holthuis
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 Utrecht, The Netherlands Molecular Cell Biology Division, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
46
|
Rinaldi DE, Corradi GR, Cuesta LM, Adamo HP, de Tezanos Pinto F. The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1646-55. [PMID: 25912790 DOI: 10.1016/j.bbamem.2015.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
Abstract
P-type ion pumps are membrane transporters that have been classified into five subfamilies termed P1-P5. The ion transported by the P5-ATPases is not known. Five genes named ATP13A1-ATP13A5 that belong to the P5-ATPase group are present in humans. Loss-of-function mutations in the ATP13A2 gene (PARK9, OMIM 610513) underlay a form of Parkinson's disease (PD) known as the Kufor-Rakeb syndrome (KRS), which belongs to the group of syndromes of neurodegeneration with brain iron accumulation (NBIA). Here we report that the cytotoxicity induced by iron exposure was two-fold reduced in CHO cells stably expressing the ATP13A2 recombinant protein (ATP13A2). Moreover, the iron content in ATP13A2 cells was lower than control cells stably expressing an inactive mutant of ATP13A2. ATP13A2 expression caused an enlargement of lysosomes and late endosomes. ATP13A2 cells exhibited a reduced iron-induced lysosome membrane permeabilization (LMP). These results suggest that ATP13A2 overexpression improves the lysosome membrane integrity and protects against the iron-induced cell damage.
Collapse
Affiliation(s)
- Débora E Rinaldi
- From IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | - Gerardo R Corradi
- From IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | - Lucía Martínez Cuesta
- From IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | - Hugo P Adamo
- From IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina.
| | - Felicitas de Tezanos Pinto
- From IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina.
| |
Collapse
|
47
|
Sheng M, Hosseinzadeh A, Muralidharan SV, Gaur R, Selstam E, Tuck S. Aberrant fat metabolism in Caenorhabditis elegans mutants with defects in the defecation motor program. PLoS One 2015; 10:e0124515. [PMID: 25849533 PMCID: PMC4388766 DOI: 10.1371/journal.pone.0124515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms by which dietary fatty acids are absorbed by the intestine, and the way in which the process is regulated are poorly understood. In a genetic screen for mutations affecting fat accumulation in the intestine of Caenorhabditis elegans, nematode worms, we have isolated mutations in the aex-5 gene, which encodes a Kex2/subtilisin-family, Ca2+-sensitive proprotein convertase known to be required for maturation of certain neuropeptides, and for a discrete step in an ultradian rhythmic phenomenon called the defecation motor program. We demonstrate that aex-5 mutants have markedly lower steady-state levels of fat in the intestine, and that this defect is associated with a significant reduction in the rate at which labeled fatty acid derivatives are taken up from the intestinal lumen. Other mutations affecting the defecation motor program also affect steady-state levels of triglycerides, suggesting that the program is required per se for the proper accumulation of neutral lipids. Our results suggest that an important function of the defecation motor program in C. elegans is to promote the uptake of an important class of dietary nutrients. They also imply that modulation of the program might be one way in which worms adjust nutrient uptake in response to altered metabolic status.
Collapse
Affiliation(s)
- Ming Sheng
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ava Hosseinzadeh
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Rahul Gaur
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Eva Selstam
- Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
48
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
49
|
Lee S, Uchida Y, Wang J, Matsudaira T, Nakagawa T, Kishimoto T, Mukai K, Inaba T, Kobayashi T, Molday RS, Taguchi T, Arai H. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J 2015; 34:669-88. [PMID: 25595798 PMCID: PMC4365035 DOI: 10.15252/embj.201489703] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
P4-ATPases translocate aminophospholipids, such as phosphatidylserine (PS), to the cytosolic leaflet of membranes. PS is highly enriched in recycling endosomes (REs) and is essential for endosomal membrane traffic. Here, we show that PS flipping by an RE-localized P4-ATPase is required for the recruitment of the membrane fission protein EHD1. Depletion of ATP8A1 impaired the asymmetric transbilayer distribution of PS in REs, dissociated EHD1 from REs, and generated aberrant endosomal tubules that appear resistant to fission. EHD1 did not show membrane localization in cells defective in PS synthesis. ATP8A2, a tissue-specific ATP8A1 paralogue, is associated with a neurodegenerative disease (CAMRQ). ATP8A2, but not the disease-causative ATP8A2 mutant, rescued the endosomal defects in ATP8A1-depleted cells. Primary neurons from Atp8a2-/- mice showed a reduced level of transferrin receptors at the cell surface compared to Atp8a2+/+ mice. These findings demonstrate the role of P4-ATPase in membrane fission and give insight into the molecular basis of CAMRQ.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Jiao Wang
- Departments of Biochemistry and Molecular Biology and Ophthalmology and Visual Sciences, Centre for Macular Research University of British Columbia, Vancouver, BC, Canada
| | - Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Osaka Medical College, Takatsuki-city Osaka, Japan
| | | | - Kojiro Mukai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Lipid Biology Laboratory, RIKEN, Wako-shi Saitama, Japan
| | - Takehiko Inaba
- Lipid Biology Laboratory, RIKEN, Wako-shi Saitama, Japan
| | | | - Robert S Molday
- Departments of Biochemistry and Molecular Biology and Ophthalmology and Visual Sciences, Centre for Macular Research University of British Columbia, Vancouver, BC, Canada
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Hankins HM, Baldridge RD, Xu P, Graham TR. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 2014; 16:35-47. [PMID: 25284293 DOI: 10.1111/tra.12233] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non-vesicular routes, with members of the oxysterol-binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4-ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS-specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.
Collapse
Affiliation(s)
- Hannah M Hankins
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | | | | | | |
Collapse
|