1
|
Sandu C, Pannengpetch S, Khaenam P, Yasawong M, Nakorn PN, Lapmanee S, Felder-Schmittbuhl MP, Wongchitrat P. Daily proteome variations highlight sustained metabolic activity in cone cells of Nrl knockout mice. Exp Eye Res 2025; 253:110284. [PMID: 39955023 DOI: 10.1016/j.exer.2025.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Vision is a highly rhythmic function adapted to daily changes in light intensity. Rhythms disruption is known to compromise retinal health and visual function. This study investigates expression patterns of cone proteins over the 24-h daily cycle in order to understand the molecular bases of cone cyclic physiology. Cones were isolated by vibratome-sectioning from Nrl knockout mice at four time points across the 24-h LD (Light-Dark) cycle and protein extracts were quantified by label-free LC-MS/MS. The resulting protein data was then submitted to MetaCycle analysis to identify proteins with rhythmic expression patterns and associated functions. Cyclic profiles were further validated by SWATH-MS analysis. A total of 1208 proteins were identified. Rhythmic expression patterns were found for 319 proteins, categorized into four clusters based on intensity variation. SWATH-MS analysis validated the approach. Functional enrichment analysis revealed proteins critical for photoreceptor function, including those involved in phototransduction, oxidative phosphorylation, RNA processing, proteostasis, transport, synaptic function and cilia biogenesis. These findings provide a unique dataset of rhythmic cone proteins, potentially crucial for elucidating cone cell physiology and visual function. This knowledge can empower future research on preventing and treating vision impairment.
Collapse
Affiliation(s)
- Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Supitcha Pannengpetch
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Prasong Khaenam
- Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Montri Yasawong
- Program on Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Piyada Na Nakorn
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sarawut Lapmanee
- Division of Physiology, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
2
|
Housset M, Filion D, Cortes N, Vali H, Mandato CA, Casanova C, Cayouette M. Identification of a non-canonical planar cell polarity pathway triggered by light in the developing mouse retina. Dev Cell 2025; 60:447-458.e5. [PMID: 39561777 DOI: 10.1016/j.devcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
The coordinated spatial arrangement of organelles within a tissue plane, known as planar cell polarity (PCP), is critical for organ development and function. Gradients of morphogens and their receptors typically set-up PCP, but whether non-molecular cues, akin to phototropism in plants, also play a part remains unknown. Here, we report that basal bodies of newborn photoreceptor cells in the mouse retina are positioned centrally on the apical surface but then move laterally during the first postnatal week, generating cell-intrinsic asymmetry in the retinal plane. After 1 week, when the eyes open, basal bodies of cone cilia, but not rods, become coordinated across the plane to face the center of the retina. We further show that light is essential for cone PCP, triggering a cascade in which cone transducin interacts with the G-protein-signaling modulator protein 2 (GPSM2) to establish PCP. This work identifies a non-canonical PCP pathway initiated by light.
Collapse
Affiliation(s)
- Michael Housset
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada.
| | - Dominic Filion
- Microscopy Core Facility, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Nelson Cortes
- School of Optometry, Université de Montréal, CP 6128 succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, QC H3A 0C7, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Christian Casanova
- School of Optometry, Université de Montréal, CP 6128 succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
3
|
Xu H, Ajayan A, Langen R, Chen J. Pleiotropic effects of mutant huntingtin on retinopathy in two mouse models of Huntington's disease. Neurobiol Dis 2025; 205:106780. [PMID: 39736404 PMCID: PMC11837809 DOI: 10.1016/j.nbd.2024.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
Huntington's disease (HD) is caused by the expansion of a CAG repeat, encoding a string of glutamines (polyQ) in the first exon of the huntingtin gene (HTTex1). This mutant huntingtin protein (mHTT) with extended polyQ forms aggregates in cortical and striatal neurons, causing cell damage and death. The retina is part of the central nervous system (CNS), and visual deficits and structural abnormalities in the retina of HD patients have been observed. Defects in retinal structure and function are also present in the R6/2 and R6/1 HD transgenic mouse models that contain a gene fragment to express mHTTex1. We investigated whether these defects extend to the zQ175KI mouse model which is thought to be more representative of the human condition because it was engineered to contain the extended CAG repeat within the endogenous HTT locus. We found qualitatively similar phenotypes between R6/1 and zQ175KI retinae that include the presence of mHTT aggregates in retinal neurons, cone loss, downregulation of rod signaling proteins and abnormally elongated photoreceptor connecting cilia. In addition, we present novel findings that mHTT disrupts cell polarity in the photoreceptor cell layer and the retinal pigment epithelium (RPE). Furthermore, we show that the RPE cells from R6/1 mice contain mHTT nuclear inclusions, adding to the list of non-neuronal cells with mHTT aggregates and pathology. Thus, the eye may serve as a useful system to track disease progression and to test therapeutic intervention strategies for HD.
Collapse
Affiliation(s)
- Hui Xu
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anakha Ajayan
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ralf Langen
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeannie Chen
- Department of Physiology & Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Salom D, Kiser PD, Palczewski K. Insights into the Activation and Self-Association of Arrestin-1. Biochemistry 2025; 64:364-376. [PMID: 39704710 PMCID: PMC11784764 DOI: 10.1021/acs.biochem.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in SAG, the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation. Since the discovery of Arrestin-1, substantial progress has been made in understanding the role of these regulatory proteins in phototransduction, including the characterization of visual phenotypes of animals and humans lacking this protein, discovery of splice variants, and documentation of its binding to inositol-polyphosphates. Arrestin-1 was one of the first structurally characterized proteins in the phototransduction cascade. However, there are knowledge gaps regarding the conformational intermediates leading to its binding to phosphorylated rhodopsin. Among various mammalian Arrestin-1 conformations captured via crystallography, the preactivated state is represented by the mutant R175E-Arrestin-1 and by a C-terminally truncated splice variant (p44). This report describes a novel purification method of Arrestin-1 from bovine retinas followed by limited proteolysis to obtain a protein resembling p44. We solved the crystal structure of this preactivated, shortened 3-367Arrestin-1 at a resolution of 1.40 Å. The structure reveals a more complete picture of the finger loop structure and of the role of the polar core in the activation of Arrestin-1. The structure of 3-367Arrestin-1 captures an intermediate form halfway between the inactive and fully activated conformations of Arrestin-1. Finally, we addressed the question of Arrestin-1 oligomerization by comparing the packing interfaces in different Arrestin-1 crystals and dimer models predicted by AlphaFold 3.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
| | - Philip D. Kiser
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, University of Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute – Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Barnes CL, Salom D, Namitz KEW, Smith WC, Knutson BA, Cosgrove MS, Kiser PD, Calvert PD. Mechanisms of amphibian arrestin 1 self-association and dynamic distribution in retinal photoreceptors. J Biol Chem 2024; 300:107966. [PMID: 39510183 PMCID: PMC11652889 DOI: 10.1016/j.jbc.2024.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Visual arrestin 1 (Arr1) is an essential protein for termination of the light response in photoreceptors. While mammalian Arr1s form dimers and tetramers at physiological concentrations in vitro, oligomerization in other vertebrates has not been studied. Here we examine self-association of Arr1 from two amphibian species, Xenopus laevis (xArr1) and Ambystoma tigrinum (salArr1). Sedimentation velocity analytical ultracentrifugation showed that xArr1 and salArr1 oligomerization is limited to dimers. The KD for dimer formation was 53 μM for xArr1 and 44 μM for salArr1, similar to the 69 μM KD for bovine Arr1 (bArr1) dimers. Mutations of orthologous amino acids important for mammalian Arr1 oligomerization had no impact on xArr1 dimerization. Crystallography showed that the fold of xArr1 closely resembles that of bArr1 and crystal structures in different space groups revealed two potential xArr1 dimer forms: a symmetric dimer with a C-domain interface (CC dimer), resembling the bArr1 solution dimer, and an asymmetric dimer with an N-domain/C-domain interface. Mutagenesis of residues predicted to interact in either of these two dimer forms yielded modest reduction in dimer affinity, suggesting that the dimer interfaces compete or are not unique. Indeed, small-angle X-ray scattering and protein painting data were consistent with a symmetric anti-parallel solution dimer (AP dimer) distinct from the assemblies observed by crystallography. Finally, a computational model evaluating xArr1 binding to compartment-specific partners and partitioning based on heterogeneity of available cytoplasmic spaces shows that Arr1 distribution in dark-adapted photoreceptors is largely explained by the excluded volume effect together with tuning by oligomerization.
Collapse
Affiliation(s)
- Cassandra L Barnes
- Center for Vision Research and the Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California, Irvine, California, USA
| | - Kevin E W Namitz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California, Irvine, California, USA; Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, VA Long Beach Medical Center, Long Beach, California, USA.
| | - Peter D Calvert
- Center for Vision Research and the Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
6
|
Du SW, Newby GA, Salom D, Gao F, Menezes CR, Suh S, Choi EH, Chen PZ, Liu DR, Palczewski K. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice. Proc Natl Acad Sci U S A 2024; 121:e2416827121. [PMID: 39556729 PMCID: PMC11621631 DOI: 10.1073/pnas.2416827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
Abstract
Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in RHO which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death. Therefore, correction of deleterious rhodopsin mutations could rescue inherited retinal degeneration, as demonstrated for other visual genes such as RPE65 and PDE6B. In this study, we describe a CRISPR/Cas9 adenine base editing strategy to correct the E150K mutation and demonstrate precise in vivo editing in a Rho-E150K mouse model of autosomal recessive retinitis pigmentosa (RP). Using ultraviolet-visible spectroscopy, mass spectrometry, and the G-protein activation assay, we characterized wild-type rhodopsin and rhodopsin variants containing bystander base edits. Subretinal injection of dual-adeno-associated viruses delivering our base editing strategy yielded up to 44% Rho correction in homozygous Rho-E150K mice. Injection at postnatal day 15, but not later time points, restored rhodopsin expression, partially rescued retinal function, and partially preserved retinal structure. These findings demonstrate that in vivo base editing can restore the function of mutated structural and functional proteins in animal models of disease, including rhodopsin-associated RP and suggest that the timing of gene-editing is a crucial determinant of successful treatment outcomes for degenerative genetic diseases.
Collapse
Affiliation(s)
- Samuel W. Du
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
| | - David Salom
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Fangyuan Gao
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Susie Suh
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Elliot H. Choi
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Paul Z. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
7
|
Gupta M, Pazour GJ. Intraflagellar transport: A critical player in photoreceptor development and the pathogenesis of retinal degenerative diseases. Cytoskeleton (Hoboken) 2024; 81:556-568. [PMID: 38140908 PMCID: PMC11193844 DOI: 10.1002/cm.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.
Collapse
Affiliation(s)
- Mohona Gupta
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Xu J, Zhao C, Kang Y. The Formation and Renewal of Photoreceptor Outer Segments. Cells 2024; 13:1357. [PMID: 39195247 DOI: 10.3390/cells13161357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The visual system is essential for humans to perceive the environment. In the retina, rod and cone photoreceptor neurons are the initial sites where vision forms. The apical region of both cone and rod photoreceptors contains a light-sensing organelle known as the outer segment (OS), which houses tens of thousands of light-sensitive opsins. The OSs of photoreceptors are not static; they require rhythmic renewal to maintain normal physiological functions. Disruptions in OS renewal can lead to various genetic disorders, such as retinitis pigmentosa (RP). Understanding the patterns and molecular mechanisms of photoreceptor OS renewal remains one of the most intriguing topics in visual biology. This review aims to elucidate the structure of photoreceptor OSs, the molecular mechanisms underlying photoreceptor OS renewal, and the retinal diseases resulting from defects in this renewal process. Additionally, we will explore retinal diseases related to photoreceptor OS renewal and potential therapeutic strategies, concluding with a discussion on future research directions for OS renewal.
Collapse
Affiliation(s)
- Jingjin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chengtian Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
9
|
Messner A, Aranha dos Santos V, Puchner S, Stegmann H, Schlatter A, Schmidl D, Leitgeb R, Schmetterer L, Werkmeister RM. The Impact of Photopigment Bleaching on the Human Rod Photoreceptor Subretinal Space Measured Via Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38470325 PMCID: PMC10941995 DOI: 10.1167/iovs.65.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate rod photopigment bleaching-driven intrinsic optical signals (IOS) in the human outer retina and its measurement repeatability based on a commercial optical coherence tomography (OCT) platform. Methods The optical path length of the rod photoreceptor subretinal space (SRS), that is, the distance between signal bands of rod outer segment tips and retinal pigment epithelium, was measured in 15 healthy subjects in ambient light and during a long-duration bleaching white-light exposure. Results On 2 identical study days (day 1 and day 2 [D1 and D2]), light stimulation resulted in a significant decrease in rod SRS by 21.3 ± 7.6% and 19.8 ± 8.5% (both P < 0.001), respectively. The test-retest reliability of the SRS maximum change of an individual subject was moderate for single measures (intraclass correlation coefficient [ICC] = 0.730, 95% confidence interval [CI] = 0.376, 0.900, P < 0.001) and good for average measures (ICC = 0.844, 95% CI = 0.546, 0.947, P < 0.001). The mean area under the stimulus response curve with values of 14.8 ± 9.4 and 15.5 ± 7.5 µm × minutes (P = 0.782) showed excellent agreement between the stimulus response on D1 and D2. Intermittent dark adaptation of the retina led to an initial increase of the SRS by 6.1% (P = 0.018) and thereafter showed a decrease toward baseline, despite continued dark adaptation. Conclusions The data indicate the potential of commercial OCT in measuring slow IOS in the outer retina suggesting that the rod SRS could serve as a biomarker for photoreceptor function. The presented approach could provide an easily implementable clinical tool for the early detection of diseases affecting photoreceptor health.
Collapse
Affiliation(s)
- Alina Messner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Puchner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hannes Stegmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Vienna Institute for Research in Ocular Surgery (VIROS), Department of Ophthalmology, Hanusch Hospital, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Singapore Eye Research Institute, The Academia, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Skiba NP, Lewis TR, Spencer WJ, Castillo CM, Shevchenko A, Arshavsky VY. Absolute Quantification of Photoreceptor Outer Segment Proteins. J Proteome Res 2023; 22:2703-2713. [PMID: 37493966 PMCID: PMC10513726 DOI: 10.1021/acs.jproteome.3c00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously determine the abundances of 20 key structural and functional proteins residing in mouse rod outer segments. We computed the absolute number of molecules of each protein residing within an individual outer segment and the molar ratio among all 20 proteins. The molar ratios of proteins comprising three well-characterized constitutive complexes in outer segments differed from the established subunit stoichiometries of these complexes by less than 7%, highlighting the exceptional precision of our quantification. Overall, this study resolves multiple existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.
Collapse
Affiliation(s)
- Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Tylor R. Lewis
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - William J. Spencer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany 01307
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
11
|
Kralik J, van Wyk M, Leonardon B, Schilardi G, Schneider S, Kleinlogel S. The Bovine Ex Vivo Retina: A Versatile Model for Retinal Neuroscience. Invest Ophthalmol Vis Sci 2023; 64:29. [PMID: 37610761 PMCID: PMC10461644 DOI: 10.1167/iovs.64.11.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose The isolated ex vivo retina is the standard model in retinal physiology and neuroscience. During isolation, the retina is peeled from the retinal pigment epithelium (RPE), which plays a key role in the visual cycle. Here we introduce the choroid-attached bovine retina as an in vivo-like model for retinal physiology. We find that-in the bovine eye-the choroid and retina can be peeled from the sclera as a single thin sheet. Importantly, the retina remains tightly associated with the RPE, which is sandwiched between the retina and the choroid. Furthermore, bovine tissue is readily available and cheap, and there are no ethical concerns related to the use of animals solely for research purposes. Methods We combine multi-electrode array and single-cell patch-clamp recordings to characterize light responses in the choroid-attached bovine ex vivo retina. Results We demonstrate robust and consistent light responses in choroid-attached preparations. Importantly, light responses adapt to different levels of background illumination and rapidly recover from photobleaching. The choroid-attached retina is also thin enough to permit targeted electrophysiological recording from individual retinal neurons using standard differential interference contrast microscopy. We also characterize light responses and membrane properties of bovine retinal ganglion cells and compare data obtained from bovine and murine retinas. Conclusions The choroid-attached retinal model retains the advantages of the isolated retina but with an intact visual cycle and represents a useful tool to elucidate retinal physiology.
Collapse
Affiliation(s)
- Jakub Kralik
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michiel van Wyk
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Benjamin Leonardon
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Giulia Schilardi
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sonja Kleinlogel
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Skiba NP, Lewis TR, Spencer WJ, Castillo CM, Shevchenko A, Arshavsky VY. Absolute quantification of photoreceptor outer segment proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524794. [PMID: 36711880 PMCID: PMC9882265 DOI: 10.1101/2023.01.19.524794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously determine the abundances of twenty key structural and functional proteins residing in mouse rod outer segments. We computed the absolute number of molecules of each protein residing within an individual outer segment and the molar ratio amongst all twenty proteins. The molar ratios of proteins comprising three well-characterized constitutive complexes in outer segments differed from the established subunit stoichiometries of these complexes by less than 7%, highlighting the exceptional precision of our quantification. Overall, this study resolves multiple existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.
Collapse
|
13
|
Lou L, Ostrin LA. The outdoor environment affects retinal and choroidal thickness. Ophthalmic Physiol Opt 2023; 43:572-583. [PMID: 36779486 PMCID: PMC10081136 DOI: 10.1111/opo.13107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE Accumulating evidence suggests that time outdoors is protective against myopia development and that the choroid may be involved in this effect. The goal of this study was to examine the effect of 2 h of time outdoors in sunlight on retinal and choroidal thickness in adults. METHODS Twenty adults, ages 23-46 years, each participated in three experimental sessions on different days, consisting of 2 h of exposure to (1) indoor illumination (350 lux), (2) darkness (<0.1 lux) or (3) outdoor environment (6000-50,000 lux). Spectral-domain optical coherence tomography (SD-OCT) imaging was conducted at baseline, after 1 and 2 h of exposure, and after 1 and 2 h of follow-up. Choroidal, total retinal, photoreceptor outer segment + retinal pigment epithelium (RPE) and photoreceptor inner segment thicknesses were determined. RESULTS At 2 h, the choroid was significantly thinner during the outdoor compared with the indoor and dark conditions (p < 0.01) but was not significantly different at follow-up. Total retinal thickness was significantly thicker during and after the outdoor compared with the indoor and dark conditions. The outer segment + RPE was significantly thinner during the outdoor compared with the indoor condition but was not significantly different at follow-up. The inner segment was significantly thicker during the outdoor compared with the indoor and dark conditions during exposure and follow-up. CONCLUSIONS Spending 2 h outdoors under high-intensity sunlight resulted in an unexpected thinning of the choroid, which recovered post-exposure. Retinal thickness showed different responses to the outdoor and indoor environments and was sensitive to the duration of exposure.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Optical coherence tomography in healthy human subjects in the setting of prolonged dark adaptation. Sci Rep 2023; 13:3725. [PMID: 36879027 PMCID: PMC9988879 DOI: 10.1038/s41598-023-30747-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Human studies have established that short periods of dark adaptation can induce outer retinal thinning and various band intensity changes that can be detected with Optical Coherence Tomography (OCT). Similar findings were observed in mice, including a positive correlation between the degree of outer retinal changes and dark adaptation duration. We decided to assess potential retinal structural changes following prolonged dark adaptation in humans. 40 healthy subjects without any ocular diseases participated in this study. For each subject, one eye was covered for dark adaptation for four hours, and the other eye was left uncovered as a control. Before and after the dark adaptation period, both eyes were assessed with OCT. Using the Heidelberg Spectralis system, basic statistical functions, and qualitative and quantitative analysis, we were able to compare retinal layer thicknesses and band intensities between covered (dark adapted) versus uncovered (control) eyes. Prolonged dark adaptation did not induce any significant thickness, volume, or intensity changes in the outer retina or in the inner or overall retina. These observations thus alter our current understanding of the mechanisms underlying dark adaptation's neuroprotective effects in preventing blindness and require further study.
Collapse
|
15
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
16
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Pasquaré SJ, Chamorro-Aguirre E, Gaveglio VL. The endocannabinoid system in the visual process. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Kim TH, Ding J, Yao X. Intrinsic signal optoretinography of dark adaptation kinetics. Sci Rep 2022; 12:2475. [PMID: 35169239 PMCID: PMC8847457 DOI: 10.1038/s41598-022-06562-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Delayed dark adaptation due to impaired rod photoreceptor homeostasis has been reported as the earliest symptom of eye diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. Objective measurement of dark adaptation can facilitate early diagnosis to enable prompt intervention to prevent vision loss. However, there is a lack of noninvasive methods capable of spatiotemporal monitoring of photoreceptor changes during dark adaptation. Here we demonstrate functional optical coherence tomography (OCT) for in vivo intrinsic signal optoretinography (ORG) of dark adaptation kinetics in the C57BL/6J mouse retina. Functional OCT revealed a shortening of the outer retina, a rearrangement of the cone and rod photoreceptor interdigitation zone, and a reduction in intrinsic signal amplitude at the photoreceptor inner segment ellipsoid (ISe). A strong positive correlation between the outer retinal shortening and ISe intensity reduction was also confirmed. Functional OCT of dark adaptation kinetics promises an objective method for rapid ORG assessment of physiological integrity of retinal photoreceptors.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jie Ding
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Yelland T, Garcia E, Samarakoon Y, Ismail S. The Structural and Biochemical Characterization of UNC119B Cargo Binding and Release Mechanisms. Biochemistry 2021; 60:1952-1963. [PMID: 34130453 PMCID: PMC8246649 DOI: 10.1021/acs.biochem.1c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Indexed: 11/29/2022]
Abstract
Two paralogs of the guanine dissociation inhibitor-like solubilizing factors UNC119, UNC119A and UNC119B, are present in the human genome. UNC119 binds to N-myristoylated proteins and masks the hydrophobic lipid from the hydrophilic cytosol, facilitating trafficking between different membranes. Two classes of UNC119 cargo proteins have been classified: low affinity cargoes, released by the Arf-like proteins ARL2 and ARL3, and high affinity cargoes, which are specifically released by ARL3 and trafficked to either the primary cilium or the immunological synapse. The UNC119 homologues have reported differences in functionality, but the structural and biochemical bases for these differences are unknown. Using myristoylated peptide binding and release assays, we show that peptides sharing the previously identified UNC119A high affinity motif show significant variations of binding affinities to UNC119B of up to 427-fold. Furthermore, we solve the first two crystal structures of UNC119B, one in complex with the high affinity cargo peptide of LCK and a second one in complex with the release factor ARL3. Using these novel structures, we identify a stretch of negatively charged amino acids unique to UNC119B that may undergo a conformational change following binding of a release factor which we propose as an additional release mechanism specific to UNC119B.
Collapse
Affiliation(s)
- Tamas Yelland
- Beatson
Cancer Research UK Institute, Glasgow G61 1BD, Scotland
| | - Esther Garcia
- Beatson
Cancer Research UK Institute, Glasgow G61 1BD, Scotland
| | | | - Shehab Ismail
- Beatson
Cancer Research UK Institute, Glasgow G61 1BD, Scotland
- Institute
of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| |
Collapse
|
21
|
Solanki AK, Biswal MR, Walterhouse S, Martin R, Kondkar AA, Knölker HJ, Rahman B, Arif E, Husain S, Montezuma SR, Nihalani D, Lobo GP. Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells 2021; 10:cells10061322. [PMID: 34073294 PMCID: PMC8229726 DOI: 10.3390/cells10061322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
Collapse
Affiliation(s)
- Ashish K. Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Manas R. Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Stephen Walterhouse
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 516 Delaware Street S.E., 9th Floor, Minneapolis, MN 55455, USA;
| | - Deepak Nihalani
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bldg. 2DEM, Room 6085, 6707 Democracy Blvd., Bethesda, MD 20817, USA
- Correspondence: (D.N.); (G.P.L.)
| | - Glenn Prazere Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Ophthalmology and Visual Neurosciences, Lions Research Building, University of Minnesota, 2001 6th Street S.E., Room 225, Minneapolis, MN 55455, USA
- Correspondence: (D.N.); (G.P.L.)
| |
Collapse
|
22
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
23
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
24
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
25
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:e202012687. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating "dark current" that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1-/-) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1-/- rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1-/- rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70-80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N. Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
26
|
Lankford CK, Laird JG, Inamdar SM, Baker SA. A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Front Cell Neurosci 2020; 14:595523. [PMID: 33250719 PMCID: PMC7676898 DOI: 10.3389/fncel.2020.595523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning’s of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons—rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.
Collapse
Affiliation(s)
- Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
27
|
Srivastava D, Yadav RP, Inamdar SM, Huang Z, Sokolov M, Boyd K, Artemyev NO. Transducin Partners Outside the Phototransduction Pathway. Front Cell Neurosci 2020; 14:589494. [PMID: 33173469 PMCID: PMC7591391 DOI: 10.3389/fncel.2020.589494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Transducin mediates signal transduction in a classical G protein-coupled receptor (GPCR) phototransduction cascade. Interactions of transducin with the receptor and the effector molecules had been extensively investigated and are currently defined at the atomic level. However, partners and functions of rod transducin α (Gαt 1) and βγ (Gβ1γ1) outside the visual pathway are not well-understood. In particular, light-induced redistribution of rod transducin from the outer segment to the inner segment and synaptic terminal (IS/ST) allows Gαt1 and/or Gβ1γ1 to modulate synaptic transmission from rods to rod bipolar cells (RBCs). Protein-protein interactions underlying this modulation are largely unknown. We discuss known interactors of transducin in the rod IS/ST compartment and potential pathways leading to the synaptic effects of light-dispersed Gαt1 and Gβ1γ1. Furthermore, we show that a prominent non-GPCR guanine nucleotide exchange factor (GEF) and a chaperone of Gα subunits, resistance to inhibitors of cholinesterase 8A (Ric-8A) protein, is expressed throughout the retina including photoreceptor cells. Recent structures of Ric-8A alone and in complexes with Gα subunits have illuminated the structural underpinnings of the Ric-8A activities. We generated a mouse model with conditional knockout of Ric-8A in rods in order to begin defining the functional roles of the protein in rod photoreceptors and the retina. Our analysis suggests that Ric-8A is not an obligate chaperone of Gαt1. Further research is needed to investigate probable roles of Ric-8A as a GEF, trafficking chaperone, or a mediator of the synaptic effects of Gαt1.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zhen Huang
- Department of Neurology and Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim Sokolov
- Department of Ophthalmology, Biochemistry and Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
28
|
Abstract
Vision loss, among the most feared complications of diabetes, is primarily caused by diabetic retinopathy, a disease that manifests in well-recognized, characteristic microvascular lesions. The reasons for retinal susceptibility to damage in diabetes are unclear, especially considering that microvascular networks are found in all tissues. However, the unique metabolic demands of retinal neurons could account for their vulnerability in diabetes. Photoreceptors are the first neurons in the visual circuit and are also the most energy-demanding cells of the retina. Here, we review experimental and clinical evidence linking photoreceptors to the development of diabetic retinopathy. We then describe the influence of retinal illumination on photoreceptor metabolism, effects of light modulation on the severity of diabetic retinopathy, and recent clinical trials testing the treatment of diabetic retinopathy with interventions that impact photoreceptor metabolism. Finally, we introduce several possible mechanisms that could link photoreceptor responses to light and the development of retinal vascular disease in diabetes. Collectively, these concepts form the basis for a growing body of investigative efforts aimed at developing novel pharmacologic and nonpharmacologic tools that target photoreceptor physiology to treat a very common cause of blindness across the world.
Collapse
|
29
|
Zebrafish Crb1, Localizing Uniquely to the Cell Membranes around Cone Photoreceptor Axonemes, Alleviates Light Damage to Photoreceptors and Modulates Cones' Light Responsiveness. J Neurosci 2020; 40:7065-7079. [PMID: 32817065 DOI: 10.1523/jneurosci.0497-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
The crumbs (crb) apical polarity genes are essential for the development and functions of epithelia. Adult zebrafish retinal neuroepithelium expresses three crb genes (crb1, crb2a, and crb2b); however, it is unknown whether and how Crb1 differs from other Crb proteins in expression, localization, and functions. Here, we show that, unlike zebrafish Crb2a and Crb2b as well as mammalian Crb1 and Crb2, zebrafish Crb1 does not localize to the subapical regions of photoreceptors and Müller glial cells; rather, it localizes to a small region of cone outer segments: the cell membranes surrounding the axonemes. Moreover, zebrafish Crb1 is not required for retinal morphogenesis and photoreceptor patterning. Interestingly, Crb1 promotes rod survival under strong white light irradiation in a previously unreported non--cell-autonomous fashion; in addition, Crb1 delays UV and blue cones' chromatin condensation caused by UV light irradiation. Finally, Crb1 plays a role in cones' responsiveness to light through an arrestin-translocation-independent mechanism. The localization of Crb1 and its functions do not differ between male and female fish. We conclude that zebrafish Crb1 has diverged from other vertebrate Crb proteins, representing a neofunctionalization in Crb biology during evolution.SIGNIFICANCE STATEMENT Apicobasal polarity of epithelia is an important property that underlies the morphogenesis and functions of epithelial tissues. Epithelial apicobasal polarity is controlled by many polarity genes, including the crb genes. In vertebrates, multiple crb genes have been identified, but the differences in their expression patterns and functions are not fully understood. Here, we report a novel subcellular localization of zebrafish Crb1 in retinal cone photoreceptors and evidence for its new functions in photoreceptor maintenance and light responsiveness. This study expands our understanding of the biology of the crb genes in epithelia, including retinal neuroepithelium.
Collapse
|
30
|
Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin Cell Dev Biol 2020; 106:86-93. [PMID: 32359892 DOI: 10.1016/j.semcdb.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Most vertebrates have duplex retinas, with two classes of photoreceptors, rods and cones. In the group of Snakes, however, distinct patterns of retinal morphology are associated with transitions between diurnal-nocturnal habits and reflect important adaptations of their visual system. Pure-cone, pure-rod and duplex retinas were described in different species, and this variability led Gordon Walls (1934) to formulate the transmutation theory, which suggests that rods and cones are not fixed entities, but can assume transitional states. Three opsin genes are expressed in retinas of most snake species, lws, rh1, and sws1, and recent studies have shown that the rhodopsin gene, rh1, is expressed in pure-cone retinas of diurnal snakes. This expression raised many questions about the nature of transmutation and functional aspects of the rhodopsin in a cone-like photoreceptor. Extreme differences in the retinal architecture of diurnal and nocturnal snakes also highlight the complexity of adaptations of their visual structures, which might have contributed to the adaptive radiation of this group and will be discussed in this review.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - D9. Butantã, São Paulo, CEP. 05508-030, Brazil.
| |
Collapse
|
31
|
Chen NS, Ingram NT, Frederiksen R, Sampath AP, Chen J, Fain GL. Diminished Cone Sensitivity in cpfl3 Mice Is Caused by Defective Transducin Signaling. Invest Ophthalmol Vis Sci 2020; 61:26. [PMID: 32315379 PMCID: PMC7401474 DOI: 10.1167/iovs.61.4.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Cone photoreceptor function loss 3 (Gnat2cpfl3/cpfl3 or cpfl3) is a mouse model commonly used as a functional cones null from a naturally occurring mutation in the α-subunit of cone transducin (Gnat2). We nevertheless detected robust cone-mediated light responses from cpfl3 animals, which we now explore. Methods Recordings were made from whole retina and from identified cones with whole-cell patch clamp in retinal slices. Relative levels of GNAT2 protein and numbers of cones in isolated retinas were compared between cpfl3, rod transducin knockout (Gnat1-/-), cpfl3/Gnat1-/- double mutants, and control C57Bl/6J age-matched mice at 4, 9, and 14 weeks of age. Results Cones from cpfl3 and cpfl3/Gnat1-/- mice 2 to 3 months of age displayed normal dark currents but greatly reduced sensitivity and amplification constants. Responses decayed more slowly than in control (C57Bl/6J) mice, indicating an altered mechanism of inactivation. At dim light intensities rod responses could be recorded from cpfl3 cones, indicating intact rod/cone gap junctions. The cpfl3 and cpfl3/Gnat1-/- mice express two-fold less GNAT2 protein compared with C57 at 4 weeks, and a four-fold decrease by 14 weeks. This is accompanied by a small decrease in the number of cones. Conclusions Cplf3 cones can respond to light with currents of normal amplitude and cannot be assumed to be a Gnat2 null. The decreased sensitivity and amplification rate of cones is not explained by a reduction in GNAT2 protein level, but instead by abnormal interactions of the mutant transducin with rhodopsin and the effector molecule, cGMP phosphodiesterase.
Collapse
Affiliation(s)
- Natalie S. Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Norianne T. Ingram
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| | - Rikard Frederiksen
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Alapakkam P. Sampath
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Gordon L. Fain
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| |
Collapse
|
32
|
Circadian regulation of phosphodiesterase 6 genes in zebrafish differs between cones and rods: Implications for photopic and scotopic vision. Vision Res 2019; 166:43-51. [PMID: 31855667 DOI: 10.1016/j.visres.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
A correlation is known to exist between visual sensitivity and oscillations in red opsinand rhodopsin gene expression in zebrafish, both regulated by the clock gene. This indicates that an endogenous circadian clock regulates behavioural visual sensitivity, apart from the regulation exerted by the pineal organ. However, the specific mechanisms for cones (photopic vision) and rods (scotopic vision) are poorly understood. In this work, we performed gene expression, cosinor and immunohistochemical analyses to investigate other key genes involved in light perception, encoding the different subunits of phosphodiesterase pde6 and transducin GαT, in constant lighting conditions and compared to normal light-dark conditions. We found that cones display prominent circadian oscillations in mRNA levels for the inhibitory subunit gene pde6ha that could contribute to the regulation of photopic sensitivity by preventing overstimulation in photopic conditions. In rods, the mRNA levels of the inhibitory subunit gene pde6ga oscillate under normal conditions and dampen down in constant light but continue oscillating in constant darkness. There is an increase in total relative expression for pde6gb in constant conditions. These observations, together with previous data, suggest a complex regulation of the scotopic sensitivity involving endogenous and non-endogenous components, possibly present also in other teleost species. The GαT genes do not display mRNA oscillations and therefore may not be essential for the circadian regulation of photosensitivity. In summary, our results support different regulation for the zebrafish photopic and scotopic sensitivities and suggest circadian regulation of pde6ha as a key factor regulating photopic sensitivity, while the regulatory mechanisms in rods appear to be more complex.
Collapse
|
33
|
Frederick JM, Hanke-Gogokhia C, Ying G, Baehr W. Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. Biol Chem 2019; 401:573-584. [DOI: 10.1515/hsz-2019-0375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Abstract
Photoreceptors are polarized neurons, with specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment (OS) where vision begins, an inner segment (IS) where protein synthesis occurs and a synaptic terminal for signal transmission to second-order neurons. The OS is a large, modified primary cilium attached to the IS by a slender connecting cilium (CC), the equivalent of the transition zone (TZ). Daily renewal of ~10% of the OS requires massive protein biosynthesis in the IS with reliable transport and targeting pathways. Transport of lipidated (‘sticky’) proteins depends on solubilization factors, phosphodiesterase δ (PDEδ) and uncoordinated protein-119 (UNC119), and the cargo dispensation factor (CDF), Arf-like protein 3-guanosine triphosphate (ARL3-GTP). As PDE6 and transducin still reside prominently in the OS of PDEδ and UNC119 germline knockout mice, respectively, we propose the existence of an alternate trafficking pathway, whereby lipidated proteins migrate in rhodopsin-containing vesicles of the secretory pathway.
Collapse
Affiliation(s)
- Jeanne M. Frederick
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
- Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT 84112 , USA
- Department of Biology , University of Utah , Salt Lake City , UT 84132 , USA
| |
Collapse
|
34
|
Rod Photoreceptors Signal Fast Changes in Daylight Levels Using a Cx36-Independent Retinal Pathway in Mouse. J Neurosci 2019; 40:796-810. [PMID: 31776212 DOI: 10.1523/jneurosci.0455-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Temporal contrast detected by rod photoreceptors is channeled into multiple retinal rod pathways that ultimately connect to cone photoreceptor pathways via Cx36 gap junctions or via chemical synapses. However, we do not yet understand how the different rod pathways contribute to the perception of temporal contrast (changes in luminance with time) at mesopic light levels, where both rods and cones actively respond to light. Here, we use a forced-choice, operant behavior assay to investigate rod-driven, temporal contrast sensitivity (TCS) in mice of either sex. Transgenic mice with desensitized cones (GNAT2 cpfl3 line) were used to identify rod contributions to TCS in mesopic lights. We found that at low mesopic lights (400 photons/s/μm2 at the retina), control and GNAT2 cpfl3 mice had similar TCS. Surprisingly, at upper mesopic lights (8000 photons/s/μm2), GNAT2 cpfl3 mice exhibited a relative reduction in TCS to low (<12 Hz) while maintaining normal TCS to high (12-36 Hz) temporal frequencies. The rod-driven responses to high temporal frequencies developed gradually over time (>30 min). Furthermore, the TCS of GNAT2 cpfl3 and GNAT2 cpfl3 ::Cx36-/- mice matched closely, indicating that transmission of high-frequency signals (1) does not require the rod-cone Cx36 gap junctions as has been proposed in the past; and (2) a Cx36-independent rod pathway(s) (e.g., direct rod to OFF cone bipolar cell synapses and/or glycinergic synapses from AII amacrine cells to OFF ganglion cells) is sufficient for fast, mesopic rod-driven vision. These findings extend our understanding of the link between visual circuits and perception in mouse.SIGNIFICANCE STATEMENT The contributions of specific retinal pathways to visual perception are not well understood. We found that the temporal processing properties of rod-driven vision in mice change significantly with light level. In dim lights, rods relay relatively slow temporal variations. However, in daylight conditions, rod pathways exhibit high sensitivity to fast but not to slow temporal variations, whereas cone-driven responses supplement the loss in rod-driven sensitivity to slow temporal variations. Our findings highlight the dynamic interplay of rod- and cone-driven vision as light levels rise from night to daytime levels. Furthermore, the fast, rod-driven signals do not require the rod-to-cone Cx36 gap junctions as proposed in the past, but rather, can be relayed by alternative Cx36-independent rod pathways.
Collapse
|
35
|
Chaya T, Tsutsumi R, Varner LR, Maeda Y, Yoshida S, Furukawa T. Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation. EMBO J 2019; 38:e101409. [PMID: 31696965 DOI: 10.15252/embj.2018101409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptation is a general feature of sensory systems. In rod photoreceptors, light-dependent transducin translocation and Ca2+ homeostasis are involved in light/dark adaptation and prevention of cell damage by light. However, the underlying regulatory mechanisms remain unclear. Here, we identify mammalian Cul3-Klhl18 ubiquitin ligase as a transducin translocation modulator during light/dark adaptation. Under dark conditions, Klhl18-/- mice exhibited decreased rod light responses and subcellular localization of the transducin α-subunit (Tα), similar to that observed in light-adapted Klhl18+/+ mice. Cul3-Klhl18 promoted ubiquitination and degradation of Unc119, a rod Tα-interacting protein. Unc119 overexpression phenocopied Tα mislocalization observed in Klhl18-/- mice. Klhl18 weakly recognized casein kinase-2-phosphorylated Unc119 protein, which is dephosphorylated by Ca2+ -dependent phosphatase calcineurin. Calcineurin inhibition increased Unc119 expression and Tα mislocalization in rods. These results suggest that Cul3-Klhl18 modulates rod Tα translocation during light/dark adaptation through Unc119 ubiquitination, which is affected by phosphorylation. Notably, inactivation of the Cul3-Klhl18 ligase and calcineurin inhibitors FK506 and cyclosporine A that are known immunosuppressant drugs repressed light-induced photoreceptor damage, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoyo Yoshida
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
36
|
Maza NA, Schiesser WE, Calvert PD. An intrinsic compartmentalization code for peripheral membrane proteins in photoreceptor neurons. J Cell Biol 2019; 218:3753-3772. [PMID: 31594805 PMCID: PMC6829649 DOI: 10.1083/jcb.201906024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In neurons, peripheral membrane proteins are enriched in subcellular compartments, where they play key roles, including transducing and transmitting information. However, little is known about the mechanisms underlying their compartmentalization. To explore the roles of hydrophobic and electrostatic interactions, we engineered probes consisting of lipidation motifs attached to fluorescent proteins by variously charged linkers and expressed them in Xenopus rod photoreceptors. Quantitative live cell imaging showed dramatic differences in distributions and dynamics of the probes, including presynapse and ciliary OS enrichment, depending on lipid moiety and protein surface charge. Opposing extant models of ciliary enrichment, most probes were weakly membrane bound and diffused through the connecting cilium without lipid binding chaperone protein interactions. A diffusion-binding-transport model showed that ciliary enrichment of a rhodopsin kinase probe occurs via recycling as it perpetually leaks out of the ciliary OS. The model accounts for weak membrane binding of peripheral membrane proteins and a leaky connecting cilium diffusion barrier.
Collapse
Affiliation(s)
- Nycole A Maza
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, NY.,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY
| | - William E Schiesser
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| | - Peter D Calvert
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, NY .,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY
| |
Collapse
|
37
|
Vancura P, Csicsely E, Leiser A, Iuvone PM, Spessert R. Rhythmic Regulation of Photoreceptor and RPE Genes Important for Vision and Genetically Associated With Severe Retinal Diseases. Invest Ophthalmol Vis Sci 2019; 59:3789-3799. [PMID: 30073352 PMCID: PMC6071477 DOI: 10.1167/iovs.18-24558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of the present study was to identify candidate genes for mediating daily adjustment of vision. Methods Genes important for vision and genetically associated with severe retinal diseases were tested for 24-hour rhythms in transcript levels in neuronal retina, microdissected photoreceptors, photoreceptor-related pinealocytes, and retinal pigment epithelium-choroid (RPE-choroid) complex by using quantitative PCR. Results Photoreceptors of wildtype mice display circadian clock-dependent regulation of visual arrestins (Arr1, Arr4) and the visual cycle gene Rdh12, whereas cells of the RPE-choroid exhibit light-dependent regulation of the visual cycle key genes Lrat, Rpe65, and Rdh5. Clock-driven rhythmicity of Arr1, Arr4, and Rdh12 was observed also in rat pinealocytes, to persist in a mouse model of diabetic retinopathy (db/db) and, in the case of Arr1, to be abolished in retinae of mice deficient for dopamine D4 receptors. Therefore, the expression rhythms appear to be evolutionary conserved, to be unaffected in diabetic retinopathy, and, for Arr1, to require dopamine signaling via dopamine D4 receptors. Conclusions The data of the present study suggest that daily adjustment of retinal function combines clock-dependent regulation of genes responsible for phototransduction termination (Arr1, Arr4) and detoxification (Rdh12) in photoreceptors with light-dependent regulation of genes responsible for retinoid recycling (Lrat, Rpe65, and Rdh5) in RPE. Furthermore, they indicate circadian and light-dependent regulation of genes genetically associated with severe retinal diseases.
Collapse
Affiliation(s)
- Patrick Vancura
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erika Csicsely
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annalisa Leiser
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Lu Y, Benedetti J, Yao X. Light-Induced Length Shrinkage of Rod Photoreceptor Outer Segments. Transl Vis Sci Technol 2018; 7:29. [PMID: 30619649 PMCID: PMC6314056 DOI: 10.1167/tvst.7.6.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose This study was designed to verify light-induced outer segment (OS) length shrinkage of rod photoreceptors and to characterize its anatomic source at disc-level resolution. Methods Frog (Rana pipiens) retinas were used for this study. Time-lapse light microscopy of freshly isolated OSs was employed to test transient rod OS changes at 10 ms temporal resolution. Histological light microscopy of dark- and light-adapted retinas was used to confirm light-induced rod OS length changes; and transmission electron microscopy (TEM) was used to quantify light-driven structural perturbation of rod OSs at disc level resolution. Results Time-lapse light microscopy images verified transient length shrinking responses in freshly isolated rod OSs. Histological light microscopy images confirmed reduced rod OS lengths in light-adapted retinas, compared to that of dark-adapted retinas. TEM images disclosed shortened inter-disc distances in light-adapted retinas compared to dark-adapted retinas. Conclusions Light-induced rod OS length shrinkage was confirmed using time-lapse light microscopy of isolated rod OSs and histological light microscopy of dark- and light-adapted retinas. TEM revealed that the rod OS length shrinkage was correlated to the light-driven decrease of the space between individual discs, not the disc thickness itself. Translational Relevance Light-induced transient rod response promises a noninvasive biomarker for early diagnosis of age-related macular degeneration and retinitis pigmentosa, in which the rod photoreceptors are known to be more vulnerable than cone photoreceptors.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacopo Benedetti
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Baksheeva VE, Tiulina VV, Tikhomirova NK, Gancharova OS, Komarov SV, Philippov PP, Zamyatnin AA, Senin II, Zernii EY. Suppression of Light-Induced Oxidative Stress in the Retina by Mitochondria-Targeted Antioxidant. Antioxidants (Basel) 2018; 8:E3. [PMID: 30577635 PMCID: PMC6356525 DOI: 10.3390/antiox8010003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023] Open
Abstract
Light-induced oxidation of lipids and proteins provokes retinal injuries and results in progression of degenerative retinal diseases, such as, for instance, iatrogenic photic maculopathies. Having accumulated over years retinal injuries contribute to development of age-related macular degeneration (AMD). Antioxidant treatment is regarded as a promising approach to protecting the retina from light damage and AMD. Here, we examine oxidative processes induced in rabbit retina by excessive light illumination with or without premedication using mitochondria-targeted antioxidant SkQ1 (10-(6'-plastoquinonyl)decyltriphenyl-phosphonium). The retinal extracts obtained from animals euthanized within 1⁻7 days post exposure were analyzed for H₂O₂, malondialdehyde (MDA), total antioxidant activity (AOA), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) using colorimetric and luminescence assays. Oxidation of visual arrestin was monitored by immunoblotting. The light exposure induced lipid peroxidation and H₂O₂ accumulation in the retinal cells. Unexpectedly, it prominently upregulated AOA in retinal extracts although SOD and GPx activities were compromised. These alterations were accompanied by accumulation of disulfide dimers of arrestin revealing oxidative stress in the photoreceptors. Premedication of the eyes with SkQ1 accelerated normalization of H₂O₂ levels and redox-status of lipids and proteins, contemporarily enhancing AOA and, likely, sustaining normal activity of GPx. Thus, SkQ1 protects the retina from light-induced oxidative stress and could be employed to suppress oxidative damage of proteins and lipids contributing to AMD.
Collapse
Affiliation(s)
- Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Natalia K Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Olga S Gancharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Sergey V Komarov
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia.
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
40
|
Frolov RV, Immonen EV, Saari P, Torkkeli PH, Liu H, French AS. Phenotypic plasticity in Periplaneta americana photoreceptors. J Gen Physiol 2018; 150:1386-1396. [PMID: 30115661 PMCID: PMC6168239 DOI: 10.1085/jgp.201812107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Plasticity is a crucial aspect of neuronal physiology essential for proper development and continuous functional optimization of neurons and neural circuits. Despite extensive studies of different visual systems, little is known about plasticity in mature microvillar photoreceptors. Here we investigate changes in electrophysiological properties and gene expression in photoreceptors of the adult cockroach, Periplaneta americana, after exposure to constant light (CL) or constant dark (CD) for several months. After CL, we observed a decrease in mean whole-cell capacitance, a proxy for cell membrane area, from 362 ± 160 to 157 ± 58 pF, and a decrease in absolute sensitivity. However, after CD, we observed an increase in capacitance to 561 ± 155 pF and an increase in absolute sensitivity. Small changes in the expression of light-sensitive channels and signaling molecules were detected in CD retinas, together with a substantial increase in the expression of the primary green-sensitive opsin (GO1). Accordingly, light-induced currents became larger in CD photoreceptors. Even though normal levels of GO1 expression were retained in CL photoreceptors, light-induced currents became much smaller, suggesting that factors other than opsin are involved. Latency of phototransduction also decreased significantly in CL photoreceptors. Sustained voltage-activated K+ conductance was not significantly different between the experimental groups. The reduced capacitance of CL photoreceptors expanded their bandwidth, increasing the light-driven voltage signal at high frequencies. However, voltage noise was also amplified, probably because of unaltered expression of TRPL channels. Consequently, information transfer rates were lower in CL than in control or CD photoreceptors. These changes in whole-cell capacitance and electrophysiological parameters suggest that structural modifications can occur in the photoreceptors to adapt their function to altered environmental conditions. The opposing patterns of modifications in CL and CD photoreceptors differ profoundly from previous findings in Drosophila melanogaster photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Paulus Saari
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
41
|
Gupta PR, Pendse N, Greenwald SH, Leon M, Liu Q, Pierce EA, Bujakowska KM. Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects. Hum Mol Genet 2018; 27:2012-2024. [PMID: 29659833 PMCID: PMC5961092 DOI: 10.1093/hmg/ddy109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Intraflagellar transport (IFT) is a bidirectional transport process that occurs along primary cilia and specialized sensory cilia, such as photoreceptor outersegments. Genes coding for various IFT components are associated with ciliopathies. Mutations in IFT172 lead to diseases ranging from isolated retinal degeneration to severe syndromic ciliopathies. In this study, we created a mouse model of IFT172-associated retinal degeneration to investigate the ocular disease mechanism. We found that depletion of IFT172 in rod photoreceptors leads to a rapid degeneration of the retina, with severely reduced electroretinography (ERG) responses by 1 month and complete outer-nuclear layer (ONL) degeneration by 2 months. We investigated molecular mechanisms of degeneration and show that IFT172 protein reduction leads to mislocalization of specific photoreceptor outersegment (OS) proteins (RHO, RP1, IFT139), aberrant light-driven translocation of alpha transducin and altered localization of glioma-associated oncogene family member 1 (GLI1). This mouse model exhibits key features of the retinal phenotype observed in patients with IFT172-associated blindness and can be used for in vivo testing of ciliopathy therapies.
Collapse
Affiliation(s)
- Priya R Gupta
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Weill Cornell Medical College, New York, NY 10021, USA
| | - Nachiket Pendse
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Scott H Greenwald
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Mihoko Leon
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Qin Liu
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Kinga M Bujakowska
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
42
|
Kimura Y, Tsutsumi K, Konno A, Ikegami K, Hameed S, Kaneko T, Kaplan OI, Teramoto T, Fujiwara M, Ishihara T, Blacque OE, Setou M. Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci Rep 2018; 8:8392. [PMID: 29849065 PMCID: PMC5976657 DOI: 10.1038/s41598-018-26694-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Glutamylation is a post-translational modification found on tubulin that can alter the interaction between microtubules (MTs) and associated proteins. The molecular mechanisms regulating tubulin glutamylation in response to the environment are not well understood. Here, we show that in the sensory cilia of Caenorhabditis elegans, tubulin glutamylation is upregulated in response to various signals such as temperature, osmolality, and dietary conditions. Similarly, tubulin glutamylation is modified in mammalian photoreceptor cells following light adaptation. A tubulin glutamate ligase gene ttll-4, which is essential for tubulin glutamylation of axonemal MTs in sensory cilia, is activated by p38 MAPK. Amino acid substitution of TTLL-4 has revealed that a Thr residue (a putative MAPK-phosphorylation site) is required for enhancement of tubulin glutamylation. Intraflagellar transport (IFT), a bidirectional trafficking system specifically observed along axonemal MTs, is required for the formation, maintenance, and function of sensory cilia. Measurement of the velocity of IFT particles revealed that starvation accelerates IFT, which was also dependent on the Thr residue of TTLL-4. Similarly, starvation-induced attenuation of avoidance behaviour from high osmolality conditions was also dependent on ttll-4. Our data suggest that a novel evolutionarily conserved regulatory system exists for tubulin glutamylation in sensory cilia in response to the environment.
Collapse
Affiliation(s)
- Yoshishige Kimura
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Koji Tsutsumi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Alu Konno
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Saira Hameed
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomomi Kaneko
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Oktay Ismail Kaplan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
- Abdullah Gul Universitesi, Doga Bilimleri Fakultesi, Sumer Kampusu, 38090, Kocasinan, Kayseri, Turkey
| | - Takayuki Teramoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Anatomy, The University of Hong Kong, Hong Kong, China.
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
43
|
Lu L, Madugula V. Mechanisms of ciliary targeting: entering importins and Rabs. Cell Mol Life Sci 2018; 75:597-606. [PMID: 28852774 PMCID: PMC11105572 DOI: 10.1007/s00018-017-2629-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Primary cilium is a rod-like plasma membrane protrusion that plays important roles in sensing the cellular environment and initiating corresponding signaling pathways. The sensory functions of the cilium critically depend on the unique enrichment of ciliary residents, which is maintained by the ciliary diffusion barrier. It is still unclear how ciliary cargoes specifically enter the diffusion barrier and accumulate within the cilium. In this review, the organization and trafficking mechanism of the cilium are compared to those of the nucleus, which are much better understood at the moment. Though the cilium differs significantly from the nucleus in terms of molecular and cellular functions, analogous themes and principles in the membrane organization and cargo trafficking are notable between them. Therefore, knowledge in the nuclear trafficking can likely shed light on our understanding of the ciliary trafficking. Here, with a focus on membrane cargoes in mammalian cells, we briefly review various ciliary trafficking pathways from the Golgi to the periciliary membrane. Models for the subsequent import translocation across the diffusion barrier and the enrichment of cargoes within the ciliary membrane are discussed in detail. Based on recent discoveries, we propose a Rab-importin-based model in an attempt to accommodate various observations on ciliary targeting.
Collapse
Affiliation(s)
- Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Viswanadh Madugula
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
44
|
Brooks C, Murphy J, Belcastro M, Heller D, Kolandaivelu S, Kisselev O, Sokolov M. Farnesylation of the Transducin G Protein Gamma Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors. Front Mol Neurosci 2018; 11:16. [PMID: 29410614 PMCID: PMC5787109 DOI: 10.3389/fnmol.2018.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Primary cilia are microtubule-based organelles, which protrude from the plasma membrane and receive a wide range of extracellular signals. Various cilia use G protein-coupled receptors (GPCRs) for the detection of these signals. For instance, vertebrate rod photoreceptors use their cilia (also called outer segments) as antennae detecting photons by GPCR rhodopsin. Rhodopsin recognizes incoming light and activates its G protein, transducin, which is composed of three subunits α, β, and γ. Similar to all G protein γ subunits, the transducin Gγ1 subunit undergoes C-terminal prenylation resulting in the addition of an isoprenoid farnesyl; however, the significance of this posttranslational modification is unclear. To study the role of the farnesyl group, we genetically introduced a mutant Gγ1 that lacked the prenylation site into the retinal photoreceptors of mice. The biochemical and physiological analyses of these mice revealed that mutant Gγ1 dimerizes with the endogenous transducin Gβ1 subunit and that the resulting Gβγ dimers display reduced hydrophobicity. Although mutant Gβγ dimers could form a heterotrimeric G protein, they could not mediate phototransduction. This deficiency was due to a strong exclusion of non-farnesylated Gβγ complexes from the cilia (rod outer segments). Our results provide the first evidence that farnesylation is required for trafficking of G-protein βγ subunits to the cilium of rod photoreceptors.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Joseph Murphy
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | | | - Daniel Heller
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | | | - Oleg Kisselev
- Department of Ophthalmology, Saint Louis University, St. Louis, MO, United States
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
45
|
Seo S, Datta P. Photoreceptor outer segment as a sink for membrane proteins: hypothesis and implications in retinal ciliopathies. Hum Mol Genet 2017; 26:R75-R82. [PMID: 28453661 DOI: 10.1093/hmg/ddx163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
The photoreceptor outer segment (OS) is a unique modification of the primary cilium, specialized for light perception. Being homologous organelles, the primary cilium and the OS share common building blocks and molecular machinery to construct and maintain them. The OS, however, has several unique structural features that are not seen in primary cilia. Although these unique features of the OS have been well documented, their implications in protein localization have been under-appreciated. In this review, we compare the structural properties of the primary cilium and the OS, and propose a hypothesis that the OS can act as a sink for membrane proteins. We further discuss the implications of this hypothesis in polarized protein localization in photoreceptors and mechanisms of photoreceptor degeneration in retinal ciliopathies.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
46
|
Tikidji-Hamburyan A, Reinhard K, Storchi R, Dietter J, Seitter H, Davis KE, Idrees S, Mutter M, Walmsley L, Bedford RA, Ueffing M, Ala-Laurila P, Brown TM, Lucas RJ, Münch TA. Rods progressively escape saturation to drive visual responses in daylight conditions. Nat Commun 2017; 8:1813. [PMID: 29180667 PMCID: PMC5703729 DOI: 10.1038/s41467-017-01816-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Rod and cone photoreceptors support vision across large light intensity ranges. Rods, active under dim illumination, are thought to saturate at higher (photopic) irradiances. The extent of rod saturation is not well defined; some studies report rod activity well into the photopic range. Using electrophysiological recordings from retina and dorsal lateral geniculate nucleus of cone-deficient and visually intact mice, we describe stimulus and physiological factors that influence photopic rod-driven responses. We find that rod contrast sensitivity is initially strongly reduced at high irradiances, but progressively recovers to allow responses to moderate contrast stimuli. Surprisingly, rods recover faster at higher light levels. A model of rod phototransduction suggests that phototransduction gain adjustments and bleaching adaptation underlie rod recovery. Consistently, exogenous chromophore reduces rod responses at bright background. Thus, bleaching adaptation renders mouse rods responsive to modest contrast at any irradiance. Paradoxically, raising irradiance across the photopic range increases the robustness of rod responses. Rod photoreceptors are thought to be saturated under bright light. Here, the authors describe the physiological parameters that mediate response saturation of rod photoreceptors in mouse retina, and show that rods can drive visual responses in photopic conditions.
Collapse
Affiliation(s)
- Alexandra Tikidji-Hamburyan
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany.,Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, 94305-4085, USA
| | - Katja Reinhard
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany.,Visual Circuits Laboratory, Neuro-Electronics Research Flanders, IMEC, KU Leuven and VIB, 3001, Leuven, Belgium
| | - Riccardo Storchi
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Johannes Dietter
- Institute for Ophthalmic Research, Department of Ophthalmology, University of Tübingen, 72076, Tübingen, Germany
| | - Hartwig Seitter
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany.,Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Katherine E Davis
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Saad Idrees
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
| | - Marion Mutter
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany
| | - Lauren Walmsley
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert A Bedford
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.,Stryker Imorphics, Worthington House, Towers Business Park, Wilmslow Road, Manchester, M20 2HJ, UK
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department of Ophthalmology, University of Tübingen, 72076, Tübingen, Germany
| | - Petri Ala-Laurila
- Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science and Technology, 00076, Espoo, Finland
| | - Timothy M Brown
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Thomas A Münch
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany. .,Institute for Ophthalmic Research, Department of Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
47
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
48
|
Matsuo R, Takatori Y, Hamada S, Koyanagi M, Matsuo Y. Expression and light-dependent translocation of β-arrestin in the visual system of the terrestrial slug Limax valentianus. ACTA ACUST UNITED AC 2017; 220:3301-3314. [PMID: 28687596 DOI: 10.1242/jeb.162701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/05/2017] [Indexed: 11/20/2022]
Abstract
Vertebrates, cephalopods and arthropods are equipped with eyes that have the highest spatiotemporal resolution among the animal phyla. In parallel, only animals in these three phyla have visual arrestin specialized for the termination of visual signaling triggered by opsin, in addition to ubiquitously expressed β-arrestin that serves in terminating general G protein-coupled receptor signaling. Indeed, visual arrestin in Drosophila and rodents translocates to the opsin-rich subcellular region in response to light to reduce the overall sensitivity of photoreceptors in an illuminated environment (i.e. light adaptation). We thus hypothesized that, during evolution, visual arrestin has taken over the role of β-arrestin in those animals with eyes of high spatiotemporal resolution. If this is true, it is expected that β-arrestin plays a role similar to visual arrestin in those animals with low-resolution eyes. In the present study, we focused on the terrestrial mollusk Limax valentianus, a species related to cephalopods but that has only β-arrestin, and generated antibodies against β-arrestin. We found that β-arrestin is highly expressed in photosensory neurons, and translocates into the microvilli of the rhabdomere within 30 min in response to short wavelength light (400 nm), to which the Limax eye exhibits a robust response. These observations suggest that β-arrestin functions in the visual system of those animals that do not have visual arrestin. We also exploited anti-β-arrestin antibody to visualize the optic nerve projecting to the brain, and demonstrated its usefulness for tracing a visual ascending pathway.
Collapse
Affiliation(s)
- Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Yuka Takatori
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Shun Hamada
- Department of Nutrition and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| |
Collapse
|
49
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
50
|
Rose K, Walston ST, Chen J. Separation of photoreceptor cell compartments in mouse retina for protein analysis. Mol Neurodegener 2017; 12:28. [PMID: 28399904 PMCID: PMC5387348 DOI: 10.1186/s13024-017-0171-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/30/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Light exposure triggers movement of certain signaling proteins within the cellular compartments of the highly polarized rod photoreceptor cell. This redistribution of proteins between the inner and outer segment compartments affects the performance and physiology of the rod cell. In addition, newly synthesized phototransduction proteins traverse from the site of their synthesis in the inner segment, through the thin connecting cilium, to reach their destination in the outer segment. Processes that impede normal trafficking of these abundant proteins lead to cell death. The study of movement and unique localization of biomolecules within the different compartments of the rod cell would be greatly facilitated by techniques that reliably separate these compartments. Ideally, these methods can be applied to the mouse retina due to the widespread usage of transgenic mouse models in the investigation of basic visual processes and disease mechanisms that affect vision. Although the retina is organized in distinct layers, the small and highly curved mouse retina makes physical separation of retinal layers a challenge. We introduce two peeling methods that efficiently and reliably isolate the rod outer segment and other cell compartments for Western blots to examine protein movement across these compartments. METHODS The first separation method employs Whatman® filter paper to successively remove the rod outer segments from isolated, live mouse retinas. The second method utilizes ScotchTM tape to peel the rod outer segment layer and the rod inner segment layer from lyophilized mouse retinas. Both procedures can be completed within one hour. RESULTS We utilize these two protocols on dark-adapted and light-exposed retinas of C57BL/6 mice and subject the isolated tissue layers to Western blots to demonstrate their effectiveness in detecting light-induced translocation of transducin (GNAT1) and rod arrestin (ARR1). Furthermore, we provide evidence that RGS9 does not undergo light-induced translocation. CONCLUSIONS These results demonstrate the effectiveness of the two different peeling protocols for the separation of the layered compartments of the mouse retina and their utility for investigations of protein compositions within these compartments.
Collapse
Affiliation(s)
- Kasey Rose
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven T Walston
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. .,Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|