1
|
Velle KB. mSphere of Influence: The power of observational research. mSphere 2024; 9:e0017624. [PMID: 38953618 PMCID: PMC11288056 DOI: 10.1128/msphere.00176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Katrina Velle is a cell biologist who uses microscopy to study amoebae. In this mSphere of Influence article, she reflects on how a classic paper on Listeria by Tilney and Portnoy made an impact on her by highlighting how much we can learn from simply looking at cells.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| |
Collapse
|
2
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
3
|
Kong SG, Yamazaki Y, Shimada A, Kijima ST, Hirose K, Katoh K, Ahn J, Song HG, Han JW, Higa T, Takano A, Nakamura Y, Suetsugu N, Kohda D, Uyeda TQP, Wada M. CHLOROPLAST UNUSUAL POSITIONING 1 is a plant-specific actin polymerization factor regulating chloroplast movement. THE PLANT CELL 2024; 36:1159-1181. [PMID: 38134410 PMCID: PMC10980345 DOI: 10.1093/plcell/koad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yosuke Yamazaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Saku T Kijima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Jeongsu Ahn
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Hyun-Geun Song
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Jae-Woo Han
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Chungnam 32588, Korea
| | - Takeshi Higa
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Akira Takano
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Nakamura
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8562, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Lu Y, Mei N, Ying Y, Wang D, Li X, Zhao Y, Zhu Y, Shen S, Yin B. Bacteria-Based Nanoprobes for Cancer Therapy. Int J Nanomedicine 2024; 19:759-785. [PMID: 38283198 PMCID: PMC10821665 DOI: 10.2147/ijn.s438164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Surgical removal together with chemotherapy and radiotherapy has used to be the pillars of cancer treatment. Although these traditional methods are still considered as the first-line or standard treatments, non-operative situation, systemic toxicity or resistance severely weakened the therapeutic effect. More recently, synthetic biological nanocarriers elicited substantial interest and exhibited promising potential for combating cancer. In particular, bacteria and their derivatives are omnipotent to realize intrinsic tumor targeting and inhibit tumor growth with anti-cancer agents secreted and immune response. They are frequently employed in synergistic bacteria-mediated anticancer treatments to strengthen the effectiveness of anti-cancer treatment. In this review, we elaborate on the development, mechanism and advantage of bacterial therapy against cancer and then systematically introduce the bacteria-based nanoprobes against cancer and the recent achievements in synergistic treatment strategies and clinical trials. We also discuss the advantages as well as the limitations of these bacteria-based nanoprobes, especially the questions that hinder their application in human, exhibiting this novel anti-cancer endeavor comprehensively.
Collapse
Affiliation(s)
- Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yinwei Ying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yajing Zhao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Rayens NT, Cook KJ, McKinley SA, Payne CK. Palmitate-mediated disruption of the endoplasmic reticulum decreases intracellular vesicle motility. Biophys J 2023; 122:1355-1363. [PMID: 36869590 PMCID: PMC10111363 DOI: 10.1016/j.bpj.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Essential cellular processes such as metabolism, protein synthesis, and autophagy require the intracellular transport of membrane-bound vesicles. The importance of the cytoskeleton and associated molecular motors for transport is well documented. Recent research has suggested that the endoplasmic reticulum (ER) may also play a role in vesicle transport through a tethering of vesicles to the ER. We use single-particle tracking fluorescence microscopy and a Bayesian change-point algorithm to characterize vesicle motility in response to the disruption of the ER, actin, and microtubules. This high-throughput change-point algorithm allows us to efficiently analyze thousands of trajectory segments. We find that palmitate-mediated disruption of the ER leads to a significant decrease in vesicle motility. A comparison with the disruption of actin and microtubules shows that disruption of the ER has a significant impact on vesicle motility, greater than the disruption of actin. Vesicle motility was dependent on cellular region, with greater motility in the cell periphery than the perinuclear region, possibly due to regional differences in actin and the ER. Overall, these results suggest that the ER is an important factor in vesicle transport.
Collapse
Affiliation(s)
- Nathan T Rayens
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Keisha J Cook
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina
| | - Scott A McKinley
- Department of Mathematics, Tulane University, New Orleans, Louisiana
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
7
|
Kage F, Döring H, Mietkowska M, Schaks M, Grüner F, Stahnke S, Steffen A, Müsken M, Stradal TEB, Rottner K. Lamellipodia-like actin networks in cells lacking WAVE regulatory complex. J Cell Sci 2022; 135:276259. [PMID: 35971979 PMCID: PMC9511706 DOI: 10.1242/jcs.260364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022] Open
Abstract
Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP. Summary: Rac-dependent actin remodeling can occur in the absence of WAVE regulatory complex, triggered by active Cdc42. WAVE regulatory complex-independent actin structures harbor Arp2/3 complex but not VASP.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Franziska Grüner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
8
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
9
|
Akisaka T. Platinum replicas of broken-open osteoclasts imaged by transmission electron microscopy. J Oral Biosci 2021; 63:307-318. [PMID: 34628004 DOI: 10.1016/j.job.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Preserving the cellular structure at the highest possible resolution is a prerequisite for morphological studies to deepen our understanding of cellular functions. A revival of interest in rapid-freezing methods combined with breaking-open techniques has taken place with the development of effective and informative approaches in platinum replica electron microscopy, thus providing new approaches to address unresolved issues in cell biology. HIGHLIGHT The images produced with platinum replicas revealed 3D structures of the cell interior: (1) cell membranes associated with highly organized cytoskeletons, including podosomes or geodomes, (2) heterogeneous clathrin assemblies and membrane skeletons on the inner side of the membrane, and (3) organization of the cytoskeleton after detergent extraction. CONCLUSION In this review, I will focus on the platinum replica method after brokenopen cells have been broken open with mechanical shearing or detergent extraction. Often forgotten nowadays is the use of platinum replicas with stereomicroscopic observations for transmission electron microscopy study; these "old-fashioned" imaging techniques, combined with the breaking-open technique represent a highly informative approach to deepen our understanding of the organization of the cell interior. These are still being pursued to answer outstanding biological questions.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Hobbs L, Allen L, Bias M, Johnson S, DeRespiris H, Diallo C, Bui L, Sun Y. The Opposing Role of Propionate in Modulating Listeria monocytogenes Intracellular Infections. Front Microbiol 2021; 12:721801. [PMID: 34539613 PMCID: PMC8442606 DOI: 10.3389/fmicb.2021.721801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive, intracellular pathogen responsible for the highly fatal foodborne illness listeriosis. Establishing intracellular infections requires the coordinated expressions of a variety of virulence factors, such as the pore-forming toxin listeriolysin O (LLO), in response to various intra- and extracellular signals. For example, we previously reported that L. monocytogenes differentially modulated LLO production in response to exogenous propionate, a short chain fatty acid either used in salt form as a human food ingredient or produced endogenously by gut microbial fermentation. Therefore, propionate is likely a continuously present signal throughout the L. monocytogenes transmission and infection process. However, little is known about the role of propionate in modulating L. monocytogenes-host interactions. Here we investigated the impact of propionate treatment on L. monocytogenes intracellular infections using cell culture infection models. Propionate treatment was performed separately on L. monocytogenes or host cells before or during infections to better distinguish pathogen-versus-host responses to propionate. Intracellular CFU in RAW264.7 macrophages and plaque diameters in L-fibroblasts were measured as proxy for intracellular infection outcomes. Nitrite levels and cellular morphology were also measured to assess host responses to propionate. We found that propionate pretreatment of anaerobic, but not aerobic, L. monocytogenes significantly enhanced subsequent intracellular infections in both cell types and nitrite production by infected macrophages. Propionate treatment of uninfected macrophages significantly altered cell morphology, seen by longer cells and greater migration, and reduced nitrite concentration in activated macrophages. Treatment of macrophages with propionate prior to or during infections significantly inhibited intracellular growth of L. monocytogenes, including those pre-treated with propionate. These results showcased an opposing effect of propionate on L. monocytogenes intracellular infections and strongly support propionate as an important signaling molecule for both the pathogen and the host cell that can potentially alter the outcome of L. monocytogenes-host interactions.
Collapse
Affiliation(s)
- Laura Hobbs
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Leah Allen
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Megan Bias
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Stephanie Johnson
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hannah DeRespiris
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Chantal Diallo
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Loan Bui
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, OH, United States
| |
Collapse
|
11
|
An In Vitro Model System to Test Mechano-Microbiological Interactions Between Bacteria and Host Cells. Methods Mol Biol 2021. [PMID: 34542856 DOI: 10.1007/978-1-0716-1661-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The aim of this chapter is to present an innovative technique to visualize changes of the F-actin cytoskeleton in response to locally applied force. We developed an in vitro system that combines micromanipulation of force by magnetic tweezers with simultaneous live cell fluorescence microscopy. We applied pulling forces to magnetic beads coated with the Neisseria gonorrhoeae Type IV pili in the same order of magnitude than the forces generated by live bacteria. We saw quick and robust F-actin accumulation in individual cells at the sites where pulling forces were applied. Using the magnetic tweezers, we were able to mimic the local response of the F-actin cytoskeleton to bacteria-generated forces. In this chapter, we describe our magnetic tweezers system and show how to control it in order to study cellular responses to force.
Collapse
|
12
|
Scheffler K, Uraji J, Jentoft I, Cavazza T, Mönnich E, Mogessie B, Schuh M. Two mechanisms drive pronuclear migration in mouse zygotes. Nat Commun 2021; 12:841. [PMID: 33547291 PMCID: PMC7864974 DOI: 10.1038/s41467-021-21020-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
A new life begins with the unification of the maternal and paternal chromosomes upon fertilization. The parental chromosomes first become enclosed in two separate pronuclei near the surface of the fertilized egg. The mechanisms that then move the pronuclei inwards for their unification are only poorly understood in mammals. Here, we report two mechanisms that act in concert to unite the parental genomes in fertilized mouse eggs. The male pronucleus assembles within the fertilization cone and is rapidly moved inwards by the flattening cone. Rab11a recruits the actin nucleation factors Spire and Formin-2 into the fertilization cone, where they locally nucleate actin and further accelerate the pronucleus inwards. In parallel, a dynamic network of microtubules assembles that slowly moves the male and female pronuclei towards the cell centre in a dynein-dependent manner. Both mechanisms are partially redundant and act in concert to unite the parental pronuclei in the zygote's centre.
Collapse
Affiliation(s)
- Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Julia Uraji
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ida Jentoft
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tommaso Cavazza
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
13
|
Rojas Márquez JD, Li T, McCluggage ARR, Tan JMJ, Muise A, Higgins DE, Brumell JH. Cutting Edge: NOX2 NADPH Oxidase Controls Infection by an Intracellular Bacterial Pathogen through Limiting the Type 1 IFN Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:323-328. [PMID: 33288542 DOI: 10.4049/jimmunol.2000694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023]
Abstract
The NOX2 NADPH oxidase (NOX2) produces reactive oxygen species to kill phagosome-confined bacteria. However, we previously showed that Listeria monocytogenes is able to avoid the NOX2 activity in phagosomes and escape to the cytosol. Thus, despite the established role of NOX2 limiting L. monocytogenes infection in mice, the underlying mechanisms of this antibacterial activity remain unclear. In this article, we report that NOX2 controls systemic L. monocytogenes spread through modulation of the type I IFN response, which is known to be exploited by L. monocytogenes during infection. NOX2 deficiency results in increased expression of IFN-stimulated genes in response to type I IFN and leads to 1) promotion of cell-to-cell spread by L. monocytogenes, 2) defective leukocyte recruitment to infection foci, and 3) production of anti-inflammatory effectors IL-10 and thioredoxin 1. Our findings report a novel antimicrobial role for NOX2 through modulation of type I IFN responses to control bacterial dissemination.
Collapse
Affiliation(s)
| | - Taoyingnan Li
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Adam R R McCluggage
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Joel M J Tan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Aleixo Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; and
| | - Darren E Higgins
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada.,SickKids IBD Centre, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; and
| |
Collapse
|
14
|
Wolfe K, Kamata R, Coutinho K, Inoue T, Sasaki AT. Metabolic Compartmentalization at the Leading Edge of Metastatic Cancer Cells. Front Oncol 2020; 10:554272. [PMID: 33224873 PMCID: PMC7667250 DOI: 10.3389/fonc.2020.554272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
Despite advances in targeted therapeutics and understanding in molecular mechanisms, metastasis remains a substantial obstacle for cancer treatment. Acquired genetic mutations and transcriptional changes can promote the spread of primary tumor cells to distant tissues. Additionally, recent studies have uncovered that metabolic reprogramming of cancer cells is tightly associated with cancer metastasis. However, whether intracellular metabolism is spatially and temporally regulated for cancer cell migration and invasion is understudied. In this review, we highlight the emergence of a concept, termed “membraneless metabolic compartmentalization,” as one of the critical mechanisms that determines the metastatic capacity of cancer cells. In particular, we focus on the compartmentalization of purine nucleotide metabolism (e.g., ATP and GTP) at the leading edge of migrating cancer cells through the uniquely phase-separated microdomains where dynamic exchange of nucleotide metabolic enzymes takes place. We will discuss how future insights may usher in a novel class of therapeutics specifically targeting the metabolic compartmentalization that drives tumor metastasis.
Collapse
Affiliation(s)
- Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati College of Medicine, OH, United States
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kester Coutinho
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati College of Medicine, OH, United States.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
15
|
Dhanda AS, Yang D, Kooner A, Guttman JA. Distribution of PDLIM1 at actin-rich structures generated by invasive and adherent bacterial pathogens. Anat Rec (Hoboken) 2020; 304:919-938. [PMID: 33022122 DOI: 10.1002/ar.24523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The enteric bacterial pathogens Listeria monocytogenes (Listeria) and enteropathogenic Escherichia coli (EPEC) remodel the eukaryotic actin cytoskeleton during their disease processes. Listeria generate slender actin-rich comet/rocket tails to move intracellularly, and later, finger-like membrane protrusions to spread amongst host cells. EPEC remain extracellular, but generate similar actin-rich membranous protrusions (termed pedestals) to move atop the host epithelia. These structures are crucial for disease as diarrheal (and systemic) infections are significantly abrogated during infections with mutant strains that are unable to generate the structures. The current repertoire of host components enriched within these structures is vast and diverse. In this protein catalog, we and others have found that host actin crosslinkers, such as palladin and α-actinin-1, are routinely exploited. To expand on this list, we set out to investigate the distribution of PDLIM1, a scaffolding protein and binding partner of palladin and α-actinin-1, during bacterial infections. We show that PDLIM1 localizes to the site of initial Listeria entry into cells. Following this, PDLIM1 localizes to actin filament clouds surrounding immotile bacteria, and then colocalizes with actin once the comet/rocket tails are generated. Unlike palladin or α-actinin-1, PDLIM1 is maintained within the actin-rich core of membrane protrusions. Conversely, α-actinin-1, but not PDLIM1 (or palladin), is enriched at the membrane invagination that internalizes the Listeria-containing membrane protrusion. We also show that PDLIM1 is a component of the EPEC pedestal core and that its recruitment is dependent on the bacterial effector Tir. Our findings highlight PDLIM1 as another protein present within pathogen-induced actin-rich structures.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Avneen Kooner
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
16
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
17
|
Tsai YH, Chen WL. Host Lipid Rafts as the Gates for Listeria monocytogenes Infection: A Mini-Review. Front Immunol 2020; 11:1666. [PMID: 32849575 PMCID: PMC7431894 DOI: 10.3389/fimmu.2020.01666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne bacterial pathogen capable of interacting and crossing the intestinal barrier, blood–brain barrier, and placental barrier to cause deadly infection with high mortality. L. monocytogenes is an intracellular pathogen characterized by its ability to enter non-phagocytic cells. Expression of the cytolysin listeriolysin O has been shown to be the main virulence determinant in vitro and in vivo in mouse models. L. monocytogenes can also perform cell-to-cell spreading using actin-rich membrane protrusions to infect neighboring cells, which also constitutes an important strategy for infection. These events including entry into host cells, interaction between listeriolysin O and host plasma membrane, and bacterial cell-to-cell spreading have been demonstrated to implicate the cholesterol-rich lipid rafts or molecules in these microdomains in the host plasma membrane in vitro with tissue culture models. Here we review the contribution of lipid rafts on plasma membrane to L. monocytogenes infection.
Collapse
Affiliation(s)
- Yu-Huan Tsai
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Lin Chen
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Med Microbiol Immunol 2020; 209:265-275. [PMID: 32072248 PMCID: PMC7223518 DOI: 10.1007/s00430-020-00663-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
A central challenge in infection medicine is to determine the structure and function of host-pathogen protein-protein interactions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host-pathogen interactions. We highlight cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspecies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial-human interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and -tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine development programs.
Collapse
|
19
|
Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Semin Cell Dev Biol 2020; 101:59-67. [PMID: 32033828 PMCID: PMC7102552 DOI: 10.1016/j.semcdb.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Dhanda AS, Yu C, Lulic KT, Vogl AW, Rausch V, Yang D, Nichols BJ, Kim SH, Polo S, Hansen CG, Guttman JA. Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. mBio 2020; 11:e02857-19. [PMID: 31964732 PMCID: PMC6974566 DOI: 10.1128/mbio.02857-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Connie Yu
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katarina T Lulic
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valentina Rausch
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
21
|
Epidemiology of Nucleus-Dwelling Holospora: Infection, Transmission, Adaptation, and Interaction with Paramecium. Results Probl Cell Differ 2020; 69:105-135. [PMID: 33263870 DOI: 10.1007/978-3-030-51849-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chapter describes the exceptional symbiotic associations formed between the ciliate Paramecium and Holospora, highly infectious bacteria residing in the host nuclei. Holospora and Holospora-like bacteria (Alphaproteobacteria) are characterized by their ability for vertical and horizontal transmission in host populations, a complex biphasic life cycle, and pronounced preference for host species and colonized cell compartment. These bacteria are obligate intracellular parasites; thus, their metabolic repertoire is dramatically reduced. Nevertheless, they perform complex interactions with the host ciliate. We review ongoing efforts to unravel the molecular adaptations of these bacteria to their unusual lifestyle and the host's employment in the symbiosis. Furthermore, we summarize current knowledge on the genetic and genomic background of Paramecium-Holospora symbiosis and provide insights into the ecological and evolutionary consequences of this interaction. The diversity and occurrence of symbioses between ciliates and Holospora-like bacteria in nature is discussed in connection with transmission modes of symbionts, host specificity and compatibility of the partners. We aim to summarize 50 years of research devoted to these symbiotic systems and conclude trying to predict some perspectives for further studies.
Collapse
|
22
|
Merino F, Pospich S, Raunser S. Towards a structural understanding of the remodeling of the actin cytoskeleton. Semin Cell Dev Biol 2019; 102:51-64. [PMID: 31836290 PMCID: PMC7221352 DOI: 10.1016/j.semcdb.2019.11.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022]
Abstract
Actin filaments (F-actin) are a key component of eukaryotic cells. Whether serving as a scaffold for myosin or using their polymerization to push onto cellular components, their function is always related to force generation. To control and fine-tune force production, cells have a large array of actin-binding proteins (ABPs) dedicated to control every aspect of actin polymerization, filament localization, and their overall mechanical properties. Although great advances have been made in our biochemical understanding of the remodeling of the actin cytoskeleton, the structural basis of this process is still being deciphered. In this review, we summarize our current understanding of this process. We outline how ABPs control the nucleation and disassembly, and how these processes are affected by the nucleotide state of the filaments. In addition, we highlight recent advances in the understanding of actomyosin force generation, and describe recent advances brought forward by the developments of electron cryomicroscopy.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
23
|
Functional screenings reveal different requirements for host microRNAs in Salmonella and Shigella infection. Nat Microbiol 2019; 5:192-205. [DOI: 10.1038/s41564-019-0614-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
|
24
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
25
|
Dhanda AS, Yu C, Guttman JA. Distribution of CD147 During Enteropathogenic Escherichia coli and Salmonella enterica Serovar Typhimurium Infections. Anat Rec (Hoboken) 2019; 302:2224-2232. [PMID: 31443124 DOI: 10.1002/ar.24235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) and Salmonella enterica serovar Typhimurium (S. Typhimurium) are highly infectious gastrointestinal human pathogens. These microbes inject bacterial-derived effector proteins directly into the host cell cytosol as part of their disease processes. A common host subcellular target of these pathogens is the actin cytoskeleton, which is commandeered by the bacteria and is used during their attachment onto (EPEC) or invasion into (S. Typhimurium) the host cells. We previously demonstrated that the host enzyme cyclophilin A (CypA) is recruited to the actin-rich regions of EPEC pedestals and S. Typhimurium membrane ruffles. To further expand the growing catalogue of host proteins usurped by actin-hijacking bacteria, we examined the host plasma membrane protein and cognate receptor of CypA, CD147, during EPEC and S. Typhimurium infections. Here, we show that CD147 is enriched at the basolateral regions of pedestals but, unlike CypA, it is absent from their actin-rich core. We show that the CD147 recruitment to these areas requires EPEC pedestal formation and not solely bacteria-host cell contact. Additionally, we demonstrate that the depletion of CD147 by siRNA does not alter the formation of pedestals. Finally, we show that CD147 is also a component of actin-rich membrane ruffles generated during S. Typhimurium invasion of host cells. Collectively, our findings establish CD147 as another host component present at dynamic actin-rich structures formed during bacterial infections. Anat Rec, 302:2224-2232, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Connie Yu
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
26
|
Wolfe K, Kofuji S, Yoshino H, Sasaki M, Okumura K, Sasaki AT. Dynamic compartmentalization of purine nucleotide metabolic enzymes at leading edge in highly motile renal cell carcinoma. Biochem Biophys Res Commun 2019; 516:50-56. [PMID: 31196624 PMCID: PMC6612443 DOI: 10.1016/j.bbrc.2019.05.190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022]
Abstract
Compartmentalization is vital for biological systems at multiple levels, including biochemical reactions in metabolism. Organelle-based compartments such as mitochondria and peroxisomes sequester the responsible enzymes and increase the efficiency of metabolism while simultaneously protecting the cell from dangerous intermediates, such as radical oxygen species. Recent studies show intracellular nucleotides, such as ATP and GTP, are heterogeneously distributed in cells with high concentrations at the lamellipodial and filopodial projections, or leading edge. However, the intracellular distribution of purine nucleotide enzymes remains unclear. Here, we report the enhanced localization of GTP-biosynthetic enzymes, including inosine monophosphate dehydrogenase (IMPDH isotype 1 and 2), GMP synthase (GMPS), guanylate kinase (GUK1) and nucleoside diphosphate kinase-A (NDPK-A) at the leading edge in renal cell carcinoma cells. They show significant co-localization at the membrane subdomain, and their co-localization pattern at the membrane is distinct from that of the cell body. While other purine nucleotide biosynthetic enzymes also show significant localization at the leading edge, their co-localization pattern with IMPDH is divergent. In contrast, a key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), predominantly localized in the cytoplasm. Mechanistically, we found that plasma membrane localization of IMPDH isozymes requires active actin polymerization. Our results demonstrate the formation of a discrete metabolic compartment for localized purine biosynthesis at the leading edge, which may promote localized nucleotide metabolism for cell migration and metastasis in cancers.
Collapse
Affiliation(s)
- Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, OH, 45267, USA
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8520, Japan
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Koichi Okumura
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA; University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, OH, 45267, USA; Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, 45267, USA; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
27
|
Costa AC, Carvalho F, Cabanes D, Sousa S. Stathmin recruits tubulin to Listeria monocytogenes-induced actin comets and promotes bacterial dissemination. Cell Mol Life Sci 2019; 76:961-975. [PMID: 30506415 PMCID: PMC11105747 DOI: 10.1007/s00018-018-2977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 01/18/2023]
Abstract
The tubulin cytoskeleton is one of the main components of the cytoarchitecture and is involved in several cellular functions. Here, we examine the interplay between Listeria monocytogenes (Lm) and the tubulin cytoskeleton upon cellular infection. We show that non-polymeric tubulin is present throughout Lm actin comet tails and, to a less extent, in actin clouds. Moreover, we demonstrate that stathmin, a regulator of microtubule dynamics, is also found in these Lm-associated actin structures and is required for tubulin recruitment. Depletion of host stathmin results in longer comets containing less F-actin, which may be correlated with higher levels of inactive cofilin in the comet, thus suggesting a defect on local F-actin dynamics. In addition, intracellular bacterial speed is significantly reduced in stathmin-depleted cells, revealing the importance of stathmin/tubulin in intracellular Lm motility. In agreement, the area of infection foci and the total bacterial loads are also significantly reduced in stathmin-depleted cells. Collectively, our results demonstrate that stathmin promotes efficient cellular infection, possibly through tubulin recruitment and control of actin dynamics at Lm-polymerized actin structures.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 25 Rue du Dr Roux, 75015, Paris, France
| | - Didier Cabanes
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
28
|
Flickinger JC, Rodeck U, Snook AE. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines (Basel) 2018; 6:E48. [PMID: 30044426 PMCID: PMC6160973 DOI: 10.3390/vaccines6030048] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Listeria monocytogenes, a Gram-positive facultative anaerobic bacterium, is becoming a popular vector for cancer immunotherapy. Indeed, multiple vaccines have been developed utilizing modified Listeria as a tool for generating immune responses against a variety of cancers. Moreover, over a dozen clinical trials testing Listeria cancer vaccines are currently underway, which will help to understand the utility of Listeria vaccines in cancer immunotherapy. This review aims to summarize current views on how Listeria-based vaccines induce potent antitumor immunity and the current state of Listeria-based cancer vaccines in clinical trials.
Collapse
Affiliation(s)
- John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Ulrich Rodeck
- Department of Dermatology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
30
|
Actin Assemblies in the Axon Shaft - some Open Questions. Curr Opin Neurobiol 2018; 51:163-167. [PMID: 30005298 DOI: 10.1016/j.conb.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton in neurons plays critical roles in axonal growth and synaptic organization. Until recently, most studies on axonal actin were limited to terminal growth cones or synapses, whereas the organization of actin along the shaft of the axon was relatively ignored. However, experiments using super-resolution microscopy and live imaging have revealed previously unknown actin structures along the axonal shaft, such as periodic 'actin rings' circumferentially wrapping underneath the plasma membrane and dynamic actin pools deeper within the axon shaft (termed actin 'hotspots' and 'trails'). In this short review, we highlight some open questions that have surfaced as a direct result of these discoveries.
Collapse
|
31
|
The VirAB ABC Transporter Is Required for VirR Regulation of Listeria monocytogenes Virulence and Resistance to Nisin. Infect Immun 2018; 86:IAI.00901-17. [PMID: 29263107 DOI: 10.1128/iai.00901-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that causes a severe invasive disease. Upon infecting a host cell, L. monocytogenes upregulates the transcription of numerous factors necessary for productive infection. VirR is the response regulator component of a two-component regulatory system in L. monocytogenes In this report, we have identified the putative ABC transporter encoded by genes lmo1746-lmo1747 as necessary for VirR function. We have designated lmo1746-lmo1747 virAB We constructed an in-frame deletion of virAB and determined that the ΔvirAB mutant exhibited reduced transcription of VirR-regulated genes. The ΔvirAB mutant also showed defects in in vitro plaque formation and in vivo virulence that were similar to those of a ΔvirR deletion mutant. Since VirR is important for innate resistance to antimicrobial agents, we determined the MICs of nisin and bacitracin for ΔvirAB bacteria. We found that VirAB expression was necessary for nisin resistance but was dispensable for resistance to bacitracin. This result suggested a VirAB-independent mechanism of VirR regulation in response to bacitracin. Lastly, we found that the ΔvirR and ΔvirAB mutants had no deficiency in growth in broth culture, intracellular replication, or production of the ActA surface protein, which facilitates actin-based motility and cell-to-cell spread. However, the ΔvirR and ΔvirAB mutants produced shorter actin tails during intracellular infection, which suggested that these mutants have a reduced ability to move and spread via actin-based motility. These findings have demonstrated that L. monocytogenes VirAB functions in a pathway with VirR to regulate the expression of genes necessary for virulence and resistance to antimicrobial agents.
Collapse
|
32
|
Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018; 16:32-46. [PMID: 29176582 DOI: 10.1038/nrmicro.2017.126] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen responsible for a disease called listeriosis, which is potentially lethal in immunocompromised individuals. This bacterium, first used as a model to study cell-mediated immunity, has emerged over the past 20 years as a paradigm in infection biology, cell biology and fundamental microbiology. In this Review, we highlight recent advances in the understanding of human listeriosis and L. monocytogenes biology. We describe unsuspected modes of hijacking host cell biology, ranging from changes in organelle morphology to direct effects on host transcription via a new class of bacterial effectors called nucleomodulins. We then discuss advances in understanding infection in vivo, including the discovery of tissue-specific virulence factors and the 'arms race' among bacteria competing for a niche in the microbiota. Finally, we describe the complexity of bacterial regulation and physiology, incorporating new insights into the mechanisms of action of a series of riboregulators that are critical for efficient metabolic regulation, antibiotic resistance and interspecies competition.
Collapse
Affiliation(s)
- Lilliana Radoshevich
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, F-75015 Paris, France
- Inserm, U604, F-75015 Paris, France
- French National Institute for Agricultural Research (INRA), Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
33
|
Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci U S A 2017; 115:E210-E217. [PMID: 29279409 DOI: 10.1073/pnas.1716055115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.
Collapse
|
34
|
Marzook NB, Latham SL, Lynn H, Mckenzie C, Chaponnier C, Grau GE, Newsome TP. Divergent roles of β- and γ-actin isoforms during spread of vaccinia virus. Cytoskeleton (Hoboken) 2017; 74:170-183. [PMID: 28218453 PMCID: PMC7162416 DOI: 10.1002/cm.21356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
Actin is a major component of the cytoskeleton and is present as two isoforms in non‐muscle cells: β‐ and γ‐cytoplasmic actin. These isoforms are strikingly conserved, differing by only four N‐terminal amino acids. During spread from infected cells, vaccinia virus (VACV) particles induce localized actin nucleation that propel virus to surrounding cells and facilitate cell‐to‐cell spread of infection. Here we show that virus‐tipped actin comets are composed of β‐ and γ‐actin. We employed isoform‐specific siRNA knockdown to examine the role of the two isoforms in VACV‐induced actin comets. Despite the high level of similarity between the actin isoforms, and their colocalization, VACV‐induced actin nucleation was dependent exclusively on β‐actin. Knockdown of β‐actin led to a reduction in the release of virus from infected cells, a phenotype dependent on virus‐induced Arp2/3 complex activity. We suggest that local concentrations of actin isoforms may regulate the activity of cellular actin nucleator complexes.
Collapse
Affiliation(s)
- N Bishara Marzook
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Sharissa L Latham
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences & Marie Bashir Institute, The University of Sydney, Australia
| | - Helena Lynn
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | | | - Christine Chaponnier
- Department of Pathology-Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Georges E Grau
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences & Marie Bashir Institute, The University of Sydney, Australia
| | - Timothy P Newsome
- School of Life and Environmental Sciences, The University of Sydney, Australia
| |
Collapse
|
35
|
Peng X, Yan T, Sun M. The WASP-Arp2/3 complex signal cascade is involved in actin-dependent sperm nuclei migration during double fertilization in tobacco and maize. Sci Rep 2017; 7:43161. [PMID: 28225074 PMCID: PMC5320560 DOI: 10.1038/srep43161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Sperm nuclear migration during fertilization in Arabidopsis and rice has recently been found to be actin-dependent, but the driving force behind this actin cytoskeleton-dependent motion is unclear. Here, we confirmed that the actin-dependent sperm nuclei migration during fertilization is a conserved mechanism in plants. Using in vitro fertilization systems, we showed that a functional actin is also essential in maize and tobacco for sperm nuclei migration after gamete membrane fusion. Cytoskeleton depolymerization inhibitor treatments supported the view that sperm nuclei migration is actin-dependent but microtubule-independent in both egg cell and central cell during double fertilization. We further revealed that the actin-based motor myosin is not the driving force for sperm nuclear migration in maize and tobacco. The WASP-Arp2/3 complex signal cascade is shown here to be involved in the regulation of sperm nuclear migration in maize and tobacco. It is interesting that sperm nuclei migration within somatic cell also need WASP-Arp2/3 complex signal cascade and actin, suggesting that the mechanism of sperm nuclear migration is not gamete specific.
Collapse
Affiliation(s)
- Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingting Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Type I interferon promotes cell-to-cell spread ofListeria monocytogenes. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/06/2023]
|
37
|
Dinner S, Kaltschmidt J, Stump-Guthier C, Hetjens S, Ishikawa H, Tenenbaum T, Schroten H, Schwerk C. Mitogen-activated protein kinases are required for effective infection of human choroid plexus epithelial cells by Listeria monocytogenes. Microbes Infect 2016; 19:18-33. [PMID: 27671041 DOI: 10.1016/j.micinf.2016.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
Listeria monocytogenes, a Gram-positive bacterium, can cause meningitis after invading the human central nervous system. The blood-cerebrospinal fluid barrier (BCSFB), located at the epithelium of the choroid plexus, is a possible entry site for L. monocytogenes into the brain, and in vitro L. monocytogenes invades human choroid plexus epithelial papilloma (HIBCPP) cells. Although host cell signal transduction subsequent to infection by L. monocytogenes has been investigated, the role of mitogen-activated protein kinases (MAPK) is not clarified yet. We show that infection with L. monocytogenes causes activation of the MAPKs Erk1/2 and p38 preferentially when bacteria are added to the physiologically more relevant basolateral side of HIBCPP cells. Deletion of the listerial virulence factors Internalin (InlA) and InlB reduces MAPK activation. Whereas inhibition of either Erk1/2 or p38 signaling significantly attenuates infection of HIBCPP cells with L. monocytogenes, simultaneous inhibition of both MAPK pathways shows an additive effect, and Erk1/2 and p38 are involved in regulation of cytokine and chemokine expression following infection. Blocking of endocytosis with the synthetic dynamin inhibitor dynasore strongly abrogates infection of HIBCPP cells with L. monocytogenes. Concurrent inhibition of MAPK signaling further reduces infection, suggesting MAPKs mediate infection with L. monocytogenes during inhibition of dynamin-mediated endocytosis.
Collapse
Affiliation(s)
- Stefanie Dinner
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julian Kaltschmidt
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svetlana Hetjens
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, Nippon Dental University, School of Life Dentistry, Chyoda-ku, Tokyo, Japan
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
38
|
Das K, Garnica O, Dhandayuthapani S. Modulation of Host miRNAs by Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:79. [PMID: 27536558 PMCID: PMC4971075 DOI: 10.3389/fcimb.2016.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment.
Collapse
Affiliation(s)
| | | | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl Paso, TX, USA
| |
Collapse
|
39
|
Mu H, Niu H, Wang D, Sun F, Sun Y, Duan J. Chitosan conjugation enables intracellular bacteria susceptible to aminoglycoside antibiotic. Glycobiology 2016; 26:1190-1197. [DOI: 10.1093/glycob/cww079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022] Open
|
40
|
Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. mBio 2016; 7:mBio.00622-16. [PMID: 27381293 PMCID: PMC4958246 DOI: 10.1128/mbio.00622-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia's replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia's infection of and persistence within host niches. IMPORTANCE The obligate intracellular Wolbachia pipientis is a ubiquitous alphaproteobacterial symbiont of arthropods and nematodes and is related to the rickettsial pathogens Ehrlichia spp. and Anaplasma spp. Studies of Wolbachia cell biology suggest that this bacterium relies on host actin for efficient proliferation and transmission between generations. Here, we identified and characterized a Wolbachia protein that localizes to and manipulates the eukaryotic actin cytoskeleton, is expressed by Wolbachia during host development, and alters Wolbachia titers and localization in transgenic fruit flies. We hypothesize that WD0830 may be utilized by the bacterium to facilitate replication in or invasion of different niches during host development.
Collapse
|
41
|
Upadhyay A, Upadhyaya I, Mooyottu S, Venkitanarayanan K. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. J Med Microbiol 2016; 65:443-455. [DOI: 10.1099/jmm.0.000251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
42
|
Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol 2016; 82:3185-97. [PMID: 26994086 PMCID: PMC4959230 DOI: 10.1128/aem.00282-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights into how new symbioses form and how this lifestyle is shaping the symbiont genome.
Collapse
|
43
|
Santos LC, Munteanu EL, Biais N. An In Vitro Model System to Test Mechano-microbiological Interactions Between Bacteria and Host Cells. Methods Mol Biol 2016; 1365:195-212. [PMID: 26498786 DOI: 10.1007/978-1-4939-3124-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this chapter is to present an innovative technique to visualize changes of the f-actin cytoskeleton in response to locally applied force. We developed an in vitro system that combines micromanipulation of force by magnetic tweezers with simultaneous live cell fluorescence microscopy. We applied pulling forces to magnetic beads coated with the Neisseria gonorrhoeae Type IV pili in the same order of magnitude than the forces generated by live bacteria. We saw quick and robust f-actin accumulation at the sites where pulling forces were applied. Using the magnetic tweezers we were able to mimic the local response of the f-actin cytoskeleton to bacteria-generated forces. In this chapter we describe our magnetic tweezers system and show how to control it in order to study cellular responses to force.
Collapse
Affiliation(s)
- Luís Carlos Santos
- Department of Biology, Brooklyn College of the City University of New York, 307 Ingersoll Hall Extension, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emilia Laura Munteanu
- Department of Biology, Brooklyn College of the City University of New York, 307 Ingersoll Hall Extension, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Nicolas Biais
- Department of Biology, Brooklyn College of the City University of New York, 307 Ingersoll Hall Extension, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA.
- The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
44
|
Kaval KG, Hahn B, Tusamda N, Albrecht D, Halbedel S. The PadR-like transcriptional regulator LftR ensures efficient invasion of Listeria monocytogenes into human host cells. Front Microbiol 2015; 6:772. [PMID: 26284051 PMCID: PMC4517056 DOI: 10.3389/fmicb.2015.00772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Invasion of the bacterial pathogen Listeria monocytogenes into human host cells requires specialized surface molecules for attachment and induction of phagocytosis. However, efficient invasion is also dependent on factors with house-keeping functions, such as SecA2-dependent secretion of autolysins for post-divisional segregation of daughter cells. Mutations in this pathway prevent degradation of peptidoglycan cross-walls, so that long cell chains are formed that cannot be phagocytosed. The extreme chaining of such mutants manifests as rough colony phenotype. One rough clone was isolated from a transposon library with a transposon insertion in the uncharacterized lmo0720 gene (lftS) together with a spontaneous point mutation in the secA2 gene. We separated both mutations and demonstrated that this point mutation in the intramolecular regulator 2 domain of SecA2 was sufficient to inactivate the protein. In contrast, lftS deletion did not cause a ΔsecA2-like phenotype. lftS is located in an operon with lftR (lmo0719), encoding a PadR-like transcriptional regulator, and lftR deletion affected growth, invasion and day-light dependent coordination of swarming. Inactivation of lftS partially suppressed these phenotypes, suggesting a functional relationship between LftR and LftS. However, the invasion defect of the ΔlftR mutant was only marginally suppressed by lftS removal. LftR regulates expression of the lmo0979–0980 (lieAB) operon, encoding a putative multidrug resistance transporter and lieAB transcription was strongly upregulated in the absence of LftR. Deletion of lieAB in the ΔlftR background restores wild type-like invasion levels. Hence, we conclude that tight transcriptional repression of the lieAB operon is essential for efficient listerial host cell invasion.
Collapse
Affiliation(s)
- Karan G Kaval
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Birgitt Hahn
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Nayana Tusamda
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| | - Dirk Albrecht
- Institute of Microbiology, University of Greifswald Greifswald, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute Wernigerode, Germany
| |
Collapse
|
45
|
Poulter NS, Pollitt AY, Davies A, Malinova D, Nash GB, Hannon MJ, Pikramenou Z, Rappoport JZ, Hartwig JH, Owen DM, Thrasher AJ, Watson SP, Thomas SG. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun 2015; 6:7254. [PMID: 26028144 PMCID: PMC4458878 DOI: 10.1038/ncomms8254] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/21/2015] [Indexed: 11/09/2022] Open
Abstract
The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott–Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp−/− mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet–platelet interaction and their absence contributes to the bleeding diathesis of Wiskott–Aldrich syndrome. During early platelet spreading a novel F-actin structure forms, called the actin nodule. Here Poulter et al. demonstrate that actin nodule formation depends on WASp and the Arp2/3 complex, and using super-resolution microscopy they show that nodules bear a structural resemblance to podosomes.
Collapse
Affiliation(s)
- Natalie S Poulter
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice Y Pollitt
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Amy Davies
- PSIBS doctoral training centre, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dessislava Malinova
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Gerard B Nash
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mike J Hannon
- PSIBS doctoral training centre, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joshua Z Rappoport
- The Center for Advanced Microscopy and Nikon Imaging Center, Morton 2-681, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA
| | - John H Hartwig
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dylan M Owen
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Adrian J Thrasher
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Stephen P Watson
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven G Thomas
- Centre for Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Xayarath B, Alonzo F, Freitag NE. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog 2015; 11:e1004707. [PMID: 25822753 PMCID: PMC4379056 DOI: 10.1371/journal.ppat.1004707] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
47
|
Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages. Infect Immun 2015; 83:2175-84. [PMID: 25776746 DOI: 10.1128/iai.00110-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/09/2015] [Indexed: 01/23/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, including the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% ± 7%) at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% ± 6%). While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% ± 5%). Coexpression of LLO and PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of autophagy by L. monocytogenes primarily involves PlcA and ActA and that either one of these factors must be present for L. monocytogenes growth in macrophages.
Collapse
|
48
|
de Souza Santos M, Orth K. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 2015; 17:164-73. [PMID: 25440316 PMCID: PMC5806695 DOI: 10.1111/cmi.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
Abstract
Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles and therefore provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
49
|
Guilbert SM, Varlet AA, Fuchs M, Lambert H, Landry J, Lavoie JN. Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 2014; 15:634-46. [PMID: 25237825 DOI: 10.1038/nrm3877] [Citation(s) in RCA: 735] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.
Collapse
Affiliation(s)
- Prashant Mishra
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David C Chan
- 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. [2] Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|