1
|
Chen S, Zeng N, Liu GY, Wang H, Lin T, Tai Y, Chen C, Fang Y, Chuang Y, Kao C, Cheng H, Wu B, Sun P, Bayansan O, Chiu Y, Shih C, Chung W, Yang J, Wang LH, Chiang P, Chen C, Wagner OI, Wang Y, Lin Y. Precise Control of Intracellular Trafficking and Receptor-Mediated Endocytosis in Living Cells and Behaving Animals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405568. [PMID: 39401410 PMCID: PMC11615828 DOI: 10.1002/advs.202405568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Intracellular trafficking, an extremely complex network, dynamically orchestrates nearly all cellular activities. A versatile method that enables the manipulation of target transport pathways with high spatiotemporal accuracy in vitro and in vivo is required to study how this network coordinates its functions. Here, a new method called RIVET (Rapid Immobilization of target Vesicles on Engaged Tracks) is presented. Utilizing inducible dimerization between target vesicles and selective cytoskeletons, RIVET can spatiotemporally halt numerous intracellular trafficking pathways within seconds in a reversible manner. Its highly specific perturbations allow for the real-time dissection of the dynamic relationships among different trafficking pathways. Moreover, RIVET is capable of inhibiting receptor-mediated endocytosis. This versatile system can be applied from the cellular level to whole organisms. RIVET opens up new avenues for studying intracellular trafficking under various physiological and pathological conditions and offers potential strategies for treating trafficking-related disorders.
Collapse
Affiliation(s)
- Shiau‐Chi Chen
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Neng‐Jie Zeng
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Grace Y. Liu
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsien‐Chu Wang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Tzu‐Ying Lin
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Ling Tai
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Chiao‐Yun Chen
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yin Fang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Chien Chuang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ching‐Lin Kao
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsuan Cheng
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Bing‐Huang Wu
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Pin‐Chiao Sun
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Odvogmed Bayansan
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yu‐Ting Chiu
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Chi‐Hsuan Shih
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Wen‐Hong Chung
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Jia‐Bin Yang
- Institute of Molecular and Cellular BiologyNational Taiwan UniversityTaipei106319Taiwan
| | - Lily Hui‐Ching Wang
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
- School of MedicineNational Tsing Hua UniversityHsinChu300044Taiwan
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Po‐Han Chiang
- Institute of Biomedical EngineeringNational Yang Ming Chiao Tung UniversityHsinchu300093Taiwan
| | - Chun‐Hao Chen
- Institute of Molecular and Cellular BiologyNational Taiwan UniversityTaipei106319Taiwan
| | - Oliver I. Wagner
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Yi‐Ching Wang
- Department of PharmacologyCollege of MedicineNational Cheng Kung UniversityTainan701401Taiwan
| | - Yu‐Chun Lin
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|
2
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
3
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
4
|
Vti1a/b support distinct aspects of TGN and cis-/medial Golgi organization. Sci Rep 2022; 12:20870. [PMID: 36460703 PMCID: PMC9718741 DOI: 10.1038/s41598-022-25331-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Retrograde trafficking towards the trans-Golgi network (TGN) is important for dense core vesicle (DCV) biogenesis. Here, we used Vti1a/b deficient neurons to study the impact of disturbed retrograde trafficking on Golgi organization and cargo sorting. In Vti1a/b deficient neurons, staining intensity of cis-/medial Golgi proteins (e.g., GM130 and giantin) was increased, while the intensity of two recycling TGN proteins, TGN38 and TMEM87A, was decreased and the TGN-resident protein Golgin97 was normal. Levels and localization of DCV cargo markers, LAMP1 and KDEL were also altered. This phenotype was not caused by reduced Golgi size or absence of a TGN compartment. The phenotype was partially phenocopied by disturbing sphingolipid homeostasis, but was not rescued by overexpression of sphingomyelin synthases or the sphingolipid synthesis inhibitor myriocin. We conclude that Vti1a/b are important for distinct aspects of TGN and cis-/medial Golgi organization. Our data underline the importance of retrograde trafficking for Golgi organization, DCV cargo sorting and the distribution of proteins of the regulated secretory pathway.
Collapse
|
5
|
Houghton FJ, Makhoul C, Cho EHJ, Williamson NA, Gleeson PA. Interacting partners of Golgi-localized small G protein Arl5b identified by a combination of in vivo proximity labelling and GFP-Trap pull down. FEBS Lett 2022; 596:2382-2399. [PMID: 35789482 DOI: 10.1002/1873-3468.14443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
The small G protein Arl5b is localized on the trans-Golgi network (TGN) and regulates endosomes-to-TGN transport. Here, we combined in vivo and in vitro techniques to map the interactive partners and near neighbours of Arl5b at the TGN, using constitutively-active, membrane-bound Arl5b(Q70L)-GFP in stably expressing HeLa cells, and the proximity labelling techniques BioID and APEX2 in parallel with GFP-Trap pull-down. From mass spectrometry analysis, 22 Golgi proteins were identified; 50% were TGN-localised Rabs, Arfs and Arls. The scaffold/tethering factors ACBD3 (GCP60) and PIST (GOPC) were also identified, and we show that Arl5b is required for TGN recruitment of ACBD3. Overall, the combination of in vivo labelling and direct pull-downs indicates a highly organised complex of small G proteins on TGN membranes.
Collapse
Affiliation(s)
- Fiona J Houghton
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Ellie Hyun-Jung Cho
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Victoria, 3010, Australia
| | - Nicholas A Williamson
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
6
|
Cao Q, Zhang W, Liu X, Li Y. AtFTCD-L, a trans-Golgi network localized protein, modulates root growth of Arabidopsis in high-concentration agar culture medium. PLANTA 2022; 256:3. [PMID: 35637390 DOI: 10.1007/s00425-022-03911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
AtFTCD-L protein is localized on the TGN vesicles in Arabidopsis root cap cells. AtFTCD-L mutation resulted in slow root growth of Arabidopsis in high-concentration agar culture medium. Arabidopsis formiminotransferase cyclodeaminase-like protein (AtFTCD-L) in Arabidopsis is homologous to the formiminotransferase cyclodeaminase (FTCD) protein in animal cells. However, the localization and function of AtFTCD-L remain unknown in Arabidopsis. In this study, we generated and analyzed a deletion mutant of AtFTCD-L with a T-DNA insertion. We found that the growth of Arabidopsis roots with the T-DNA insertion mutation in AtFTCD-L was slower than that of wild-type roots when grown in high-concentration 1/2 MS agar culture medium. AtFTCD-L-GFP could restore the ftcd-l mutant phenotype. In addition, the AtFTCD-L protein was localized on the trans-Golgi network (TGN) vesicles in Arabidopsis root cap cells. Fluorescence recovery after photobleaching (FRAP) experiment using Arabidopsis pollen-specific receptor-like kinase-GFP (AtPRK1-GFP) stably transformed plants showed that the deficiency of AtFTCD-L protein in Arabidopsis led to slower secretion in the root cap peripheral cells. The AtFTCD-L protein deficiency also resulted in a significantly reduced monosaccharides content in the culture medium. Based on the above results, we speculate that the AtFTCD-L protein may be involved in sorting and/or transportation of TGN vesicles in root cap peripheral cells, thereby regulating the extracellular secretion of mucilage components in the root cap.
Collapse
Affiliation(s)
- Qijiang Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences and Engineering, Shenyang University, Liaoning, 110044, China
| | - Wei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Soelch S, Beaufort N, Loessner D, Kotzsch M, Reuning U, Luther T, Kirchner T, Magdolen V. Rab31-dependent regulation of transforming growth factor ß expression in breast cancer cells. Mol Med 2021; 27:158. [PMID: 34906074 PMCID: PMC8670132 DOI: 10.1186/s10020-021-00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells. METHODS Commercially available profiler PCR arrays were applied to search for differentially expressed genes in Rab31 high- and low-expressing CAMA-1 breast cancer cells. Differential expression of selected candidate genes in response to Rab31 overexpression in CAMA-1 cells was validated by independent qPCR and protein assays. RESULTS Gene expression profiling of key genes involved in EMT, or its reciprocal process MET, identified 9 genes being significantly up- or down-regulated in Rab31 overexpressing CAMA-1 cells, with the strongest effects seen for TGFB1, encoding TGF-ß1 (> 25-fold down-regulation in Rab31 overexpressing cells). Subsequent validation analyses by qPCR revealed a strong down-regulation of TGFB1 mRNA levels in response to increased Rab31 expression not only in CAMA-1 cells, but also in another breast cancer cell line, MDA-MB-231. Using ELISA and Western blot analysis, a considerable reduction of both intracellular and secreted TGF-ß1 antigen levels was determined in Rab31 overexpressing cells compared to vector control cells. Furthermore, reduced TGF-ß activity was observed upon Rab31 overexpression in CAMA-1 cells using a sensitive TGF-ß bioassay. Finally, the relationship between Rab31 expression and the TGF-ß axis was analyzed by another profiler PCR array focusing on genes involved in TGF-ß signaling. We found 12 out of 84 mRNAs significantly reduced and 7 mRNAs significantly increased upon Rab31 overexpression. CONCLUSIONS Our results demonstrate that Rab31 is a potent modulator of the expression of TGF-ß and other components of the TGF-ß signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Susanne Soelch
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Munich, Germany
| | - Daniela Loessner
- Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.,Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany
| | | | | | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Ismaninger Str. 22, 81576, Munich, Germany.
| |
Collapse
|
8
|
Fourriere L, Gleeson PA. Amyloid β production along the neuronal secretory pathway: Dangerous liaisons in the Golgi? Traffic 2021; 22:319-327. [PMID: 34189821 DOI: 10.1111/tra.12808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
β-amyloid peptides (Aβ) are generated in intracellular compartments of neurons and secreted to form cytotoxic fibrils and plaques. Dysfunctional membrane trafficking contributes to aberrant Aβ production and Alzheimer's disease. Endosomes represent one of the major sites for Aβ production and recently the Golgi has re-emerged also as a major location for amyloid precursor protein (APP) processing and Aβ production. Based on recent findings, here we propose that APP processing in the Golgi is finely tuned by segregating newly-synthesised APP and the β-secretase BACE1 within the Golgi and into distinct trans-Golgi network transport pathways. We hypothesise that there are multiple mechanisms responsible for segregating APP and BACE1 during transit through the Golgi, and that perturbation in Golgi morphology associated with Alzheimer's disease, and or changes in cholesterol metabolism associated with Alzheimer's disease risk factors, may lead to a loss of partitioning and enhanced Aβ production.
Collapse
Affiliation(s)
- Lou Fourriere
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Abstract
Mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) is a major signalling kinase in cells that regulates proliferation and metabolism and is controlled by extrinsic and intrinsic signals. The lysosome has received considerable attention as a major hub of mTORC1 activation. However, mTOR has also been located to a variety of other intracellular sites, indicating the possibility of spatial regulation of mTORC1 signalling within cells. In particular, there have been numerous recent reports of mTORC1 activation associated with the Golgi apparatus. Here, we review the evidence for the regulation of mTORC1 signalling at the Golgi in mammalian cells. mTORC1 signalling is closely linked to the morphology of the Golgi architecture; a number of Golgi membrane tethers/scaffolds that influence Golgi architecture in mammalian cells that directly or indirectly regulate mTORC1 activation have been identified. Perturbation of the Golgi mTORC1 pathway arising from fragmentation of the Golgi has been shown to promote oncogenesis. Here, we highlight the potential mechanisms for the activation mTORC1 at the Golgi, which is emerging as a major site for mTORC1 signalling.
Collapse
Affiliation(s)
- Christian Makhoul
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Zulkefli KL, Mahmoud IS, Williamson NA, Gosavi PK, Houghton FJ, Gleeson PA. A role for Rab30 in retrograde trafficking and maintenance of endosome-TGN organization. Exp Cell Res 2021; 399:112442. [PMID: 33359467 DOI: 10.1016/j.yexcr.2020.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Rab30 is a poorly characterized small GTPase. Here we show that Rab30 is localised primarily to the TGN and recycling endosomes in a range of cell types, including primary neurons; minor levels of Rab30 were also detected throughout the Golgi stack and early endosomes. Silencing of Rab30 resulted in the dispersal of both early and recycling endosomes and TGN compartments in HeLa cells. By analyzing cargo trafficking in Rab30-silenced and Rab30-overexpressing HeLa cells, we demonstrate that Rab30 plays a role in retrograde trafficking of TGN38 from endosomes to the Golgi, but has no apparent role in the endocytic recycling of the transferrin receptor to the plasma membrane. Five interactive partners with Rab30 were identified by pull-down and MS analysis using GFP-tagged Rab30 mutant, Rab30(Q68L). Two of the interactive partners identified were Arf1 and Arf4, known regulators of endosome to TGN retrograde transport. Knockdown of Arf1 and Arf4 results in GFP-Rab30 decorated tubules arising from the recycling endosomes, suggesting association of Rab30 with tubular carriers. Overall our data demonstrates a role for Rab30 in regulating retrograde transport to the TGN and maintenance of endosomal-TGN organization.
Collapse
Affiliation(s)
- Khalisah L Zulkefli
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Ismail S Mahmoud
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Nicholas A Williamson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Prajakta Kulkarni Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Shin JJH, Crook OM, Borgeaud AC, Cattin-Ortolá J, Peak-Chew SY, Breckels LM, Gillingham AK, Chadwick J, Lilley KS, Munro S. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nat Commun 2020; 11:5987. [PMID: 33239640 PMCID: PMC7689464 DOI: 10.1038/s41467-020-19840-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by vesicle-based carriers. The proteomes of carriers destined for many organelles are ill-defined because the vesicular intermediates are transient, low-abundance and difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi network (TGN). The golgin coiled-coil proteins golgin-97 and GCC88, shown previously to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria and the content of the subsequently re-routed vesicles was determined by organelle proteomics. Our findings reveal 45 integral and 51 peripheral membrane proteins re-routed by golgin-97, evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes specific to individual golgins. These results illustrate a general strategy for analysing intracellular sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.
Collapse
Affiliation(s)
- John J H Shin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Oliver M Crook
- The Milner Therapeutics Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Alicia C Borgeaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kathryn S Lilley
- The Milner Therapeutics Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
12
|
Vieira V, Pain C, Wojcik S, Spatola Rossi T, Denecke J, Osterrieder A, Hawes C, Kriechbaumer V. Living on the edge: the role of Atgolgin-84A at the plant ER-Golgi interface. J Microsc 2020; 280:158-173. [PMID: 32700322 DOI: 10.1111/jmi.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
The plant Golgi apparatus is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Golgi matrix components, such as golgins, have been identified and suggested to function as putative tethering factors to mediate the physical connections between Golgi bodies and the ER network. Golgins are proteins anchored to the Golgi membrane by the C-terminus either through transmembrane domains or interaction with small regulatory GTPases. The golgin N-terminus contains long coiled-coil domains, which consist of a number of α-helices wrapped around each other to form a structure similar to a rope being made from several strands, reaching into the cytoplasm. In animal cells, golgins are also implicated in specific recognition of cargo at the Golgi.Here, we investigate the plant golgin Atgolgin-84A for its subcellular localization and potential role as a tethering factor at the ER-Golgi interface. For this, fluorescent fusions of Atgolgin-84A and an Atgolgin-84A truncation lacking the coiled-coil domains (Atgolgin-84AΔ1-557) were transiently expressed in tobacco leaf epidermal cells and imaged using high-resolution confocal microscopy. We show that Atgolgin-84A localizes to a pre-cis-Golgi compartment that is also labelled by one of the COPII proteins as well as by the tether protein AtCASP. Upon overexpression of Atgolgin-84A or its deletion mutant, transport between the ER and Golgi bodies is impaired and cargo proteins are redirected to the vacuole. LAY DESCRIPTION: The Golgi apparatus is a specialised compartment found in mammalian and plant cells. It is the post office of the cell and packages proteins into small membrane boxes for transport to their destination in the cell. The plant Golgi apparatus consist of many separate Golgi bodies and is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Specialised proteins called golgins have been suggested to tether Golgi bodies and the ER. Here we investigate the plant golgin Atgolgin-84A for its exact within the Golgi body and its potential role as a tethering factor at the ER-Golgi interface. For this, we have fused Atgolgin-84A with a fluorescent protein from jellyfish and we are producing this combination in tobacco leaf cells. This allows us to see the protein using laser microscopy. We show that Atgolgin-84A localises to a compartment between the ER and Golgi that is also labelled by the tether protein AtCASP. When Atgolgin-84A is produced in high amounts in the cell, transport between the ER and Golgi bodies is inhibited and proteins are redirected to the vacuole.
Collapse
Affiliation(s)
- V Vieira
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, U.K
| | - C Pain
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - S Wojcik
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - T Spatola Rossi
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - J Denecke
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, U.K
| | - A Osterrieder
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K.,Bioethics and Engagement, Mahidol Oxford Tropical Medicine Research Unit (MORU), Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - C Hawes
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| |
Collapse
|
13
|
Aistleitner K, Clark T, Dooley C, Hackstadt T. Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii. PLoS Pathog 2020; 16:e1008582. [PMID: 32421751 PMCID: PMC7259798 DOI: 10.1371/journal.ppat.1008582] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/29/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Fragmentation of the Golgi apparatus is observed during a number of physiological processes including mitosis and apoptosis, but also occurs in pathological states such as neurodegenerative diseases and some infectious diseases. Here we show that highly virulent strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, induce selective fragmentation of the trans-Golgi network (TGN) soon after infection of host cells by secretion of the effector protein Rickettsial Ankyrin Repeat Protein 2 (RARP2). Remarkably, this fragmentation is pronounced for the trans-Golgi network but the cis-Golgi remains largely intact and appropriately localized. Thus R. rickettsii targets specifically the TGN and not the entire Golgi apparatus. Dispersal of the TGN is mediated by the secreted effector protein RARP2, a recently identified type IV secreted effector that is a member of the clan CD cysteine proteases. Site-directed mutagenesis of a predicted cysteine protease active site in RARP2 prevents TGN disruption. General protein transport to the cell surface is severely impacted in cells infected with virulent strains of R. rickettsii. These findings suggest a novel manipulation of cellular organization by an obligate intracellular bacterium to determine interactions with the host cell.
Collapse
Affiliation(s)
- Karin Aistleitner
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Tina Clark
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Cheryl Dooley
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sawada S, Nakamura A, Yoshii T, Kuwata K, Nakatsu F, Tsukiji S. Protein-recruiting synthetic molecules targeting the Golgi surface. Chem Commun (Camb) 2020; 56:15422-15425. [DOI: 10.1039/d0cc06908f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic molecules consisting of a small-molecule ligand and a tri-N-methylated myristoyl-Gly-Cys lipopeptide serve as chemical tools to rapidly recruit their target proteins from the cytoplasm to the Golgi surface in living cells.
Collapse
Affiliation(s)
- Shunsuke Sawada
- Department of Nanopharmaceutical Sciences
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Akinobu Nakamura
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM)
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology
- Graduate School of Medical and Dental Sciences
- Niigata University
- Niigata 951-8510
- Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| |
Collapse
|
15
|
Cai X, Fahmy K, Baumgartner S. bicoid RNA localization requires the trans-Golgi network. Hereditas 2019; 156:30. [PMID: 31528161 PMCID: PMC6737670 DOI: 10.1186/s41065-019-0106-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The formation of the bicoid (bcd) mRNA gradient is a crucial step for Bcd protein gradient formation in Drosophila. In the past, a microtubule (MT)-based cortical network had been shown to be indispensable for bcd mRNA transport to the posterior. Results We report the identification of a MT-binding protein CLASP/Chb as the first component associated with this cortical MT network. Since CLASPs in vertebrates were shown to serve as an acentriolar microtubule organization center (aMTOC) in concert with trans-Golgi proteins, we examined the effect of the Drosophila trans-Golgins on bcd localization and gradient formation. Using a genetic approach, we demonstrate that the Drosophila trans-Golgins dGCC88, dGolgin97 and dGCC185 indeed affect bcd mRNA localization during oocyte development. Consequently, the bcd mRNA is already mislocalized before the egg is fertilized. The expression domains of genes downstream of the hierarchy of bcd, e.g. of the gap gene empty spiracles or of the pair-rule gene even-skipped are changed, indicating an altered segmental anlagen, due to a faulty bcd gradient. Thus, at the end of embryogenesis, trans-Golgin mutants show bcd-like cuticle phenotypes. Conclusions Our data provides evidence that the Golgi as a cellular member of the secretory pathway exerts control on bcd localization which indicates that bcd gradient formation is probably more intricate than previously presumed.
Collapse
Affiliation(s)
- Xiaoli Cai
- 1Department of Experimental Medical Sciences, Lund University, BMC D10, S-22184 Lund, Sweden
| | - Khalid Fahmy
- 2Present Address: Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Stefan Baumgartner
- 1Department of Experimental Medical Sciences, Lund University, BMC D10, S-22184 Lund, Sweden.,3Department of Biology, University of Konstanz, D-78457 Constance, Germany
| |
Collapse
|
16
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
17
|
Vestre K, Kjos I, Guadagno NA, Borg Distefano M, Kohler F, Fenaroli F, Bakke O, Progida C. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell Mol Life Sci 2019; 76:2593-2614. [PMID: 30830239 PMCID: PMC11105640 DOI: 10.1007/s00018-019-03057-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Rab proteins are master regulators of intracellular membrane trafficking, but they also contribute to cell division, signaling, polarization, and migration. The majority of the works describing the mechanisms used by Rab proteins to regulate cell motility involve intracellular transport of key molecules important for migration. Interestingly, a few studies indicate that Rabs can modulate the activity of Rho GTPases, important regulators for the cytoskeleton rearrangements, but the mechanisms behind this crosstalk are still poorly understood. In this work, we identify Rab6 as a negative regulator of cell migration in vitro and in vivo. We show that the loss of Rab6 promotes formation of actin protrusions and influences actomyosin dynamics by upregulating Cdc42 activity and downregulating myosin II phosphorylation. We further provide the molecular mechanism behind this regulation demonstrating that Rab6 interacts with both Cdc42 and Trio, a GEF for Cdc42. In sum, our results uncover a mechanism used by Rab proteins to ensure spatial regulation of Rho GTPase activity for coordination of cytoskeleton rearrangements required in migrating cells.
Collapse
Affiliation(s)
- Katharina Vestre
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Noemi Antonella Guadagno
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Felix Kohler
- Department of Physics, The NJORD Centre, University of Oslo, Oslo, Norway
| | | | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Centre for Immune Regulation, University of Oslo, Oslo, Norway.
| |
Collapse
|
18
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
19
|
Cui Y, Yang Z, Teasdale RD. A role of GCC88 in the retrograde transport of CI-M6PR and the maintenance of lysosomal activity. Cell Biol Int 2019; 43:1234-1244. [PMID: 30791178 DOI: 10.1002/cbin.11118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/17/2019] [Indexed: 11/10/2022]
Abstract
GCC88 is a golgin coiled-coil protein at the trans-Golgi (TGN) that functions as a tethering factor for the endosome-derived retrograde transport vesicles. Here, we demonstrate that GCC88 is required for the endosome-to-TGN retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-M6PR). The knockout of GCC88 perturbs the retrieval of CI-M6PR and decreases its cellular level at the steady state, which causes the improper processing of newly synthesized cathepsin-D, a lysosomal hydrolase dependent on CI-M6PR for its delivery to lysosomes. At the whole cell level, the knockout of GCC88 reduces the lysosomal proteolytic capacity but does not impair of the efficiency of autophagy within these cells.
Collapse
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rohan D Teasdale
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
20
|
Tan JZA, Gleeson PA. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J Biol Chem 2019; 294:1618-1631. [PMID: 30545942 PMCID: PMC6364769 DOI: 10.1074/jbc.ra118.005222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Amyloid precursor protein (APP) is processed along the amyloidogenic pathway by the β-secretase, BACE1, generating β-amyloid (Aβ), or along the nonamyloidogenic pathway by α-secretase, precluding Aβ production. The plasma membrane is considered the major site for α-secretase-mediated APP cleavage, but other cellular locations have not been rigorously investigated. Here, we report that APP is processed by endogenous α-secretase at the trans-Golgi network (TGN) of both transfected HeLa cells and mouse primary neurons. We have previously shown the adaptor protein complex, AP-4, and small G protein ADP-ribosylation factor-like GTPase 5b (Arl5b) are required for efficient post-Golgi transport of APP to endosomes. We found here that AP-4 or Arl5b depletion results in Golgi accumulation of APP and increased secretion of the soluble α-secretase cleavage product sAPPα. Moreover, inhibition of γ-secretase following APP accumulation in the TGN increases the levels of the membrane-bound C-terminal fragments of APP from both α-secretase cleavage (α-CTF, named C83 according to its band size) and BACE1 cleavage (β-CTF/C99). The level of C83 was ∼4 times higher than that of C99, indicating that α-secretase processing is the major pathway and that BACE1 processing is the minor pathway in the TGN. AP-4 silencing in mouse primary neurons also resulted in the accumulation of endogenous APP in the TGN and enhanced α-secretase processing. These findings identify the TGN as a major site for α-secretase processing in HeLa cells and primary neurons and indicate that both APP processing pathways can occur within the TGN compartment along the secretory pathway.
Collapse
Affiliation(s)
- Jing Zhi A Tan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
21
|
Makhoul C, Gosavi P, Duffield R, Delbridge B, Williamson NA, Gleeson PA. Intersectin-1 interacts with the golgin GCC88 to couple the actin network and Golgi architecture. Mol Biol Cell 2019; 30:370-386. [PMID: 30540523 PMCID: PMC6589577 DOI: 10.1091/mbc.e18-05-0313] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
The maintenance of the Golgi ribbon relies on a dynamic balance between the actin and microtubule networks; however, the pathways controlling actin networks remain poorly defined. Previously, we showed that the trans-Golgi network (TGN) membrane tether/golgin, GCC88, modulates the Golgi ribbon architecture. Here, we show that dispersal of the Golgi ribbon by GCC88 is dependent on actin and the involvement of nonmuscle myosin IIA. We have identified the long isoform of intersectin-1 (ITSN-1), a guanine nucleotide exchange factor for Cdc42, as a novel Golgi component and an interaction partner of GCC88 responsible for mediating the actin-dependent dispersal of the Golgi ribbon. We show that perturbation of Golgi morphology by changes in membrane flux, mediated by silencing the retromer subunit Vps26, or in a model of neurodegeneration, induced by Tau overexpression, are also dependent on the ITSN-1-GCC88 interaction. Overall, our study reveals a role for a TGN golgin and ITSN-1 in linking to the actin cytoskeleton and regulating the balance between a compact Golgi ribbon and a dispersed Golgi, a pathway with relevance to pathophysiological conditions.
Collapse
Affiliation(s)
- Christian Makhoul
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Prajakta Gosavi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Regina Duffield
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bronwen Delbridge
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicholas A. Williamson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
22
|
Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice. Proc Natl Acad Sci U S A 2018; 115:13347-13352. [PMID: 30530686 PMCID: PMC6310842 DOI: 10.1073/pnas.1804149115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
T cell-mediated immune responses are compromised in aged individuals, leading to increased morbidity and reduced response to vaccination. Finding new ways to boost T cell immunity in the elderly is key for enhancing their immune competence. In this work, we performed a systematic analysis of proteins and metabolites in young versus aged T cells. Metabolic rewiring occurs in young T cells following stimulation but is dampened in aged T cells. Moreover, we show that aged T cell functions can be enhanced by metabolite addition. T cell-mediated immune responses are compromised in aged individuals, leading to increased morbidity and reduced response to vaccination. While cellular metabolism tightly regulates T cell activation and function, metabolic reprogramming in aged T cells has not been thoroughly studied. Here, we report a systematic analysis of metabolism during young versus aged naïve T cell activation. We observed a decrease in the number and activation of naïve T cells isolated from aged mice. While young T cells demonstrated robust mitochondrial biogenesis and respiration upon activation, aged T cells generated smaller mitochondria with lower respiratory capacity. Using quantitative proteomics, we defined the aged T cell proteome and discovered a specific deficit in the induction of enzymes of one-carbon metabolism. The activation of aged naïve T cells was enhanced by addition of products of one-carbon metabolism (formate and glycine). These studies define mechanisms of skewed metabolic remodeling in aged T cells and provide evidence that modulation of metabolism has the potential to promote immune function in aged individuals.
Collapse
|
23
|
Pan ZN, Lu Y, Tang F, Pan MH, Wan X, Lan M, Zhang Y, Sun SC. RAB8A GTPase regulates spindle migration and Golgi apparatus distribution via ROCK-mediated actin assembly in mouse oocyte meiosis†. Biol Reprod 2018; 100:711-720. [DOI: 10.1093/biolre/ioy217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/03/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
In silico analysis of putative dormancy genes in Plasmodium vivax. Acta Trop 2018; 186:24-34. [PMID: 29959903 DOI: 10.1016/j.actatropica.2018.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/21/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is the most widely spread species causing human malaria. The control of malaria caused by P. vivax has been largely hampered by its ability to develop a dormant liver stage that can generate a new blood infection at different periods of time. Unfortunately, the mechanisms of dormancy in P. vivax have not been thoroughly elucidated to date. In this study, the putative dormancy genes were analyzed to select genes with less genetic variability to maintain the function of relapsing. Expression data concerning these genes were searched to support the selection. Protein interactions among selected gene products were identified based on known and predicted protein-protein interaction using String database. Potentially interacting proteins (n = 15) were used to propose a mechanism involved in dormancy based on the differential vesicular transport due to the iron available in the hepatocyte.
Collapse
|
25
|
Arasaki K, Kimura H, Tagaya M, Roy CR. Legionella remodels the plasma membrane-derived vacuole by utilizing exocyst components as tethers. J Cell Biol 2018; 217:3863-3872. [PMID: 30275106 PMCID: PMC6219717 DOI: 10.1083/jcb.201801208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Legionella pneumophila enters cells in a vacuole derived from the plasma membrane, which then sequesters vesicles from the ER in order to support parasite growth and immune evasion. Arasaki et al. now reveal that the Legionella effector DrrA recruits components of the exocyst to promote tethering of host vesicles with the LCV. During the initial stage of infection, Legionella pneumophila secretes effectors that promote the fusion of endoplasmic reticulum (ER)–derived vesicles with the Legionella-containing vacuole (LCV). This fusion leads to a remodeling of the plasma membrane (PM)–derived LCV into a specialized ER-like compartment that supports bacterial replication. Although the effector DrrA has been shown to activate the small GTPase Rab1, it remains unclear how DrrA promotes the tethering of host vesicles with the LCV. Here, we show that Sec5, Sec15, and perhaps Sec6, which are subunits of the exocyst that functions in the tethering of exocytic vesicles with the PM, are required for DrrA-mediated, ER-derived vesicle recruitment to the PM-derived LCV. These exocyst components were found to interact specifically with a complex containing DrrA, and the loss of Sec5 or Sec15 significantly suppressed the recruitment of ER-derived vesicles to the LCV and inhibited intracellular replication of Legionella. Importantly, Sec15 is recruited to the LCV, and Rab1 activation is necessary for this recruitment.
Collapse
Affiliation(s)
- Kohei Arasaki
- Department of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT .,School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hana Kimura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT
| |
Collapse
|
26
|
The Golgi architecture and cell sensing. Biochem Soc Trans 2018; 46:1063-1072. [DOI: 10.1042/bst20180323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022]
Abstract
An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.
Collapse
|
27
|
Zhang Y, Yang B, Cheng X, Liu L, Zhu Y, Gong Y, Yang Y, Tian J, Peng X, Zou D, Yang L, Mei S, Wang X, Lou J, Ke J, Li J, Gong J, Chang J, Yuan P, Zhong R. Integrative functional genomics identifies regulatory genetic variant modulating RAB31 expression and altering susceptibility to breast cancer. Mol Carcinog 2018; 57:1845-1854. [DOI: 10.1002/mc.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yi Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
- School of Public Health; Zunyi Medical University; Zunyi Guizhou China
| | - Beifang Yang
- Hubei Institute for Infectious Disease Control and Prevention; Hubei Provincial Center for Disease Control and Prevention; Wuhan China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Li Liu
- Guangdong Key Lab of Molecular Epidemiology and Department of Epidemiology and Biostatistics; School of Public Health; Guangdong Pharmaceutical University; Guangzhou China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yang Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Lan Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jing Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Peng Yuan
- Department of VIP Medical Services; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
28
|
Jain BK, Thapa PS, Varma A, Bhattacharyya D. Identification and characterization of GRIP domain Golgin Pp
Imh1 from Pichia pastoris. Yeast 2018; 35:499-506. [DOI: 10.1002/yea.3317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Bhawik Kumar Jain
- Advanced Centre for Treatment Research and Education in Cancer; Tata Memorial Centre, Kharghar; Navi Mumbai 410210 MH India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar, Mumbai MH 400085 India
| | - Pankaj Singh Thapa
- Advanced Centre for Treatment Research and Education in Cancer; Tata Memorial Centre, Kharghar; Navi Mumbai 410210 MH India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar, Mumbai MH 400085 India
| | - Ashok Varma
- Advanced Centre for Treatment Research and Education in Cancer; Tata Memorial Centre, Kharghar; Navi Mumbai 410210 MH India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar, Mumbai MH 400085 India
| | - Dibyendu Bhattacharyya
- Advanced Centre for Treatment Research and Education in Cancer; Tata Memorial Centre, Kharghar; Navi Mumbai 410210 MH India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar, Mumbai MH 400085 India
| |
Collapse
|
29
|
Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, Lin JW, Cheng HY, Li PY, Yu CJ. Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity. Cell Commun Signal 2018; 16:19. [PMID: 29703230 PMCID: PMC5923015 DOI: 10.1186/s12964-018-0230-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Golgin-97 is a tethering factor in the trans-Golgi network (TGN) and is crucial for vesicular trafficking and maintaining cell polarity. However, the significance of golgin-97 in human diseases such as cancer remains unclear. Methods We searched for a potential role of golgin-97 in cancers using Kaplan-Meier Plotter (http://kmplot.com) and Oncomine (www.oncomine.org) datasets. Specific functions of golgin-97 in migration and invasion were examined in golgin-97-knockdown and golgin-97-overexpressing cells. cDNA microarray, pathway analysis and qPCR were used to identify gene profiles regulated by golgin-97. The role of golgin-97 in NF-κB signaling pathway was examined by using subcellular fractionation, luciferase reporter assay, western blot analysis and immunofluorescence assay (IFA). Results We found that low expression of golgin-97 correlated with poor overall survival of cancer patients and was associated with invasiveness in breast cancer cells. Golgin-97 knockdown promoted cell migration and invasion, whereas re-expression of golgin-97 restored the above phenotypes in breast cancer cells. Microarray and pathway analyses revealed that golgin-97 knockdown induced the expression of several invasion-promoting genes that were transcriptionally regulated by NF-κB p65. Mechanistically, golgin-97 knockdown significantly reduced IκBα protein levels and activated NF-κB, whereas neither IκBα levels nor NF-κB activity was changed in TGN46- or GCC185-knockdown cells. Conversely, golgin-97 overexpression suppressed NF-κB activity and restored the levels of IκBα in golgin-97-knockdown cells. Interestingly, the results of Golgi-disturbing agent treatment revealed that the loss of Golgi integrity was not involved in the NF-κB activation induced by golgin-97 knockdown. Moreover, both TGN-bound and cytosolic golgin-97 inhibited NF-κB activation, indicating that golgin-97 functions as an NF-κB suppressor regardless of its subcellular localization. Conclusion Our results collectively demonstrate a novel and suppressive role of golgin-97 in cancer invasiveness. We also provide a new avenue for exploring the relationship between the TGN, golgin-97 and NF-κB signaling in tumor progression. Electronic supplementary material The online version of this article (10.1186/s12964-018-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Yan Zhong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Chi Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Wei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Yun Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Yu Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
30
|
Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA. The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 2018; 131:jcs.211987. [PMID: 29361552 DOI: 10.1242/jcs.211987] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul J McMillan
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
32
|
TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi. Nat Cell Biol 2017; 19:1424-1432. [PMID: 29084197 PMCID: PMC5712222 DOI: 10.1038/ncb3627] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
The specificity of membrane traffic involves tethers at destination organelles that selectively capture incoming transport vesicles to allow SNAREs on opposing membranes to then assemble and drive fusion1,2. Tethers include both protein complexes and long coiled-coil proteins, although how they contribute to specificity remains unclear3,4. The golgin coiled-coil proteins at the Golgi apparatus capture vesicles from different origins, but the vesicle-specific molecular cues that they recognise are unknown5–8. Vesicle tethering is typically a transient process and so challenging to interrogate in vivo. We have thus used a system where an ectopic golgin causes vesicles to accumulate in a tethered state. By applying proximity biotinylation to the golgin-captured vesicles we identify TBC1D23, an apparently catalytically inactive member of a family of Rab GTPase activating proteins (GAPs), as a vesicle-golgin adaptor that is required for endosome-to-Golgi traffic. The Rab-GAP domain of TBC1D23 binds to a conserved motif at the tip of golgin-245 and golgin-97 at the trans-Golgi, while the C-terminus binds to the WASH complex on endosome-derived vesicles. Thus TBC1D23 is a specificity determinant that links vesicle to target membrane during endosome-to-Golgi trafficking.
Collapse
|
33
|
Gosavi P, Gleeson PA. The Function of the Golgi Ribbon Structure - An Enduring Mystery Unfolds! Bioessays 2017; 39. [PMID: 28984991 DOI: 10.1002/bies.201700063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The Golgi apparatus in vertebrate cells consists of individual Golgi stacks fused together in a continuous ribbon structure. The ribbon structure per se is not required to mediate the classical functions of this organelle and the relevance of the "ribbon" structure has been a mystery since first identified ultrastructurally in the 1950s. Recent advances recognize a role for the Golgi apparatus in a range of cellular processes, some mediated by signaling networks which are regulated at the Golgi. Here we review the cellular processes and signaling events regulated by the Golgi apparatus and, in particular, explore an emerging theme that the ribbon structure of the Golgi contributes directly to the regulation of these higher order functions.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
34
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
35
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
36
|
Ito Y, Toyooka K, Fujimoto M, Ueda T, Uemura T, Nakano A. The trans-Golgi Network and the Golgi Stacks Behave Independently During Regeneration After Brefeldin A Treatment in Tobacco BY-2 Cells. PLANT & CELL PHYSIOLOGY 2017; 58:811-821. [PMID: 28339924 DOI: 10.1093/pcp/pcx028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
The trans-Golgi network (TGN) plays an essential role in intracellular membrane trafficking. In plant cells, recent live-cell imaging studies have revealed the dynamic behavior of the TGN independent from the Golgi apparatus. In order to better understand the relationships between the two organelles, we examined their dynamic responses to the reagent brefeldin A (BFA) and their recovery after BFA removal. Golgi markers responded to BFA similarly over a range of concentrations, whereas the behavior of the TGN was BFA concentration dependent. The TGN formed aggregates at high concentrations of BFA; however, TGN proteins relocalized to numerous small vesicular structures dispersed throughout the cytoplasm at lower BFA concentrations. During recovery from weak BFA treatment, the TGN started to regenerate earlier than the completion of the Golgi. The regeneration of the two organelles proceeded independently of each other for a while, and eventually was completed by their association. Our data suggest that there is some degree of autonomy for the regeneration of the TGN and the Golgi in tobacco BY-2 cells.
Collapse
Affiliation(s)
- Yoko Ito
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama, Japan
| | - Tomohiro Uemura
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Toh WH, Tan JZA, Zulkefli KL, Houghton FJ, Gleeson PA. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. Traffic 2017; 18:159-175. [DOI: 10.1111/tra.12465] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Wei Hong Toh
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Australia
| | - Jing Zhi A. Tan
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Australia
| | - Khalisah L. Zulkefli
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Australia
| | - Fiona J. Houghton
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Melbourne Australia
| |
Collapse
|
38
|
Abstract
Rab proteins regulate vesicular transport in eukaryotic cells and establish connections to various cellular structures and processes by interacting with so-called effector molecules. Several of these effectors are known to not only bind a single Rab protein, but to be able to bind multiple different Rabs simultaneously. In this review we will give a short overview of effectors in general and (putative) functions of the aforementioned multivalent Rab:effector interactions.
Collapse
Affiliation(s)
- Amrita Rai
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
39
|
Wong M, Gillingham AK, Munro S. The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biol 2017; 15:3. [PMID: 28122620 PMCID: PMC5267433 DOI: 10.1186/s12915-016-0345-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background The internal organization of cells depends on mechanisms to ensure that transport carriers, such as vesicles, fuse only with the correct destination organelle. Several types of proteins have been proposed to confer specificity to this process, and we have recently shown that a set of coiled-coil proteins on the Golgi, called golgins, are able to capture specific classes of carriers when relocated to an ectopic location. Results Mapping of six different golgins reveals that, in each case, a short 20–50 residue region is necessary and sufficient to capture specific carriers. In all six of GMAP-210, golgin-84, TMF, golgin-97, golgin-245, and GCC88, this region is located at the extreme N-terminus of the protein. The vesicle-capturing regions of GMAP-210, golgin-84, and TMF capture intra-Golgi vesicles and share some sequence features, suggesting that they act in a related, if distinct, manner. In the case of GMAP-210, this shared feature is in addition to a previously characterized “amphipathic lipid-packing sensor” motif that can capture highly curved membranes, with the two motifs being apparently involved in capturing distinct types of vesicles. Of the three GRIP domain golgins that capture endosome-to-Golgi carriers, golgin-97 and golgin-245 share a closely related capture motif, whereas that in GCC88 is distinct, suggesting that it works by a different mechanism and raising the possibility that the three golgins capture different classes of endosome-derived carriers that share many cargos but have distinct features for recognition at the Golgi. Conclusions For six different golgins, the capture of carriers is mediated by a short region at the N-terminus of the protein. There appear to be at least four different types of motif, consistent with specific golgins capturing specific classes of carrier and implying the existence of distinct receptors present on each of these different carrier classes.
Collapse
Affiliation(s)
- Mie Wong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
40
|
Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends Cell Biol 2016; 26:399-408. [PMID: 26972448 DOI: 10.1016/j.tcb.2016.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/27/2023]
Abstract
The Golgi apparatus lies at the centre of the secretory pathway. It consists of a series of flattened compartments typically organised into a stack that, in mammals, is connected to additional stacks to form a Golgi ribbon. The Golgi is responsible for the maturation and modification of proteins and lipids, and receives and exports vesicles to and from multiple destinations within the cell. This complex trafficking network requires that only the correct vesicles fuse with the correct destination membrane. Recently, a group of coiled-coil proteins called golgins were shown to not only capture incoming vesicles but to also provide specificity to the tethering step. This raises many interesting questions about how they interact with other components of membrane traffic, some of which may also contribute to specificity.
Collapse
|
41
|
Abstract
The Rab family of small GTPases play fundamental roles in the regulation of trafficking pathways between intracellular membranes in eukaryotic cells. In this short commentary we highlight a recent high-content screening study that investigates the roles of Rab proteins in retrograde trafficking from the Golgi complex to the endoplasmic reticulum, and we discuss how the findings of this work and other literature might influence our thoughts on how the architecture of the Golgi complex is regulated.
Collapse
Affiliation(s)
- George Galea
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| | - Jeremy C Simpson
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| |
Collapse
|
42
|
Martinez-Carrera LA, Wirth B. Dominant spinal muscular atrophy is caused by mutations in BICD2, an important golgin protein. Front Neurosci 2015; 9:401. [PMID: 26594138 PMCID: PMC4633519 DOI: 10.3389/fnins.2015.00401] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophies (SMAs) are characterized by degeneration of spinal motor neurons and muscle weakness. Autosomal recessive SMA is the most common form and is caused by homozygous deletions/mutations of the SMN1 gene. However, families with dominant inherited SMA have been reported, for most of them the causal gene remains unknown. Recently, we and others have identified heterozygous mutations in BICD2 as causative for autosomal dominant SMA, lower extremity-predominant, 2 (SMALED2) and hereditary spastic paraplegia (HSP). BICD2 encodes the Bicaudal D2 protein, which is considered to be a golgin, due to its coiled-coil (CC) structure and interaction with the small GTPase RAB6A located at the Golgi apparatus. Golgins are resident proteins in the Golgi apparatus and form a matrix that helps to maintain the structure of this organelle. Golgins are also involved in the regulation of vesicle transport. In vitro overexpression experiments and studies of fibroblast cell lines derived from patients, showed fragmentation of the Golgi apparatus. In the current review, we will discuss possible causes for this disruption, and the consequences at cellular level, with a view to better understand the pathomechanism of this disease.
Collapse
Affiliation(s)
- Lilian A Martinez-Carrera
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine of The University of Cologne Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and Center for Molecular Medicine of The University of Cologne Cologne, Germany
| |
Collapse
|
43
|
Wong M, Munro S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 2014; 346:1256898. [PMID: 25359980 DOI: 10.1126/science.1256898] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus is a multicompartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. We developed a rerouting and capture assay to investigate systematically the vesicle-tethering activities of 10 widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
Collapse
Affiliation(s)
- Mie Wong
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
44
|
Abstract
Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- National Institute of Dental and Craniofacial Research, National Institutes of Health30 Convent Drive, Bethesda, MD 20892-4340USA
| | - Paul A. Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute30 Flemington Road, The University of Melbourne, Victoria 3010Australia
| |
Collapse
|
45
|
Scherer O, Steinmetz H, Kaether C, Weinigel C, Barz D, Kleinert H, Menche D, Müller R, Pergola C, Werz O. Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum. Biochem Pharmacol 2014; 91:490-500. [PMID: 25107704 DOI: 10.1016/j.bcp.2014.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
Abstract
The macrolide archazolid inhibits vacuolar-type H(+)-ATPase (V-ATPase), a proton-translocating enzyme involved in protein transport and pH regulation of cell organelles, and potently suppresses cancer cell growth at low nanomolar concentrations. In view of the growing link between inflammation and cancer, we investigated whether inhibition of V-ATPase by archazolid may affect primary human monocytes that can promote cancer by sustaining inflammation through the release of tumor-promoting cytokines. Human primary monocytes express V-ATPase, and archazolid (10-100nM) increases the vesicular pH in these cells. Archazolid (10nM) markedly reduced the release of pro-inflammatory (TNF-α, interleukin-6 and -8) but also of anti-inflammatory (interleukin-10) cytokines in monocytes stimulated with LPS, without affecting cell viability up to 1000nM. Of interest, secretion of interleukin-1β was increased by archazolid. Comparable effects were obtained by the V-ATPase inhibitors bafilomycin and apicularen. The phosphorylation of p38 MAPK and ERK-1/2, Akt, SAPK/JNK or of the inhibitor of NFκB (IκBα) as well as mRNA expression of IL-8 were not altered by archazolid in LPS-stimulated monocytes. Instead, archazolid caused endoplasmic reticulum (ER) stress response visualized by increased BiP expression and accumulation of IL-8 (and TNF-α) at the ER, indicating a perturbation of protein secretion. In conclusion, by interference with V-ATPase, archazolid significantly affects the secretion of cytokines due to accumulation at the ER which might be of relevance when using these agents for cancer therapy.
Collapse
Affiliation(s)
- Olga Scherer
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christoph Kaether
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Dagmar Barz
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | | | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmazeutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Carlo Pergola
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
46
|
D'Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE. Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Curr Biol 2014; 24:1187-98. [PMID: 24835460 PMCID: PMC4059052 DOI: 10.1016/j.cub.2014.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early, sorting endosomes are a major crossroad of membrane traffic, at the intersection of the endocytic and exocytic pathways. The sorting of endosomal cargo for delivery to different subcellular destinations is mediated by a number of distinct coat protein complexes, including adaptor protein 1 (AP-1), AP-3, and Golgi-localized, gamma adaptin ear-containing, Arf-binding (GGAs) protein. Ultrastructural studies suggest that these coats assemble onto tubular subdomains of the endosomal membrane, but the mechanisms of coat recruitment and assembly at this site remain poorly understood. RESULTS Here we report that the endosomal Rab protein Rab4 orchestrates a GTPase cascade that results in the sequential recruitment of the ADP-ribosylation factor (Arf)-like protein Arl1; the Arf-specific guanine nucleotide exchange factors BIG1 and BIG2; and the class I Arfs, Arf1 and Arf3. Knockdown of Arf1, or inhibition of BIG1 and BIG2 activity with brefeldin A results in the loss of AP-1, AP-3, and GGA-3, but not Arl1, from endosomal membranes and the formation of elongated tubules. In contrast, depletion of Arl1 randomizes the distribution of Rab4 on endosomal membranes, inhibits the formation of tubular subdomains, and blocks recruitment of BIG1 and BIG2, Arfs, and adaptor protein complexes to the endosome. CONCLUSIONS Together these findings indicate that Arl1 links Rab4-dependent formation of endosomal sorting domains with downstream assembly of adaptor protein complexes that constitute the endosomal sorting machinery.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Rachel Semus
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Emily A Billings
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Corey B Meyer
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Kathryn Conger
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
47
|
Hayez A, Malaisse J, Roegiers E, Reynier M, Renard C, Haftek M, Geenen V, Serre G, Simon M, de Rouvroit CL, Michiels C, Poumay Y. High TMEM45A expression is correlated to epidermal keratinization. Exp Dermatol 2014; 23:339-44. [DOI: 10.1111/exd.12403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Aurélie Hayez
- Cell and Tissue Laboratory-URPhyM-NARILIS; University of Namur; Namur Belgium
| | - Jérémy Malaisse
- Cell and Tissue Laboratory-URPhyM-NARILIS; University of Namur; Namur Belgium
| | - Edith Roegiers
- Research Unit for Cell biology-NARILIS; University of Namur; Namur Belgium
| | - Marie Reynier
- UMR5165/U1056 CNRS-INSERM-University of Toulouse; UDEAR; Toulouse France
| | - Chantal Renard
- Center of Immunoendocrinology; GIGA-I; University of Liège; Liège Belgium
| | - Marek Haftek
- Laboratoire de Recherche Dermatologique; University of Lyon; Lyon France
| | - Vincent Geenen
- Center of Immunoendocrinology; GIGA-I; University of Liège; Liège Belgium
| | - Guy Serre
- UMR5165/U1056 CNRS-INSERM-University of Toulouse; UDEAR; Toulouse France
| | - Michel Simon
- UMR5165/U1056 CNRS-INSERM-University of Toulouse; UDEAR; Toulouse France
| | | | - Carine Michiels
- Research Unit for Cell biology-NARILIS; University of Namur; Namur Belgium
| | - Yves Poumay
- Cell and Tissue Laboratory-URPhyM-NARILIS; University of Namur; Namur Belgium
| |
Collapse
|
48
|
van Dis V, Kuijpers M, Haasdijk ED, Teuling E, Oakes SA, Hoogenraad CC, Jaarsma D. Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol Commun 2014; 2:38. [PMID: 24708899 PMCID: PMC4023628 DOI: 10.1186/2051-5960-2-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
Background Fragmentation of stacked cisterns of the Golgi apparatus into dispersed smaller elements is a feature associated with degeneration of neurons in amyotrophic lateral sclerosis (ALS) and some other neurodegenerative disorders. However, the role of Golgi fragmentation in motor neuron degeneration is not well understood. Results Here we use a SOD1-ALS mouse model (low-copy Gurney G93A-SOD1 mouse) to show that motor neurons with Golgi fragmentation are retrogradely labeled by intramuscularly injected CTB (beta subunit of cholera toxin), indicating that Golgi fragmentation precedes neuromuscular denervation and axon retraction. We further show that Golgi fragmentation may occur in the absence of and precede two other pathological markers, i.e. somatodendritic SOD1 inclusions, and the induction of ATF3 expression. In addition, we show that Golgi fragmentation is associated with an altered dendritic organization of the Golgi apparatus, does not depend on intact apoptotic machinery, and is facilitated in transgenic mice with impaired retrograde dynein-dependent transport (BICD2-N mice). A connection to altered dynein-dependent transport also is suggested by reduced expression of endosomal markers in neurons with Golgi fragmentation, which also occurs in neurons with impaired dynein function. Conclusions Together the data indicate that Golgi fragmentation is a very early event in the pathological cascade in ALS that is associated with altered organization of intracellular trafficking.
Collapse
|
49
|
Gleeson PA. The role of endosomes in innate and adaptive immunity. Semin Cell Dev Biol 2014; 31:64-72. [PMID: 24631355 DOI: 10.1016/j.semcdb.2014.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 12/16/2022]
Abstract
The regulation of the immune system is critical for the generation of effective immune responses to a range of pathogens, as well as for protection against unwanted responses. The regulation of many immune response pathways are directly dependent on the organisation and activities of intracellular endosomal compartments associated with cargo sorting, membrane trafficking and signalling. Over the last 5-10 years, the appreciation of the important contribution of the endosomal system has expanded dramatically to include antigen presentation of MHC class I, MHC class II and CD1 molecules, as well as the regulation of antigen receptor signalling and pattern recognition receptor signalling of the innate immune system. This review summarises some of the very diverse and key roles played by endosomes in generating effective innate and adaptive immune responses.
Collapse
Affiliation(s)
- Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
50
|
The long coiled-coil protein NECC2 is associated to caveolae and modulates NGF/TrkA signaling in PC12 cells [corrected]. PLoS One 2013; 8:e73668. [PMID: 24040018 PMCID: PMC3765260 DOI: 10.1371/journal.pone.0073668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
TrkA-mediated NGF signaling in PC12 cells has been shown to be compartimentalized in specialized microdomains of the plasma membrane, the caveolae, which are organized by scaffold proteins including the member of the caveolin family of proteins, caveolin-1. Here, we characterize the intracellular distribution as well as the biochemical and functional properties of the neuroendocrine long coiled-coil protein 2 (NECC2), a novel long coiled-coil protein selectively expressed in neuroendocrine tissues that contains a predicted caveolin-binding domain and displays structural characteristics of a scaffolding factor. NECC2 distributes in caveolae, wherein it colocalizes with the TrkA receptor, and behaves as a caveolae-associated protein in neuroendocrine PC12 cells. In addition, stimulation of PC12 cells with nerve growth factor (NGF) increased the expression and regulated the distribution of NECC2. Interestingly, knockdown as well as overexpression of NECC2 resulted in a reduction of NGF-induced phosphorylation of the TrkA downstream effector extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) but not of Akt. Altogether, our results identify NECC2 as a novel component of caveolae in PC12 cells and support the contribution of this protein in the maintenance of TrkA-mediated NGF signaling.
Collapse
|