1
|
Das SK, Karmakar S, Venkatachalapathy H, Jha RK, Batchelor E, Levens D. Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome. Mol Cell 2024; 84:4059-4078.e10. [PMID: 39481385 DOI: 10.1016/j.molcel.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sharmistha Karmakar
- Energy Storage and Technology Department, Energy and Environment Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | | | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Chahine JJ, Davis SS, Culfaci S, Kallakury BV, Tuma PL. Chromosome 8q24 amplification associated with human hepatocellular carcinoma predicts MYC/ZEB1/MIZ1 transcriptional regulation. Sci Rep 2024; 14:24488. [PMID: 39424877 PMCID: PMC11489779 DOI: 10.1038/s41598-024-75219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Genomic instability is associated with late stage carcinomas and the epithelial mesenchymal transition (EMT). Of note is chromosome 8q24 amplification that has been documented in many epithelial-derived carcinomas. On this amplified region is the potent oncogene, c-myc. Not only does MYC overexpression activate targets that promote cell proliferation, it also activates transcription factors that drive EMT, including ZEB1. Further reinforcing EMT, overexpressed MYC also represses tumor suppressors involved in promoting the epithelial phenotype, including MIZ1. We predict that as carcinomas progress, chromosome 8q24 is amplified leading to high MYC levels that leads to ZEB1 expression and MIZ1 repression driving cells through EMT. To interrogate this clinically, limited cohorts of human epithelial-derived carcinomas were examined for MYC/ZEB1/MIZ1 expression patterns across increasing carcinoma grades. Interestingly, the predicted temporal patterns were only observed in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinomas. Yet MIZ1 proved to be an excellent marker to assess carcinoma progression across types. We expanded the HCC cohort and determined that c-myc amplification was restricted to grade III/IV HCC that also exhibited increased MYC and ZEB1 nuclear expression whereas cytosolic MIZ1 expression was lost and only nuclear expression retained. These same resections were obtained from only individuals who had histories of alcohol consumption that were also diagnosed with cirrhosis, metastasis and had viral hepatitis suggesting etiology-specific mechanisms of cancer progression. Finally, analysis performed in Hep3B cells determined that alterations in MYC expression promoted the predicted changes in ZEB1 and MIZ1 expression and/or distributions and in markers for EMT further suggesting a relationship among these three transcription factors in HCC and their correlation to driving EMT.
Collapse
Affiliation(s)
- Joeffrey J Chahine
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Saniya S Davis
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, 103 McCort-Ward, 20064, Washington, DC, USA
| | - Sumeyye Culfaci
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Bhaskar V Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, 20007, Washington, DC, USA
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, NE, 103 McCort-Ward, 20064, Washington, DC, USA.
| |
Collapse
|
3
|
Kim YK, Collignon E, Martin SB, Ramalho-Santos M. Hypertranscription: the invisible hand in stem cell biology. Trends Genet 2024:S0168-9525(24)00182-3. [PMID: 39271397 DOI: 10.1016/j.tig.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells - self-renewal and differentiation - are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC) and Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - S Bryn Martin
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| |
Collapse
|
4
|
Curti L, Rohban S, Bianchi N, Croci O, Andronache A, Barozzi S, Mattioli M, Ricci F, Pastori E, Sberna S, Bellotti S, Accialini A, Ballarino R, Crosetto N, Wade M, Parazzoli D, Campaner S. CDK12 controls transcription at damaged genes and prevents MYC-induced transcription-replication conflicts. Nat Commun 2024; 15:7100. [PMID: 39155303 PMCID: PMC11330984 DOI: 10.1038/s41467-024-51229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Mattioli
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Fernanda Ricci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Elena Pastori
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Simone Bellotti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Anna Accialini
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
- Astex Pharmaceuticals, 436 Cambridge Science Park, CB4 0QA, Cambridge, UK
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
| |
Collapse
|
5
|
Li S, Feng T, Liu Y, Yang Q, Song A, Wang S, Xie J, Zhang J, Yuan B, Sun Z. m 1A inhibition fuels oncolytic virus-elicited antitumor immunity via downregulating MYC/PD-L1 signaling. Int J Oral Sci 2024; 16:36. [PMID: 38730256 PMCID: PMC11087574 DOI: 10.1038/s41368-024-00304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.
Collapse
Affiliation(s)
- Shujin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tian Feng
- School of Public Health, Wuhan University, Wuhan, China
| | - Yuantong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qichao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Xie
- State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Bifeng Yuan
- School of Public Health, Wuhan University, Wuhan, China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Li Z, Huang Y, Hung TI, Sun J, Aispuro D, Chen B, Guevara N, Ji F, Cong X, Zhu L, Wang S, Guo Z, Chang CE, Xue M. MYC-Targeting Inhibitors Generated from a Stereodiversified Bicyclic Peptide Library. J Am Chem Soc 2024; 146:1356-1363. [PMID: 38170904 PMCID: PMC10797614 DOI: 10.1021/jacs.3c09615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Here, we present the second generation of our bicyclic peptide library (NTB), featuring a stereodiversified structure and a simplified construction strategy. We utilized a tandem ring-opening metathesis and ring-closing metathesis reaction (ROM-RCM) to cyclize the linear peptide library in a single step, representing the first reported instance of this reaction being applied to the preparation of macrocyclic peptides. Moreover, the resulting bicyclic peptide can be easily linearized for MS/MS sequencing with a one-step deallylation process. We employed this library to screen against the E363-R378 epitope of MYC and identified several MYC-targeting bicyclic peptides. Subsequent in vitro cell studies demonstrated that one candidate, NT-B2R, effectively suppressed MYC transcription activities and cell proliferation.
Collapse
Affiliation(s)
- Zhonghan Li
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Yi Huang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Ta I Hung
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Jianan Sun
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Desiree Aispuro
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Boxi Chen
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Nathan Guevara
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Fei Ji
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Xu Cong
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Lingchao Zhu
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Siwen Wang
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Zhili Guo
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Chia-en Chang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Harris EL, Roy V, Montagne M, Rose AMS, Livesey H, Reijnders MRF, Hobson E, Sansbury FH, Willemsen MH, Pfundt R, Warren D, Long V, Carr IM, Brunner HG, Sheridan EG, Firth HV, Lavigne P, Poulter JA. A recurrent de novo MAX p.Arg60Gln variant causes a syndromic overgrowth disorder through differential expression of c-Myc target genes. Am J Hum Genet 2024; 111:119-132. [PMID: 38141607 PMCID: PMC10806738 DOI: 10.1016/j.ajhg.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.
Collapse
Affiliation(s)
- Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Vincent Roy
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Montagne
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada
| | - Ailsa M S Rose
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Helen Livesey
- Leeds Teaching Hospitals NHS Trust, Leeds, UK; All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Cardiff, UK
| | - Margot R F Reijnders
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emma Hobson
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Cardiff, UK
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Vernon Long
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ian M Carr
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamonn G Sheridan
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Helen V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Pierre Lavigne
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada.
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Zhou F, Tang L, Le S, Ge M, Cicic D, Xie F, Ren J, Lan J, Lu Q. The pharmacodynamic and mechanistic foundation for the antineoplastic effects of GFH009, a potent and highly selective CDK9 inhibitor for the treatment of hematologic malignancies. Oncotarget 2023; 14:997-1008. [PMID: 38117531 PMCID: PMC10732257 DOI: 10.18632/oncotarget.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
To evade cell cycle controls, malignant cells rely upon rapid expression of select proteins to mitigate proapoptotic signals resulting from damage caused by both cancer treatments and unchecked over-proliferation. Cyclin-dependent kinase 9 (CDK9)-dependent signaling induces transcription of downstream oncogenes promoting tumor growth, especially in hyperproliferative 'oncogene-addicted' cancers, such as human hematological malignancies (HHMs). GFH009, a potent, highly selective CDK9 small molecule inhibitor, demonstrated antiproliferative activity in assorted HHM-derived cell lines, inducing apoptosis at IC50 values below 0.2 μM in 7/10 lines tested. GFH009 inhibited tumor growth at all doses compared to controls and induced apoptosis in a dose-dependent manner. Twice-weekly injections of GFH009 maleate at 10 mg/kg significantly prolonged the survival of MV-4-11 xenograft-bearing rodents, while their body weight remained stable. There was marked reduction of MCL-1 and c-MYC protein expression post-drug exposure both in vitro and in vivo. Through rapid 'on-off' CDK9 inhibition, GFH009 exerts a proapoptotic effect on HHM preclinical models triggered by dynamic deprivation of crucial cell survival signals. Our results mechanistically establish CDK9 as a targetable vulnerability in assorted HHMs and, along with the previously shown superior class kinome selectivity of GFH009 vs other CDK9 inhibitors, strongly support the rationale for currently ongoing clinical studies with this agent in acute myeloid leukemia and other HHMs.
Collapse
Affiliation(s)
- Fusheng Zhou
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Lili Tang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Siyuan Le
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Mei Ge
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Dragan Cicic
- Sellas Life Sciences Group, New York, NY 10036, USA
| | - Fubo Xie
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jinmin Ren
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Jiong Lan
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| | - Qiang Lu
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, P.R. China
| |
Collapse
|
9
|
Jha RK, Kouzine F, Levens D. MYC function and regulation in physiological perspective. Front Cell Dev Biol 2023; 11:1268275. [PMID: 37941901 PMCID: PMC10627926 DOI: 10.3389/fcell.2023.1268275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
MYC, a key member of the Myc-proto-oncogene family, is a universal transcription amplifier that regulates almost every physiological process in a cell including cell cycle, proliferation, metabolism, differentiation, and apoptosis. MYC interacts with several cofactors, chromatin modifiers, and regulators to direct gene expression. MYC levels are tightly regulated, and deregulation of MYC has been associated with numerous diseases including cancer. Understanding the comprehensive biology of MYC under physiological conditions is an utmost necessity to demark biological functions of MYC from its pathological functions. Here we review the recent advances in biological mechanisms, functions, and regulation of MYC. We also emphasize the role of MYC as a global transcription amplifier.
Collapse
Affiliation(s)
| | | | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, United States
| |
Collapse
|
10
|
Guan Q, Chen Z, Yu F, Liu L, Huang Y, Wei G, Chiang CM, Wong J, Li J. MYC promotes global transcription in part by controlling P-TEFb complex formation via DNA-binding independent inhibition of CDK9 SUMOylation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2167-2184. [PMID: 37115490 PMCID: PMC10524883 DOI: 10.1007/s11427-022-2281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 04/29/2023]
Abstract
MYC is an oncogenic transcription factor with a novel role in enhancing global transcription when overexpressed. However, how MYC promotes global transcription remains controversial. Here, we used a series of MYC mutants to dissect the molecular basis for MYC-driven global transcription. We found that MYC mutants deficient in DNA binding or known transcriptional activation activities can still promote global transcription and enhance serine 2 phosphorylation (Ser2P) of the RNA polymerase (Pol) II C-terminal domain (CTD), a hallmark of active elongating RNA Pol II. Two distinct regions within MYC can promote global transcription and Ser2P of Pol II CTD. The ability of various MYC mutants to promote global transcription and Ser2P correlates with their ability to suppress CDK9 SUMOylation and enhance positive transcription elongation factor b (P-TEFb) complex formation. We showed that MYC suppresses CDK9 SUMOylation by inhibiting the interaction between CDK9 and SUMO enzymes including UBC9 and PIAS1. Furthermore, MYC's activity in enhancing global transcription positively contributes to its activity in promoting cell proliferation and transformation. Together, our study demonstrates that MYC promotes global transcription, at least in part, by promoting the formation of the active P-TEFb complex via a sequence-specific DNA-binding activity-independent manner.
Collapse
Affiliation(s)
- Qingqing Guan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Lingling Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
11
|
Cazarin J, DeRollo RE, Ahmad Shahidan SNAB, Burchett JB, Mwangi D, Krishnaiah S, Hsieh AL, Walton ZE, Brooks R, Mello SS, Weljie AM, Dang CV, Altman BJ. MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522637. [PMID: 36711638 PMCID: PMC9881876 DOI: 10.1101/2023.01.03.522637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.
Collapse
Affiliation(s)
- Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Rachel E. DeRollo
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Cazarin J, DeRollo RE, Shahidan SNABA, Burchett JB, Mwangi D, Krishnaiah S, Hsieh AL, Walton ZE, Brooks R, Mello SS, Weljie AM, Dang CV, Altman BJ. MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis. PLoS Genet 2023; 19:e1010904. [PMID: 37639465 PMCID: PMC10491404 DOI: 10.1371/journal.pgen.1010904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.
Collapse
Affiliation(s)
- Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Rachel E. DeRollo
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Siti Noor Ain Binti Ahmad Shahidan
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie L. Hsieh
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zandra E. Walton
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Rebekah Brooks
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Stephano S. Mello
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, New York, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Maryland, United States of America
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
13
|
Lechable M, Tang X, Siebert S, Feldbacher A, Fernández-Quintero ML, Breuker K, Juliano CE, Liedl KR, Hobmayer B, Hartl M. High Intrinsic Oncogenic Potential in the Myc-Box-Deficient Hydra Myc3 Protein. Cells 2023; 12:cells12091265. [PMID: 37174665 PMCID: PMC10177328 DOI: 10.3390/cells12091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.
Collapse
Affiliation(s)
- Marion Lechable
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Xuechen Tang
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Feldbacher
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bert Hobmayer
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Hartl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Biochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
15
|
Karadkhelkar NM, Lin M, Eubanks LM, Janda KD. Demystifying the Druggability of the MYC Family of Oncogenes. J Am Chem Soc 2023; 145:3259-3269. [PMID: 36734615 PMCID: PMC10182829 DOI: 10.1021/jacs.2c12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MYC family of oncogenes (MYC, MYCN, and MYCL) encodes a basic helix-loop-helix leucine zipper (bHLHLZ) transcriptional regulator that is responsible for moving the cell through the restriction point. Through the HLHZIP domain, MYC heterodimerizes with the bHLHLZ protein MAX, which enables this MYC-MAX complex to bind to E-box regulatory DNA elements thereby controlling transcription of a large group of genes and their proteins. Translationally, MYC is one of the foremost oncogenic targets, and deregulation of expression of the MYC family gene/proteins occurs in over half of all human tumors and is recognized as a hallmark of cancer initiation and maintenance. Additionally, unexpected roles for this oncoprotein have been found in cancers that nominally have a non-MYC etiology. Although MYC is rarely mutated, its gain of function in cancer results from overexpression or from amplification. Moreover, MYC is a pleiotropic transcription factor possessing broad pathogenic prominence making it a coveted cancer target. A widely held notion within the biomedical research community is that the reliable modulation of MYC represents a tremendous therapeutic opportunity given its role in directly potentiating oncogenesis. However, the MYC-MAX heterodimer interaction contains a large surface area with a lack of well-defined binding sites creating the perception that targeting of MYC-MAX is forbidding. Here, we discuss the biochemistry behind MYC and MYC-MAX as it relates to cancer progression associated with these transcription factors. We also discuss the notion that MYC should no longer be regarded as undruggable, providing examples that a therapeutic window is achievable despite global MYC inhibition.
Collapse
Affiliation(s)
- Nishant M. Karadkhelkar
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Kim YK, Cho B, Cook DP, Trcka D, Wrana JL, Ramalho-Santos M. Absolute scaling of single-cell transcriptomes identifies pervasive hypertranscription in adult stem and progenitor cells. Cell Rep 2023; 42:111978. [PMID: 36640358 DOI: 10.1016/j.celrep.2022.111978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Hypertranscription supports biosynthetically demanding cellular states through global transcriptome upregulation. Despite its potential widespread relevance, documented examples of hypertranscription remain few and limited to early development. Here, we demonstrate that absolute scaling of single-cell RNA-sequencing data enables the estimation of total transcript abundances per cell. We validate absolute scaling in known cases of developmental hypertranscription and apply it to adult cell types, revealing a remarkable dynamic range in transcriptional output. In adult organs, hypertranscription marks activated stem/progenitor cells with multilineage potential and is redeployed in conditions of tissue injury, where it precedes bursts of proliferation during regeneration. Our analyses identify a common set of molecular pathways associated with both adult and embryonic hypertranscription, including chromatin remodeling, DNA repair, ribosome biogenesis, and translation. These shared features across diverse cell contexts support hypertranscription as a general and dynamic cellular program that is pervasively employed during development, organ maintenance, and regeneration.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - David P Cook
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Dan Trcka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
17
|
Scagnoli F, Palma A, Favia A, Scuoppo C, Illi B, Nasi S. A New Insight into MYC Action: Control of RNA Polymerase II Methylation and Transcription Termination. Biomedicines 2023; 11:biomedicines11020412. [PMID: 36830948 PMCID: PMC9952900 DOI: 10.3390/biomedicines11020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
MYC oncoprotein deregulation is a common catastrophic event in human cancer and limiting its activity restrains tumor development and maintenance, as clearly shown via Omomyc, an MYC-interfering 90 amino acid mini-protein. MYC is a multifunctional transcription factor that regulates many aspects of transcription by RNA polymerase II (RNAPII), such as transcription activation, pause release, and elongation. MYC directly associates with Protein Arginine Methyltransferase 5 (PRMT5), a protein that methylates a variety of targets, including RNAPII at the arginine residue R1810 (R1810me2s), crucial for proper transcription termination and splicing of transcripts. Therefore, we asked whether MYC controls termination as well, by affecting R1810me2S. We show that MYC overexpression strongly increases R1810me2s, while Omomyc, an MYC shRNA, or a PRMT5 inhibitor and siRNA counteract this phenomenon. Omomyc also impairs Serine 2 phosphorylation in the RNAPII carboxyterminal domain, a modification that sustains transcription elongation. ChIP-seq experiments show that Omomyc replaces MYC and reshapes RNAPII distribution, increasing occupancy at promoter and termination sites. It is unclear how this may affect gene expression. Transcriptomic analysis shows that transcripts pivotal to key signaling pathways are both up- or down-regulated by Omomyc, whereas genes directly controlled by MYC and belonging to a specific signature are strongly down-regulated. Overall, our data point to an MYC/PRMT5/RNAPII axis that controls termination via RNAPII symmetrical dimethylation and contributes to rewiring the expression of genes altered by MYC overexpression in cancer cells. It remains to be clarified which role this may have in tumor development.
Collapse
Affiliation(s)
- Fiorella Scagnoli
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Annarita Favia
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Barbara Illi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Sergio Nasi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| |
Collapse
|
18
|
Role of Melatonin in Cancer: Effect on Clock Genes. Int J Mol Sci 2023; 24:ijms24031919. [PMID: 36768253 PMCID: PMC9916653 DOI: 10.3390/ijms24031919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The circadian clock is a regulatory system, with a periodicity of approximately 24 h, that generates rhythmic changes in many physiological processes. Increasing evidence links chronodisruption with aberrant functionality in clock gene expression, resulting in multiple diseases, including cancer. In this context, tumor cells have an altered circadian machinery compared to normal cells, which deregulates the cell cycle, repair mechanisms, energy metabolism and other processes. Melatonin is the main hormone produced by the pineal gland, whose production and secretion oscillates in accordance with the light:dark cycle. In addition, melatonin regulates the expression of clock genes, including those in cancer cells, which could play a key role in the numerous oncostatic effects of this hormone. This review aims to describe and clarify the role of clock genes in cancer, as well as the possible mechanisms of the action of melatonin through which it regulates the expression of the tumor's circadian machinery, in order to propose future anti-neoplastic clinical treatments.
Collapse
|
19
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
20
|
Zhang Q, Cui K, Yang X, He Q, Yu J, Yang L, Yao G, Guo W, Luo Z, Liu Y, Chen Y, He Z, Lan P. c-Myc-IMPDH1/2 axis promotes tumourigenesis by regulating GTP metabolic reprogramming. Clin Transl Med 2023; 13:e1164. [PMID: 36629054 PMCID: PMC9832425 DOI: 10.1002/ctm2.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer. Metabolic rate-limiting enzymes and oncogenic c-Myc (Myc) play critical roles in metabolic reprogramming to affect tumourigenesis. However, a systematic assessment of metabolic rate-limiting enzymes and their relationship with Myc in human cancers is lacking. METHODS Multiple Pan-cancer datasets were used to develop the transcriptome, genomic alterations, clinical outcomes and Myc correlation landscapes of 168 metabolic rate-limiting enzymes across 20 cancers. Real-time quantitative PCR and immunoblotting were, respectively, used to examine the mRNA and protein of inosine monophosphate dehydrogenase 1 (IMPDH1) in human colorectal cancer (CRC), azoxymethane/dextran sulphate sodium-induced mouse CRC and spontaneous intestinal tumours from APCMin/+ mice. Clone formation, CCK-8 and subcutaneous xenograft model were applied to investigate the possible mechanisms connecting IMPDH1 to CRC growth. Co-immunoprecipitation and protein half-life assay were used to explore the mechanisms underlying the regulation of IMPDH1. RESULTS We explored the global expression patterns, dysregulation profiles, genomic alterations and clinical relevance of 168 metabolic rate-limiting enzymes across human cancers. Importantly, a series of enzymes were associated with Myc, especially top three upregulated enzymes (TK1, RRM2 and IMPDH1) were positively correlated with Myc in multiple cancers. As a proof-of-concept exemplification, we demonstrated that IMPDH1, a rate-limiting enzyme in GTP biosynthesis, is highly upregulated in CRC and promotes CRC growth in vitro and in vivo. Mechanistically, IMPDH2 stabilizes IMPDH1 by decreasing the polyubiquitination levels of IMPDH1, and Myc promotes the de novo GTP biosynthesis by the transcriptional activation of IMPDH1/2. Finally, we confirmed that the Myc-IMPDH1/2 axis is dysregulated across human cancers. CONCLUSIONS Our study highlights the essential roles of metabolic rate-limiting enzymes in tumourigenesis and their crosstalk with Myc, and the Myc-IMPDH1/2 axis promotes tumourigenesis by altering GTP metabolic reprogramming. Our results propose the inhibition of IMPDH1 as a viable option for cancer treatment.
Collapse
Affiliation(s)
- Qiang Zhang
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Xiaoya Yang
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qilang He
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jing Yu
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| | - Li Yang
- Zhumadian Central HospitalHuanghuai UniversityZhumadianHenanChina
| | - Gang Yao
- The People's Hospital of Zhengyang CountyZhumadianHenanChina
| | - Weiwei Guo
- The People's Hospital of Zhengyang CountyZhumadianHenanChina
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| | - Yugeng Liu
- Center for Synthetic MicrobiomeInstitute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Yuan Chen
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhen He
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| | - Ping Lan
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| |
Collapse
|
21
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
22
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
23
|
Moree SE, Maneix L, Iakova P, Stossi F, Sahin E, Catic A. Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of c-MYC. Cancers (Basel) 2022; 14:806. [PMID: 35159073 PMCID: PMC8833929 DOI: 10.3390/cancers14030806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.
Collapse
Affiliation(s)
- Shannon E. Moree
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Polina Iakova
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Gulf Coast Consortia, Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
26
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
27
|
Curti L, Campaner S. MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment. Int J Mol Sci 2021; 22:6168. [PMID: 34201047 PMCID: PMC8227504 DOI: 10.3390/ijms22126168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MYC is a transcription factor that controls the expression of a large fraction of cellular genes linked to cell cycle progression, metabolism and differentiation. MYC deregulation in tumors leads to its pervasive genome-wide binding of both promoters and distal regulatory regions, associated with selective transcriptional control of a large fraction of cellular genes. This pairs with alterations of cell cycle control which drive anticipated S-phase entry and reshape the DNA-replication landscape. Under these circumstances, the fine tuning of DNA replication and transcription becomes critical and may pose an intrinsic liability in MYC-overexpressing cancer cells. Here, we will review the current understanding of how MYC controls DNA and RNA synthesis, discuss evidence of replicative and transcriptional stress induced by MYC and summarize preclinical data supporting the therapeutic potential of triggering replicative stress in MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
28
|
Zhao R, Liu Y, Wu C, Li M, Wei Y, Niu W, Yang J, Fan S, Xie Y, Li H, Wang W, Zeng Z, Xiong W, Li X, Li G, Zhou M. BRD7 Promotes Cell Proliferation and Tumor Growth Through Stabilization of c-Myc in Colorectal Cancer. Front Cell Dev Biol 2021; 9:659392. [PMID: 34109174 PMCID: PMC8181413 DOI: 10.3389/fcell.2021.659392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
BRD7 functions as a crucial tumor suppressor in numerous malignancies. However, the effects of BRD7 on colorectal cancer (CRC) progression are still unknown. Here, based on the BRD7 knockout (BRD7-/-) and BRD7 flox/flox (BRD7+/+) mouse models constructed in our previous work, we established an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse model. BRD7+/+ mice were found to be highly susceptible to AOM/DSS-induced colitis-associated CRC, and BRD7 significantly promoted cell proliferation and cell cycle G1/S transition but showed no significant effect on cell apoptosis. Furthermore, BRD7 interacted with c-Myc and stabilized c-Myc by inhibiting its ubiquitin-proteasome-dependent degradation. Moreover, restoring the expression of c-Myc in BRD7-silenced CRC cells restored cell proliferation, cell cycle progression, and tumor growth in vitro and in vivo. In addition, BRD7 and c-Myc were both significantly upregulated in CRC patients, and high expression of these proteins was associated with clinical stage and poor prognosis in CRC patients. Collectively, BRD7 functions as an oncogene and promotes CRC progression by regulating the ubiquitin-proteasome-dependent stabilization of c-Myc protein. Targeting the BRD7/c-Myc axis could be a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Ran Zhao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yukun Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chunchun Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Mengna Li
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Yanmei Wei
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Weihong Niu
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Jing Yang
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Xie
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China.,Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
29
|
Shostak A, Schermann G, Diernfellner A, Brunner M. MXD/MIZ1 transcription regulatory complexes activate the expression of MYC-repressed genes. FEBS Lett 2021; 595:1639-1655. [PMID: 33914337 DOI: 10.1002/1873-3468.14097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
MXDs are transcription repressors that antagonize MYC-mediated gene activation. MYC, when associated with MIZ1, acts also as a repressor of a subset of genes, including p15 and p21. A role for MXDs in regulation of MYC-repressed genes is not known. We report that MXDs activate transcription of p15 and p21 in U2OS cells. This activation required DNA binding by MXDs and their interaction with MIZ1. MXD mutants deficient in MIZ1 binding interacted with the MYC-binding partner MAX and were active as repressors of MYC-activated genes but failed to activate MYC-repressed genes. Mutant MXDs with reduced DNA-binding affinity interacted with MAX and MIZ1 but neither repressed nor activated transcription. Our data show that MXDs and MYC have a reciprocally antagonistic potential to regulate transcription of target genes.
Collapse
|
30
|
Ecker J, Thatikonda V, Sigismondo G, Selt F, Valinciute G, Oehme I, Müller C, Buhl JL, Ridinger J, Usta D, Qin N, van Tilburg CM, Herold-Mende C, Remke M, Sahm F, Westermann F, Kool M, Wechsler-Reya RJ, Chavez L, Krijgsveld J, Jäger N, Pfister SM, Witt O, Milde T. Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma. Neuro Oncol 2021; 23:226-239. [PMID: 32822486 DOI: 10.1093/neuonc/noaa191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The sensitivity of myelocytomatosis oncogene (MYC) amplified medulloblastoma to class I histone deacetylase (HDAC) inhibition has been shown previously; however, understanding the underlying molecular mechanism is crucial for selection of effective HDAC inhibitors for clinical use. The aim of this study was to investigate the direct molecular interaction of MYC and class I HDAC2, and the impact of class I HDAC inhibition on MYC function. METHODS Co-immunoprecipitation and mass spectrometry were used to determine the co-localization of MYC and HDAC2. Chromatin immunoprecipitation (ChIP) sequencing and gene expression profiling were used to analyze the co-localization of MYC and HDAC2 on DNA and the impact on transcriptional activity in primary tumors and a MYC amplified cell line treated with the class I HDAC inhibitor entinostat. The effect on MYC was investigated by quantitative real-time PCR, western blot, and immunofluorescence. RESULTS HDAC2 is a cofactor of MYC in MYC amplified medulloblastoma. The MYC-HDAC2 complex is bound to genes defining the MYC-dependent transcriptional profile. Class I HDAC inhibition leads to stabilization and reduced DNA binding of MYC protein, inducing a downregulation of MYC activated genes (MAGs) and upregulation of MYC repressed genes (MRGs). MAGs and MRGs are characterized by opposing biological functions and by distinct enhancer-box distribution. CONCLUSIONS Our data elucidate the molecular interaction of MYC and HDAC2 and support a model in which inhibition of class I HDACs directly targets MYC's transactivating and transrepressing functions.
Collapse
Affiliation(s)
- Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Venu Thatikonda
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Gintvile Valinciute
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Carina Müller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Juliane L Buhl
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Diren Usta
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | | | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lukas Chavez
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.,Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Natalie Jäger
- Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany
| |
Collapse
|
31
|
Huang F, Huffman KE, Wang Z, Wang X, Li K, Cai F, Yang C, Cai L, Shih TS, Zacharias LG, Chung A, Yang Q, Chalishazar MD, Ireland AS, Stewart CA, Cargill K, Girard L, Liu Y, Ni M, Xu J, Wu X, Zhu H, Drapkin B, Byers LA, Oliver TG, Gazdar AF, Minna JD, DeBerardinis RJ. Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer. J Clin Invest 2021; 131:139929. [PMID: 33079728 PMCID: PMC7773395 DOI: 10.1172/jci139929] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
MYC stimulates both metabolism and protein synthesis, but how cells coordinate these complementary programs is unknown. Previous work reported that, in a subset of small-cell lung cancer (SCLC) cell lines, MYC activates guanosine triphosphate (GTP) synthesis and results in sensitivity to inhibitors of the GTP synthesis enzyme inosine monophosphate dehydrogenase (IMPDH). Here, we demonstrated that primary MYChi human SCLC tumors also contained abundant guanosine nucleotides. We also found that elevated MYC in SCLCs with acquired chemoresistance rendered these otherwise recalcitrant tumors dependent on IMPDH. Unexpectedly, our data indicated that IMPDH linked the metabolic and protein synthesis outputs of oncogenic MYC. Coexpression analysis placed IMPDH within the MYC-driven ribosome program, and GTP depletion prevented RNA polymerase I (Pol I) from localizing to ribosomal DNA. Furthermore, the GTPases GPN1 and GPN3 were upregulated by MYC and directed Pol I to ribosomal DNA. Constitutively GTP-bound GPN1/3 mutants mitigated the effect of GTP depletion on Pol I, protecting chemoresistant SCLC cells from IMPDH inhibition. GTP therefore functioned as a metabolic gate tethering MYC-dependent ribosome biogenesis to nucleotide sufficiency through GPN1 and GPN3. IMPDH dependence is a targetable vulnerability in chemoresistant MYChi SCLC.
Collapse
Affiliation(s)
- Fang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Children’s Medical Center Research Institute
| | - Kenneth E. Huffman
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, and Simmons Comprehensive Cancer Center
| | - Zixi Wang
- Children’s Medical Center Research Institute
| | - Xun Wang
- Children’s Medical Center Research Institute
| | - Kailong Li
- Children’s Medical Center Research Institute
| | - Feng Cai
- Children’s Medical Center Research Institute
| | | | - Ling Cai
- Children’s Medical Center Research Institute
- Department of Population and Data Sciences, and
| | | | | | | | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Milind D. Chalishazar
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Abbie S. Ireland
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - C. Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kasey Cargill
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, and Simmons Comprehensive Cancer Center
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Min Ni
- Children’s Medical Center Research Institute
| | - Jian Xu
- Children’s Medical Center Research Institute
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China
| | - Hao Zhu
- Children’s Medical Center Research Institute
| | - Benjamin Drapkin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Trudy G. Oliver
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, and Simmons Comprehensive Cancer Center
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Departments of Internal Medicine and Pharmacology, and Simmons Comprehensive Cancer Center
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Abstract
The MYC oncogene was originally identified as a transduced allele (v-myc) in the genome of the highly oncogenic avian retrovirus MC29. The protein product (MYC) of the cellular MYC (c-myc) protooncogene represents the key component of a transcription factor network controlling the expression of a large fraction of all human genes. MYC regulates fundamental cellular processes like growth control, metabolism, proliferation, differentiation, and apoptosis. Mutational deregulation of MYC, leading to increased levels of the MYC protein, is a frequent event in the etiology of human cancers. In this chapter, we describe cell systems and experimental strategies to quantify the oncogenic potential of MYC alleles, to test MYC inhibitors, and to monitor MYC-specific protein-protein interactions that are relevant for the cell transformation process. We also describe experimental procedures to study the evolutionary origin of MYC and to analyze structure, function, and regulation of the ancestral MYC proto-oncogenes.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
33
|
Yan Y, Huang P, Mao K, He C, Xu Q, Zhang M, Liu H, Zhou Z, Zhou Q, Zhou Q, Ou B, Liu Q, Lin J, Chen R, Wang J, Zhang J, Xiao Z. Anti-oncogene PTPN13 inactivation by hepatitis B virus X protein counteracts IGF2BP1 to promote hepatocellular carcinoma progression. Oncogene 2021; 40:28-45. [PMID: 33051595 PMCID: PMC7790756 DOI: 10.1038/s41388-020-01498-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Hepatitis B x protein (HBx) affects cellular protein expression and participates in the tumorigenesis and progression of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Metabolic reprogramming contributed to the HCC development, but its role in HBV-related HCC remains largely unclear. Tyrosine-protein phosphatase nonreceptor type 13 (PTPN13) is a significant regulator in tumor development, however, its specific role in hepatocarcinogenesis remains to be explored. Here, we found that decreased PTPN13 expression was associated with HBV/HBx. Patients with low PTPN13 expression showed a poor prognosis. Functional assays revealed that PTPN13 inhibited proliferation and tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that HBx inhibited PTPN13 expression by upregulating the expression of DNMT3A and interacting with DNMT3A. Furthermore, we found that DNMT3A bound to the PTPN13 promoter (-343 to -313 bp) in an epigenetically controlled manner associated with elevated DNA methylation and then inhibited PTPN13 transcription. In addition, we identified IGF2BP1 as a novel PTPN13-interacting gene and demonstrated that PTPN13 influences c-Myc expression by directly and competitively binding to IGF2BP1 to decrease the intracellular concentration of functional IGF2BP1. Overexpressing PTPN13 promoted c-Myc mRNA degradation independent of the protein tyrosine phosphatase (PTP) activity of PTPN13. Importantly, we discovered that the PTPN13-IGF2BP1-c-Myc axis was important for cancer cell growth through promoting metabolic reprogramming. We verified the significant negative correlations between PTPN13 expression and c-Myc, PSPH, and SLC7A1 expression in clinical HCC tissue samples. In summary, our findings demonstrate that PTPN13 is a novel regulator of HBV-related hepatocarcinogenesis and may play an important role in HCC. PTPN13 may serve as a prognostic marker and therapeutic target in HBV-related HCC patients.
Collapse
Affiliation(s)
- Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qiaodong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Mengyu Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qiming Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qianlei Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Bing Ou
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qinghua Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Ruibin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
| |
Collapse
|
34
|
Poon E, Liang T, Jamin Y, Walz S, Kwok C, Hakkert A, Barker K, Urban Z, Thway K, Zeid R, Hallsworth A, Box G, Ebus ME, Licciardello MP, Sbirkov Y, Lazaro G, Calton E, Costa BM, Valenti M, De Haven Brandon A, Webber H, Tardif N, Almeida GS, Christova R, Boysen G, Richards MW, Barone G, Ford A, Bayliss R, Clarke PA, De Bono J, Gray NS, Blagg J, Robinson SP, Eccles SA, Zheleva D, Bradner JE, Molenaar J, Vivanco I, Eilers M, Workman P, Lin CY, Chesler L. Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. J Clin Invest 2020; 130:5875-5892. [PMID: 33016930 PMCID: PMC7598076 DOI: 10.1172/jci134132] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/29/2020] [Indexed: 01/23/2023] Open
Abstract
The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 - a component of the transcription elongation complex P-TEFb - bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Evon Poon
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Tong Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yann Jamin
- Division of Radiotherapy and Imaging, ICR, London, United Kingdom
| | - Susanne Walz
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Colin Kwok
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Anne Hakkert
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Karen Barker
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Zuzanna Urban
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Khin Thway
- Division of Molecular Pathology, ICR, London, and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Rhamy Zeid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Albert Hallsworth
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Gary Box
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Marli E. Ebus
- Prinses Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marco P. Licciardello
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Yordan Sbirkov
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Glori Lazaro
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Elizabeth Calton
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Barbara M. Costa
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Melanie Valenti
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Alexis De Haven Brandon
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Hannah Webber
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Nicolas Tardif
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Gilberto S. Almeida
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Division of Radiotherapy and Imaging, ICR, London, United Kingdom
| | | | | | - Mark W. Richards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Giuseppe Barone
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Anthony Ford
- Division of Molecular Pathology, ICR, London, and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul A. Clarke
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | | | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Blagg
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | | | - Suzanne A. Eccles
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | | | - James E. Bradner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Molenaar
- Prinses Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Igor Vivanco
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Martin Eilers
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - Paul Workman
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
- Cancer Research UK, Cancer Therapeutics Unit, ICR, London, United Kingdom
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Louis Chesler
- Division of Clinical Studies and
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
35
|
MYC in Brain Development and Cancer. Int J Mol Sci 2020; 21:ijms21207742. [PMID: 33092025 PMCID: PMC7588885 DOI: 10.3390/ijms21207742] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
The MYC family of transcriptional regulators play significant roles in animal development, including the renewal and maintenance of stem cells. Not surprisingly, given MYC's capacity to promote programs of proliferative cell growth, MYC is frequently upregulated in cancer. Although members of the MYC family are upregulated in nervous system tumours, the mechanisms of how elevated MYC promotes stem cell-driven brain cancers is unknown. If we are to determine how increased MYC might contribute to brain cancer progression, we will require a more complete understanding of MYC's roles during normal brain development. Here, we evaluate evidence for MYC family functions in neural stem cell fate and brain development, with a view to better understand mechanisms of MYC-driven neural malignancies.
Collapse
|
36
|
Zheng Y, Dubois W, Benham C, Batchelor E, Levens D. FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Commun Biol 2020; 3:545. [PMID: 33005010 PMCID: PMC7530719 DOI: 10.1038/s42003-020-01264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Physiologically, MYC levels must be precisely set to faithfully amplify the transcriptome, but in cancer MYC is quantitatively misregulated. Here, we study the variation of MYC amongst single primary cells (B-cells and murine embryonic fibroblasts, MEFs) for the repercussions of variable cellular MYC-levels and setpoints. Because FUBPs have been proposed to be molecular “cruise controls” that constrain MYC expression, their role in determining basal or activated MYC-levels was also examined. Growing cells remember low and high-MYC setpoints through multiple cell divisions and are limited by the same expression ceiling even after modest MYC-activation. High MYC MEFs are enriched for mRNAs regulating inflammation and immunity. After strong stimulation, many cells break through the ceiling and intensify MYC expression. Lacking FUBPs, unstimulated MEFs express levels otherwise attained only with stimulation and sponsor MYC chromatin changes, revealed by chromatin marks. Thus, the FUBPs enforce epigenetic setpoints that restrict MYC expression. Ying Zheng et al. characterize MYC gene and protein expression in single mammalian cells in response to various external signals. They find that individual cells show either high or low basal MYC expression setpoints, and that adherence to these setpoints as well as the magnitude of the response of MYC to stimulation, is controlled by FUBP1 and FUBP2.
Collapse
Affiliation(s)
- Ying Zheng
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA
| | - Wendy Dubois
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, Bethesda, MD, USA
| | - Craig Benham
- Biomedical Engineering, University of California, Davis, CA, USA
| | - Eric Batchelor
- Masonic Cancer Center and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA.
| |
Collapse
|
37
|
Boike L, Cioffi AG, Majewski FC, Co J, Henning NJ, Jones MD, Liu G, McKenna JM, Tallarico JA, Schirle M, Nomura DK. Discovery of a Functional Covalent Ligand Targeting an Intrinsically Disordered Cysteine within MYC. Cell Chem Biol 2020; 28:4-13.e17. [PMID: 32966806 DOI: 10.1016/j.chembiol.2020.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
MYC is a major oncogenic transcriptional driver of most human cancers that has remained intractable to direct targeting because much of MYC is intrinsically disordered. Here, we have performed a cysteine-reactive covalent ligand screen to identify compounds that could disrupt the binding of MYC to its DNA consensus sequence in vitro and also impair MYC transcriptional activity in situ in cells. We have identified a covalent ligand, EN4, that targets cysteine 171 of MYC within a predicted intrinsically disordered region of the protein. We show that EN4 directly targets MYC in cells, reduces MYC and MAX thermal stability, inhibits MYC transcriptional activity, downregulates multiple MYC transcriptional targets, and impairs tumorigenesis. We also show initial structure-activity relationships of EN4 and identify compounds that show improved potency. Overall, we identify a unique ligandable site within an intrinsically disordered region of MYC that leads to inhibition of MYC transcriptional activity.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Alexander G Cioffi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Felix C Majewski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Jennifer Co
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA
| | - Michael D Jones
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Gang Liu
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeffrey M McKenna
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - John A Tallarico
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Markus Schirle
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Irmak G, Öztürk MG, Gümüşderelioğlu M. Salinomycin encapsulated PLGA nanoparticles eliminate osteosarcoma cells via inducing/inhibiting multiple signaling pathways: Comparison with free salinomycin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Nie Z, Guo C, Das SK, Chow CC, Batchelor E, Simons SS, Levens D. Dissecting transcriptional amplification by MYC. eLife 2020; 9:52483. [PMID: 32715994 PMCID: PMC7384857 DOI: 10.7554/elife.52483] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Supraphysiological MYC levels are oncogenic. Originally considered a typical transcription factor recruited to E-boxes (CACGTG), another theory posits MYC a global amplifier increasing output at all active promoters. Both models rest on large-scale genome-wide "-omics'. Because the assumptions, statistical parameter and model choice dictates the '-omic' results, whether MYC is a general or specific transcription factor remains controversial. Therefore, an orthogonal series of experiments interrogated MYC's effect on the expression of synthetic reporters. Dose-dependently, MYC increased output at minimal promoters with or without an E-box. Driving minimal promoters with exogenous (glucocorticoid receptor) or synthetic transcription factors made expression more MYC-responsive, effectively increasing MYC-amplifier gain. Mutations of conserved MYC-Box regions I and II impaired amplification, whereas MYC-box III mutations delivered higher reporter output indicating that MBIII limits over-amplification. Kinetic theory and experiments indicate that MYC activates at least two steps in the transcription-cycle to explain the non-linear amplification of transcription that is essential for global, supraphysiological transcription in cancer.
Collapse
Affiliation(s)
- Zuqin Nie
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| | - Chunhua Guo
- Steroid Hormones Section, NIDDK/LERB, NIH, Bethesda, United States
| | - Subhendu K Das
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| | - Carson C Chow
- Mathematical Biology Section, NIDDK/LBM, NIH, Bethesda, United States
| | - Eric Batchelor
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States.,Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, United States.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, NIH, Bethesda, United States
| | - David Levens
- Laboratory of Pathology, CCR, NCI, NIH, Bethesda, United States
| |
Collapse
|
40
|
Zhang T, Li N, Sun C, Jin Y, Sheng X. MYC and the unfolded protein response in cancer: synthetic lethal partners in crime? EMBO Mol Med 2020; 12:e11845. [PMID: 32310340 PMCID: PMC7207169 DOI: 10.15252/emmm.201911845] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
The transcription factors of the MYC family play pivotal roles in the initiation and progression of human cancers. High oncogenic level of MYC invades low‐affinity sites and enhancer sequences, which subsequently alters the transcriptome, causes metabolic imbalance, and induces stress response. The endoplasmic reticulum (ER) not only plays a central role in maintaining proteostasis, but also contributes to other key biological processes, including Ca2+ metabolism and the synthesis of lipids and glucose. Stress conditions, such as shortage in glucose or oxygen and disruption of Ca2+ homeostasis, may perturb proteostasis and induce the unfolded protein response (UPR), which either restores homeostasis or triggers cell death. Crucial roles of ER stress and UPR signaling have been implicated in various cancers, from oncogenesis to treatment response. Here, we summarize the current knowledge on the interaction between MYC and UPR signaling, and its contribution to cancer development. We also discuss the potential of targeting key UPR signaling nodes as novel synthetic lethal strategies in MYC‐driven cancers.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Xia Sheng
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Wu C, Yang P, Liu B, Tang Y. Is there a CDKN2A-centric network in pancreatic ductal adenocarcinoma? Onco Targets Ther 2020; 13:2551-2562. [PMID: 32273725 PMCID: PMC7108878 DOI: 10.2147/ott.s232464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has a high mortality rate and its incidence has risen rapidly in recent years. Meanwhile, the diagnosis and treatment of this cancer remain challenging. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, but, currently, no sufficiently effective modalities for its treatment exist. The early diagnosis rate of pancreatic cancer is low and most patients have reached an advanced stage at the time of diagnosis. PDAC evolves from precancerous lesions and is highly aggressive and metastatic. It is essential to understand how the disease progresses and metastasizes. CDKN2A mutations are very common in PDAC. Therefore, here, we have performed a literature review and discuss the role of CDKN2A and some related genes in the development of PDAC, as well as the basis of gene targeting with a correlation coefficient of CDKN2A above 0.9 on the STRING website. It is noteworthy that the interaction of CDKN2A with each gene has been reported in the literature. The role of these genes and CDKN2A in PDAC may provide new directions that will advance the current knowledge base and treatment options since cancer progression is realized through interactions among cells. Our findings provide new insights into the treatment of PADC that can, to some extent, improve the diagnosis rate and quality of life of patients.
Collapse
Affiliation(s)
- Chu Wu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Ping Yang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Bingxue Liu
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunlian Tang
- Cancer Research Institute, Key Laboratory of Tumor Cellular & Molecular Pathology, Medical College of Hengyang, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
42
|
Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 2020; 21:255-267. [PMID: 32071436 DOI: 10.1038/s41580-020-0215-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
43
|
MAL2-Induced Actin-Based Protrusion Formation is Anti-Oncogenic in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12020422. [PMID: 32059473 PMCID: PMC7072722 DOI: 10.3390/cancers12020422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Recent studies report that the polarity gene myelin and lymphocyte protein 2 (MAL2), is overexpressed in multiple human carcinomas largely at the transcript level. Because chromosome 8q24 amplification (where MAL2 resides) is associated with hepatocellular- and cholangio-carcinomas, we examined MAL2 protein expression in these human carcinoma lesions and adjacent benign tissue using immunohistochemistry. For comparison, we analyzed renal cell carcinomas that are not associated with chromosome 8q24 amplification. Surprisingly, we found that MAL2 protein levels were decreased in the malignant tissues compared to benign in all three carcinomas, suggesting MAL2 expression may be anti-oncogenic. Consistent with this conclusion, we determined that endogenously overexpressed MAL2 in HCC-derived Hep3B cells or exogenously expressed MAL2 in hepatoma-derived Clone 9 cells (that lack endogenous MAL2) promoted actin-based protrusion formation with a reciprocal decrease in invadopodia. MAL2 overexpression also led to decreased cell migration, invasion and proliferation (to a more modest extent) while loss of MAL2 expression reversed the phenotypes. Mutational analysis revealed that a putative Ena/VASP homology 1 recognition site confers the MAL2-phenotype suggesting its role in tumor suppression involves actin remodeling. To reconcile decreased MAL2 protein expression in human carcinomas and its anti-oncogenic phenotypes with increased transcript levels, we propose a transcriptional regulatory model for MAL2 transient overexpression.
Collapse
|
44
|
Zhou Z, Ni J, Li J, Huo C, Miao N, Yin F, Cheng Q, Xu D, Xie H, Chen P, Zheng P, Zhang Y, Zhou L, Zhang W, Yu C, Liu J, Lu L. RIG-I aggravates interstitial fibrosis via c-Myc-mediated fibroblast activation in UUO mice. J Mol Med (Berl) 2020; 98:527-540. [PMID: 32036390 PMCID: PMC7198651 DOI: 10.1007/s00109-020-01879-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 01/14/2023]
Abstract
Abstract Progressive tubulointerstitial fibrosis is the common final outcome for all kidney diseases evolving into chronic kidney disease (CKD), whereas molecular mechanisms driving fibrogenesis remain elusive. Retinoic acid-inducible gene-I (RIG-I), an intracellular pattern recognition receptor, is originally identified participating in immune response by recognizing virus RNA. Here, we revealed for the first time that RIG-I was induced in unilateral ureteral obstruction (UUO) and folic acid (FA) renal fibrosis models and moderate-degree renal fibrosis patients. Besides, we found RIG-I was mainly located in renal tubular epithelial cells and promoted the production and release of inflammatory cytokines, such as interleukin (IL)-1β and IL-6 through activation of NF-κB. Inflammatory cytokines released by tubular epithelial cells activated c-Myc-mediated TGF-β/Smad signaling in fibroblasts, which in turn aggravated interstitial fibrosis by promoting fibroblast activation and production of extracellular matrix components (ECM). Deficiency of RIG-I attenuated renal fibrosis by the regulation of inflammatory responses, c-Myc expression, and fibroblast activation. Besides, gene silencing of RIG-I reduced inflammatory cytokines in cultured tubular epithelial cells treated with Angiotensin II. Knockdown of c-Myc or c-Myc inhibitor blocked IL-1β-induced fibroblast activation. Collectively, our study demonstrates that RIG-I plays a significant role in the progress of renal fibrosis via regulating c-Myc-mediated fibroblast activation. Key messages • RIG-I was constantly elevated in kidneys from renal fibrotic mice. • RIG-I facilitated inflammatory cytokine production in tubular epithelial cells. • RIG-I aggravated renal fibrosis via c-Myc-mediated TGF-β/Smad activation.
Collapse
Affiliation(s)
- Zhuanli Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jiayun Ni
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jingyao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chuanbing Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Naijun Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Dan Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Hongyan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Panpan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Peiqing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yingying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
45
|
Hartl M, Puglisi K, Nist A, Raffeiner P, Bister K. The brain acid-soluble protein 1 (BASP1) interferes with the oncogenic capacity of MYC and its binding to calmodulin. Mol Oncol 2020; 14:625-644. [PMID: 31944520 PMCID: PMC7053243 DOI: 10.1002/1878-0261.12636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
The MYC protein is a transcription factor with oncogenic potential controlling fundamental cellular processes such as cell proliferation, metabolism, differentiation, and apoptosis. The MYC gene is a major cancer driver, and elevated MYC protein levels are a hallmark of most human cancers. We have previously shown that the brain acid-soluble protein 1 gene (BASP1) is specifically downregulated by the v-myc oncogene and that ectopic BASP1 expression inhibits v-myc-induced cell transformation. The 11-amino acid effector domain of the BASP1 protein interacts with the calcium sensor calmodulin (CaM) and is mainly responsible for this inhibitory function. We also reported recently that CaM interacts with all MYC variant proteins and that ectopic CaM increases the transactivation and transformation potential of the v-Myc protein. Here, we show that the presence of excess BASP1 or of a synthetic BASP1 effector domain peptide leads to displacement of v-Myc from CaM. The protein stability of v-Myc is decreased in cells co-expressing v-Myc and BASP1, which may account for the inhibition of v-Myc. Furthermore, suppression of v-Myc-triggered transcriptional activation and cell transformation is compensated by ectopic CaM, suggesting that BASP1-mediated withdrawal of CaM from v-Myc is a crucial event in the inhibition. In view of the tumor-suppressive role of BASP1 which was recently also reported for human cancer, small compounds or peptides based on the BASP1 effector domain could be used in drug development strategies aimed at tumors with high MYC expression.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Andrea Nist
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| |
Collapse
|
46
|
Bigas A, Guillén Y, Schoch L, Arambilet D. Revisiting β-Catenin Signaling in T-Cell Development and T-Cell Acute Lymphoblastic Leukemia. Bioessays 2019; 42:e1900099. [PMID: 31854474 DOI: 10.1002/bies.201900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/28/2019] [Indexed: 12/25/2022]
Abstract
β-Catenin/CTNNB1 is critical for leukemia initiation or the stem cell capacity of several hematological malignancies. This review focuses on a general evaluation of β-catenin function in normal T-cell development and T-cell acute lymphoblastic leukemia (T-ALL). The integration of the existing literature offers a state-of-the-art dissection of the complexity of β-catenin function in leukemia initiation and maintenance in both Notch-dependent and independent contexts. In addition, β-catenin mutations are screened for in T-ALL primary samples, and it is found that they are rare and with little clinical relevance. Transcriptional analysis of Wnt family members (Ctnnb1, Axin2, Tcf7, and Lef1) and Myc in different publicly available T-ALL cohorts indicates that the expression of these genes may correlate with T-ALL subtypes and/or therapy outcomes.
Collapse
Affiliation(s)
- Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leonie Schoch
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - David Arambilet
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
47
|
He J, Li F, Zhou Y, Hou X, Liu S, Li X, Zhang Y, Jing X, Yang L. LncRNA XLOC_006390 promotes pancreatic carcinogenesis and glutamate metabolism by stabilizing c-Myc. Cancer Lett 2019; 469:419-428. [PMID: 31734356 DOI: 10.1016/j.canlet.2019.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
The role of lncRNAs in the regulation of glutamate metabolism and metabolic reprogramming of pancreatic cancer (PC) during nutrient deprivation is largely unknown. Our study found that alpha-ketoglutarate (aKG) levels were significantly reduced in the absence of XLOC_006390. We subsequently confirmed that the decrease in aKG was mainly due to the downregulation of glutamate dehydrogenase 1 (GDH1) at the mRNA level. Therefore, we first screened transcription factors targeting the GDH1 gene promoter and confirmed that c-Myc regulates GDH1 transcription. c-Myc binds to the promoter of GDH1 and activates its transcription. Downregulation of GDH1 mRNA levels by XLOC_006390 deletion could be rescued by overexpression of c-Myc. Overexpression of XLOC_006390 promoted the protein stability of c-Myc by blocking its ubiquitination. Clinically, XLOC_006390 was positively correlated with the mRNA level of GDH1, and c-Myc positively regulated GDH1 gene expression, which was tightly associated with PC patient prognosis. The dysregulated lncRNA/c-Myc axis increased glutamate metabolism, promoting PC progression to a higher stage. Therefore, XLOC_006390/c-Myc may be a potential target for PC, and its abnormal activation also indicates the progression of PC.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Fazhao Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Yan Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Xuyang Hou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Sushun Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Xinchun Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Yawei Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China
| | - Xiaoqian Jing
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
48
|
Rand TA, Sutou K, Tanabe K, Jeong D, Nomura M, Kitaoka F, Tomoda E, Narita M, Nakamura M, Nakamura M, Watanabe A, Rulifson E, Yamanaka S, Takahashi K. MYC Releases Early Reprogrammed Human Cells from Proliferation Pause via Retinoblastoma Protein Inhibition. Cell Rep 2019; 23:361-375. [PMID: 29641997 DOI: 10.1016/j.celrep.2018.03.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/14/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
Here, we report that MYC rescues early human cells undergoing reprogramming from a proliferation pause induced by OCT3/4, SOX2, and KLF4 (OSK). We identified ESRG as a marker of early reprogramming cells that is expressed as early as day 3 after OSK induction. On day 4, ESRG positive (+) cells converted to a TRA-1-60 (+) intermediate state. These early ESRG (+) or TRA-1-60 (+) cells showed a proliferation pause due to increased p16INK4A and p21 and decreased endogenous MYC caused by OSK. Exogenous MYC did not enhance the appearance of initial reprogramming cells but instead reactivated their proliferation and improved reprogramming efficiency. MYC increased expression of LIN41, which potently suppressed p21 post-transcriptionally. MYC suppressed p16 INK4A. These changes inactivated retinoblastoma protein (RB) and reactivated proliferation. The RB-regulated proliferation pause does not occur in immortalized fibroblasts, leading to high reprogramming efficiency even without exogenous MYC.
Collapse
Affiliation(s)
- Tim A Rand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Kenta Sutou
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tanabe
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daeun Jeong
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Masaki Nomura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Fumiyo Kitaoka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Emi Tomoda
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Megumi Narita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Eric Rulifson
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kazutoshi Takahashi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
49
|
Parasido E, Avetian GS, Naeem A, Graham G, Pishvaian M, Glasgow E, Mudambi S, Lee Y, Ihemelandu C, Choudhry M, Peran I, Banerjee PP, Avantaggiati ML, Bryant K, Baldelli E, Pierobon M, Liotta L, Petricoin E, Fricke ST, Sebastian A, Cozzitorto J, Loots GG, Kumar D, Byers S, Londin E, DiFeo A, Narla G, Winter J, Brody JR, Rodriguez O, Albanese C. The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells. Mol Cancer Res 2019; 17:1815-1827. [PMID: 31164413 PMCID: PMC6726538 DOI: 10.1158/1541-7786.mcr-19-0191] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.
Collapse
Affiliation(s)
- Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - George S Avetian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Garrett Graham
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Michael Pishvaian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Shaila Mudambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Chukwuemeka Ihemelandu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Muhammad Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Partha P Banerjee
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Kirsten Bryant
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Stanley T Fricke
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| | - Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Joseph Cozzitorto
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University, Durham, North Carolina
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Analisa DiFeo
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jordan Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Case Western Reserve School of Medicine, Case Comprehensive Cancer Center and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| |
Collapse
|
50
|
Hancock BA, Chen YH, Solzak JP, Ahmad MN, Wedge DC, Brinza D, Scafe C, Veitch J, Gottimukkala R, Short W, Atale RV, Ivan M, Badve SS, Schneider BP, Lu X, Miller KD, Radovich M. Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers. Breast Cancer Res 2019; 21:87. [PMID: 31383035 PMCID: PMC6683504 DOI: 10.1186/s13058-019-1171-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Approximately two thirds of patients with localized triple-negative breast cancer (TNBC) harbor residual disease (RD) after neoadjuvant chemotherapy (NAC) and have a high risk-of-recurrence. Targeted therapeutic development for TNBC is of primary significance as no targeted therapies are clinically indicated for this aggressive subset. In view of this, we conducted a comprehensive molecular analysis and correlated molecular features of chemorefractory RD tumors with recurrence for the purpose of guiding downstream therapeutic development. Methods We assembled DNA and RNA sequencing data from RD tumors as well as pre-operative biopsies, lymphocytic infiltrate, and survival data as part of a molecular correlative to a phase II post-neoadjuvant clinical trial. Matched somatic mutation, gene expression, and lymphocytic infiltrate were assessed before and after chemotherapy to understand how tumors evolve during chemotherapy. Kaplan-Meier survival analyses were conducted categorizing cancers with TP53 mutations by the degree of loss as well as by the copy number of a locus of 18q corresponding to the SMAD2, SMAD4, and SMAD7 genes. Results Analysis of matched somatic genomes pre-/post-NAC revealed chaotic acquisition of copy gains and losses including amplification of prominent oncogenes. In contrast, significant gains in deleterious point mutations and insertion/deletions were not observed. No trends between clonal evolution and recurrence were identified. Gene expression data from paired biopsies revealed enrichment of actionable regulators of stem cell-like behavior and depletion of immune signaling, which was corroborated by total lymphocytic infiltrate, but was not associated with recurrence. Novel characterization of TP53 mutation revealed prognostically relevant subgroups, which were linked to MYC-driven transcriptional amplification. Finally, somatic gains in 18q were associated with poor prognosis, likely driven by putative upregulation of TGFß signaling through the signal transducer SMAD2. Conclusions We conclude TNBCs are dynamic during chemotherapy, demonstrating complex plasticity in subclonal diversity, stem-like qualities, and immune depletion, but somatic alterations of TP53/MYC and TGFß signaling in RD samples are prominent drivers of recurrence, representing high-yield targets for additional interrogation. Electronic supplementary material The online version of this article (10.1186/s13058-019-1171-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bradley A Hancock
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut St. Room C312, Indianapolis, IN, 46202, USA
| | - Yu-Hsiang Chen
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jeffrey P Solzak
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut St. Room C312, Indianapolis, IN, 46202, USA
| | - Mufti N Ahmad
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut St. Room C312, Indianapolis, IN, 46202, USA
| | - David C Wedge
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
| | - Dumitru Brinza
- Department of Bioinformatics, ThermoFisher Scientific, Carlsbad, CA, USA
| | - Charles Scafe
- Department of Bioinformatics, ThermoFisher Scientific, Carlsbad, CA, USA
| | - James Veitch
- Department of Bioinformatics, ThermoFisher Scientific, Carlsbad, CA, USA
| | | | - Walt Short
- Department of Bioinformatics, ThermoFisher Scientific, Carlsbad, CA, USA
| | - Rutuja V Atale
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut St. Room C312, Indianapolis, IN, 46202, USA
| | - Mircea Ivan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bryan P Schneider
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiongbin Lu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kathy D Miller
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Milan Radovich
- Department of Surgery, Indiana University School of Medicine, 980 W. Walnut St. Room C312, Indianapolis, IN, 46202, USA. .,Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|