1
|
Liu Y, Lin W, Nagy PD. Proviral and antiviral roles of phosphofructokinase family of glycolytic enzymes in TBSV replication. Virology 2024; 599:110190. [PMID: 39146928 DOI: 10.1016/j.virol.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Positive-strand RNA viruses build viral replication organelles (VROs) with the help of co-opted host factors. The biogenesis of the membranous VROs requires major metabolic changes in infected cells. Previous studies showed that tomato bushy stunt virus (TBSV) hijacks several glycolytic enzymes to produce ATP locally within VROs. In this work, we demonstrate that the yeast Pfk2p phosphofructokinase, which performs a rate-limiting and highly regulated step in glycolysis, interacts with the TBSV p33 replication protein. Deletion of PFK2 reduced TBSV replication in yeast, suggesting proviral role for Pfk2p. TBSV also co-opted two plant phosphofructokinases, which supported viral replication and ATP production within VROs, thus acting as proviral factors. Three other phosphofructokinases inhibited TBSV replication and they reduced ATP production within VROs, thus functioning as antiviral factors. Altogether, different phosphofructokinases have proviral or antiviral roles. This suggests on-going arms race between tombusviruses and their hosts to control glycolysis pathway in infected cells.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.
| |
Collapse
|
2
|
Kang Y, Pogany J, Nagy PD. Proviral role of ATG2 autophagy related protein in tomato bushy stunt virus replication through bulk phospholipid transfer into the viral replication organelle. Mol Biol Cell 2024; 35:ar124. [PMID: 39110527 PMCID: PMC11481700 DOI: 10.1091/mbc.e24-05-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024] Open
Abstract
Subversion of cellular membranes and membrane proliferation are used by positive-strand RNA viruses to build viral replication organelles (VROs) that support virus replication. The biogenesis of the membranous VROs requires major changes in lipid metabolism and lipid transfer in infected cells. In this work, we show that tomato bushy stunt virus (TBSV) hijacks Atg2 autophagy related protein with bulk lipid transfer activity into VROs via interaction with TBSV p33 replication protein. Deletion of Atg2 in yeast and knockdown of Atg2 in Nicotiana benthamiana resulted in decreased TBSV replication. We found that subversion of Atg2 by TBSV was important to enrich VRO membranes with phosphatidylethanolamine (PE), phosphatidylserine (PS) and PI(3)P phosphoinositide. Interestingly, inhibition of autophagy did not affect the efficient recruitment of Atg2 into VROs, and overexpression of Atg2 enhanced TBSV replication, indicating autophagy-independent subversion of Atg2 by TBSV. These findings suggest that the proviral function of Atg2 lipid transfer protein is in VRO membrane proliferation. In addition, we find that Atg2 interacting partner Atg9 with membrane lipid-scramblase activity is also coopted for tombusvirus replication. Altogether, the subversion of Atg2 bridge-type lipid transfer protein provides a new mechanism for tombusviruses to greatly expand VRO membranes to support robust viral replication.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546
| |
Collapse
|
3
|
Lin W, Nagy PD. Co-opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive-strand RNA virus. THE NEW PHYTOLOGIST 2024; 243:1917-1935. [PMID: 38515267 DOI: 10.1111/nph.19691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40543, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40543, USA
| |
Collapse
|
4
|
Jiang D, Yang L, Meng X, Xu Q, Zhou X, Liu B. Let-7f-5p Modulates Lipid Metabolism by Targeting Sterol Regulatory Element-Binding Protein 2 in Response to PRRSV Infection. Vet Sci 2024; 11:392. [PMID: 39330771 PMCID: PMC11435751 DOI: 10.3390/vetsci11090392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.
Collapse
Affiliation(s)
- Dongfeng Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Liu R, Hong W, Hou D, Huang H, Duan C. Decoding Organelle Interactions: Unveiling Molecular Mechanisms and Disease Therapies. Adv Biol (Weinh) 2024; 8:e2300288. [PMID: 38717793 DOI: 10.1002/adbi.202300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Indexed: 07/13/2024]
Abstract
Organelles, substructures in the cytoplasm with specific morphological structures and functions, interact with each other via membrane fusion, membrane transport, and protein interactions, collectively termed organelle interaction. Organelle interaction is a complex biological process involving the interaction and regulation of several organelles, including the interaction between mitochondria-endoplasmic reticulum, endoplasmic reticulum-Golgi, mitochondria-lysosomes, and endoplasmic reticulum-peroxisomes. This interaction enables intracellular substance transport, metabolism, and signal transmission, and is closely related to the occurrence, development, and treatment of many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Herein, the mechanisms and regulation of organelle interactions are reviewed, which are critical for understanding basic principles of cell biology and disease development mechanisms. The findings will help to facilitate the development of novel strategies for disease prevention, diagnosis, and treatment opportunities.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
6
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
7
|
Hao J, Zhang X, Hu R, Lu X, Wang H, Li Y, Cheng K, Li Q. Metabolomics combined with network pharmacology reveals a role for astragaloside IV in inhibiting enterovirus 71 replication via PI3K-AKT signaling. J Transl Med 2024; 22:555. [PMID: 38858642 PMCID: PMC11163744 DOI: 10.1186/s12967-024-05355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Astragaloside IV (AST-IV), as an effective active ingredient of Astragalus membranaceus (Fisch.) Bunge. It has been found that AST-IV inhibits the replication of dengue virus, hepatitis B virus, adenovirus, and coxsackievirus B3. Enterovirus 71 (EV71) serves as the main pathogen in severe hand-foot-mouth disease (HFMD), but there are no specific drugs available. In this study, we focus on investigating whether AST-IV can inhibit EV71 replication and explore the potential underlying mechanisms. METHODS The GES-1 or RD cells were infected with EV71, treated with AST-IV, or co-treated with both EV71 and AST-IV. The EV71 structural protein VP1 levels, the viral titers in the supernatant were measured using western blot and 50% tissue culture infective dose (TCID50), respectively. Network pharmacology was used to predict possible pathways and targets for AST-IV to inhibit EV71 replication. Additionally, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the potential targeted metabolites of AST-IV. Associations between metabolites and apparent indicators were performed via Spearman's algorithm. RESULTS This study illustrated that AST-IV effectively inhibited EV71 replication. Network pharmacology suggested that AST-IV inhibits EV71 replication by targeting PI3K-AKT. Metabolomics results showed that AST-IV achieved these effects by elevating the levels of hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-hydroxy-1 H-indole-3- acetamide, oxypurinol, while reducing the levels of PC (14:0/15:0). Furthermore, AST-IV also mitigated EV71-induced oxidative stress by reducing the levels of MDA, ROS, while increasing the activity of T-AOC, CAT, GSH-Px. The inhibition of EV71 replication was also observed when using the ROS inhibitor N-Acetylcysteine (NAC). Additionally, AST-IV exhibited the ability to activate the PI3K-AKT signaling pathway and suppress EV71-induced apoptosis. CONCLUSION This study suggests that AST-IV may activate the cAMP and the antioxidant stress response by targeting eight key metabolites, including hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-Hydroxy-1 H-indole-3-acetamide, oxypurinol and PC (14:0/15:0). This activation can further stimulate the PI3K-AKT signaling to inhibit EV71-induced apoptosis and EV71 replication.
Collapse
Affiliation(s)
- JinFang Hao
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhang
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Ruixian Hu
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xiufeng Lu
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Hui Wang
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yuanhong Li
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Kai Cheng
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qingshan Li
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Ajiki M, Yoshikawa M, Miyazaki T, Kawasaki A, Aoki K, Nakatsu F, Tsukiji S. ORP9-PH domain-based fluorescent reporters for visualizing phosphatidylinositol 4-phosphate dynamics in living cells. RSC Chem Biol 2024; 5:544-555. [PMID: 38846081 PMCID: PMC11151866 DOI: 10.1039/d3cb00232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
Fluorescent reporters that visualize phosphatidylinositol 4-phosphate (PI4P) in living cells are indispensable to elucidate the roles of this fundamental lipid in cell physiology. However, currently available PI4P reporters have limitations, such as Golgi-biased localization and low detection sensitivity. Here, we present a series of fluorescent PI4P reporters based on the pleckstrin homology (PH) domain of oxysterol-binding protein-related protein 9 (ORP9). We show that the green fluorescent protein AcGFP1-tagged ORP9-PH domain can be used as a fluorescent PI4P reporter to detect cellular PI4P across its wide distribution at multiple cellular locations, including the plasma membrane (PM), Golgi, endosomes, and lysosomes with high specificity and contrast. We also developed blue, red, and near-infrared fluorescent PI4P reporters suitable for multicolor fluorescence imaging experiments. Finally, we demonstrate the utility of the ORP9-PH domain-based reporter to visualize dynamic changes in the PI4P distribution and level in living cells upon synthetic ER-PM membrane contact manipulation and GPCR stimulation. This work offers a new set of genetically encoded fluorescent PI4P reporters that are practically useful for the study of PI4P biology.
Collapse
Affiliation(s)
- Moeka Ajiki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masaru Yoshikawa
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomoki Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University 1-757 Asahimachi, Chuo-ku Niigata 951-8510 Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies) 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University 1-757 Asahimachi, Chuo-ku Niigata 951-8510 Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
9
|
Mendez-Gomez HR, DeVries A, Castillo P, von Roemeling C, Qdaisat S, Stover BD, Xie C, Weidert F, Zhao C, Moor R, Liu R, Soni D, Ogando-Rivas E, Chardon-Robles J, McGuiness J, Zhang D, Chung MC, Marconi C, Michel S, Barpujari A, Jobin GW, Thomas N, Ma X, Campaneria Y, Grippin A, Karachi A, Li D, Sahay B, Elliott L, Foster TP, Coleman KE, Milner RJ, Sawyer WG, Ligon JA, Simon E, Cleaver B, Wynne K, Hodik M, Molinaro AM, Guan J, Kellish P, Doty A, Lee JH, Massini T, Kresak JL, Huang J, Hwang EI, Kline C, Carrera-Justiz S, Rahman M, Gatica S, Mueller S, Prados M, Ghiaseddin AP, Silver NL, Mitchell DA, Sayour EJ. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 2024; 187:2521-2535.e21. [PMID: 38697107 DOI: 10.1016/j.cell.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.
Collapse
Affiliation(s)
- Hector R Mendez-Gomez
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Anna DeVries
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Paul Castillo
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Christina von Roemeling
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sadeem Qdaisat
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Brian D Stover
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Chao Xie
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Frances Weidert
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Chong Zhao
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Rachel Moor
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Ruixuan Liu
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dhruvkumar Soni
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elizabeth Ogando-Rivas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Jonathan Chardon-Robles
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - James McGuiness
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dingpeng Zhang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Michael C Chung
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Christiano Marconi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Stephen Michel
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Arnav Barpujari
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Gabriel W Jobin
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Nagheme Thomas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Xiaojie Ma
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Yodarlynis Campaneria
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Adam Grippin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Aida Karachi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Derek Li
- University of Florida, Division of Quantitative Sciences, UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Bikash Sahay
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Leighton Elliott
- University of Florida, Department of Medicine, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Timothy P Foster
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Kirsten E Coleman
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Rowan J Milner
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - W Gregory Sawyer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John A Ligon
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Eugenio Simon
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Brian Cleaver
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Kristine Wynne
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Marcia Hodik
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Annette M Molinaro
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Juan Guan
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Patrick Kellish
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Andria Doty
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Ji-Hyun Lee
- University of Florida, Department of Biostatistics, Gainesville, FL 32610, USA
| | - Tara Massini
- University of Florida, Department of Radiology, Gainesville, FL 32610, USA
| | - Jesse L Kresak
- University of Florida, Department of Pathology, Gainesville, FL 32610, USA
| | - Jianping Huang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Eugene I Hwang
- Children's National Hospital, Center for Cancer and Blood Disorders, Washington, DC 20010, USA
| | - Cassie Kline
- University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Oncology, Philadelphia, PA 19104, USA
| | | | - Maryam Rahman
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sebastian Gatica
- University of Florida, Department of Anesthesiology, Gainesville, FL 32610, USA
| | - Sabine Mueller
- University of California, San Francisco, Department of Neurology, Neurological Surgery, and Pediatrics, San Francisco, CA 94158, USA
| | - Michael Prados
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Ashley P Ghiaseddin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Natalie L Silver
- Cleveland Clinic, Center of Immunotherapy and Precision Immuno-Oncology/Head and Neck Institute, Cleveland, OH 44106, USA
| | - Duane A Mitchell
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elias J Sayour
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Kang Y, Lin W, Nagy PD. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy. PLoS Pathog 2024; 20:e1012085. [PMID: 38484009 DOI: 10.1371/journal.ppat.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/26/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.
Collapse
Affiliation(s)
- Yuanrong Kang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
11
|
Yin C, Zhao H, Xia X, Pan Z, Li D, Zhang L. Picornavirus 2C proteins: structure-function relationships and interactions with host factors. Front Cell Infect Microbiol 2024; 14:1347615. [PMID: 38465233 PMCID: PMC10921941 DOI: 10.3389/fcimb.2024.1347615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Picornaviruses, which are positive-stranded, non-enveloped RNA viruses, are known to infect people and animals with a broad spectrum of diseases. Among the nonstructural proteins in picornaviruses, 2C proteins are highly conserved and exhibit multiple structural domains, including amphipathic α-helices, an ATPase structural domain, and a zinc finger structural domain. This review offers a comprehensive overview of the functional structures of picornaviruses' 2C protein. We summarize the mechanisms by which the 2C protein enhances viral replication. 2C protein interacts with various host factors to form the replication complex, ultimately promoting viral replication. We review the mechanisms through which picornaviruses' 2C proteins interact with the NF-κB, RIG-I, MDA5, NOD2, and IFN pathways, contributing to the evasion of the antiviral innate immune response. Additionally, we provide an overview of broad-spectrum antiviral drugs for treating various enterovirus infections, such as guanidine hydrochloride, fluoxetine, and dibucaine derivatives. These drugs may exert their inhibitory effects on viral infections by targeting interactions with 2C proteins. The review underscores the need for further research to elucidate the precise mechanisms of action of 2C proteins and to identify additional host factors for potential therapeutic intervention. Overall, this review contributes to a deeper understanding of picornaviruses and offers insights into the antiviral strategies against these significant viral pathogens.
Collapse
Affiliation(s)
- Chunhui Yin
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haomiao Zhao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyi Xia
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhengyang Pan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Daoqun Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
12
|
D’Avila H, Lima CNR, Rampinelli PG, Mateus LCO, de Sousa Silva RV, Correa JR, de Almeida PE. Lipid Metabolism Modulation during SARS-CoV-2 Infection: A Spotlight on Extracellular Vesicles and Therapeutic Prospects. Int J Mol Sci 2024; 25:640. [PMID: 38203811 PMCID: PMC10778989 DOI: 10.3390/ijms25010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.
Collapse
Affiliation(s)
- Heloisa D’Avila
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | | | - Pollianne Garbero Rampinelli
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Laiza Camila Oliveira Mateus
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - Renata Vieira de Sousa Silva
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, University of Brasília, Brasília 70910-900, Brazil;
| | - Patrícia Elaine de Almeida
- Cell Biology Laboratory, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (H.D.); (P.G.R.); (L.C.O.M.); (R.V.d.S.S.)
| |
Collapse
|
13
|
Lecordier L, Heo P, Graversen JH, Hennig D, Skytthe MK, Cornet d'Elzius A, Pincet F, Pérez-Morga D, Pays E. Apolipoproteins L1 and L3 control mitochondrial membrane dynamics. Cell Rep 2023; 42:113528. [PMID: 38041817 PMCID: PMC10765320 DOI: 10.1016/j.celrep.2023.113528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.
Collapse
Affiliation(s)
- Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Jonas H Graversen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Dorle Hennig
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Maria Kløjgaard Skytthe
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | | | - Frédéric Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, Ecole Normale Supérieure (ENS), Université Paris Sciences et Lettres (PSL), CNRS, Sorbonne Université, Université Paris-Cité, 75005 Paris, France
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
14
|
Paul P, Tiwari B. Organelles are miscommunicating: Membrane contact sites getting hijacked by pathogens. Virulence 2023; 14:2265095. [PMID: 37862470 PMCID: PMC10591786 DOI: 10.1080/21505594.2023.2265095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Membrane Contact Sites (MCS) are areas of close apposition of organelles that serve as hotspots for crosstalk and direct transport of lipids, proteins and metabolites. Contact sites play an important role in Ca2+ signalling, phospholipid synthesis, and micro autophagy. Initially, altered regulation of vesicular trafficking was regarded as the key mechanism for intracellular pathogen survival. However, emerging studies indicate that pathogens hijack MCS elements - a novel strategy for survival and replication in an intracellular environment. Several pathogens exploit MCS to establish direct contact between organelles and replication inclusion bodies, which are essential for their survival within the cell. By establishing this direct control, pathogens gain access to cytosolic compounds necessary for replication, maintenance, escaping endocytic maturation and circumventing lysosome fusion. MCS components such as VAP A/B, OSBP, and STIM1 are targeted by pathogens through their effectors and secretion systems. In this review, we delve into the mechanisms which operate in the evasion of the host immune system when intracellular pathogens hostage MCS. We explore targeting MCS components as a novel therapeutic approach, modifying molecular pathways and signalling to address the disease's mechanisms and offer more effective, tailored treatments for affected individuals.
Collapse
Affiliation(s)
- Pratyashaa Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research, India
| |
Collapse
|
15
|
Bou JV, Taguwa S, Matsuura Y. Trick-or-Trap: Extracellular Vesicles and Viral Transmission. Vaccines (Basel) 2023; 11:1532. [PMID: 37896936 PMCID: PMC10611016 DOI: 10.3390/vaccines11101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed particles produced by most cells, playing important roles in various biological processes. They have been shown to be involved in antiviral mechanisms such as transporting antiviral molecules, transmitting viral resistance, and participating in antigen presentation. While viral transmission was traditionally thought to occur through independent viral particles, the process of viral infection is complex, with multiple barriers and challenges that viruses must overcome for successful infection. As a result, viruses exploit the intercellular communication pathways of EVs to facilitate cluster transmission, increasing their chances of infecting target cells. Viral vesicle transmission offers two significant advantages. Firstly, it enables the collective transmission of viral genomes, increasing the chances of infection and promoting interactions between viruses in subsequent generations. Secondly, the use of vesicles as vehicles for viral transmission provides protection to viral particles against environmental factors, while also expanding the cell tropism allowing viruses to reach cells in a receptor-independent manner. Understanding the role of EVs in viral transmission is crucial for comprehending virus evolution and developing innovative antiviral strategies, therapeutic interventions, and vaccine approaches.
Collapse
Affiliation(s)
- Juan-Vicente Bou
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J 2023; 47:100659. [PMID: 37690583 PMCID: PMC11403433 DOI: 10.1016/j.bj.2023.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Gaëtan Ligat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
17
|
Pena-Francesch M, Vanoaica LD, Zhu GF, Stumpe M, Sankar DS, Nowag H, Valencia-Camargo AD, Hammerschmidt W, Dengjel J, Ligeon LA, Münz C. The autophagy machinery interacts with EBV capsids during viral envelope release. Proc Natl Acad Sci U S A 2023; 120:e2211281120. [PMID: 37579175 PMCID: PMC10451551 DOI: 10.1073/pnas.2211281120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/02/2023] [Indexed: 08/16/2023] Open
Abstract
Autophagy serves as a defense mechanism against intracellular pathogens, but several microorganisms exploit it for their own benefit. Accordingly, certain herpesviruses include autophagic membranes into their infectious virus particles. In this study, we analyzed the composition of purified virions of the Epstein-Barr virus (EBV), a common oncogenic γ-herpesvirus. In these, we found several components of the autophagy machinery, including membrane-associated LC3B-II, and numerous viral proteins, such as the capsid assembly proteins BVRF2 and BdRF1. Additionally, we showed that BVRF2 and BdRF1 interact with LC3B-II via their common protein domain. Using an EBV mutant, we identified BVRF2 as essential to assemble mature capsids and produce infectious EBV. However, BdRF1 was sufficient for the release of noninfectious viral envelopes as long as autophagy was not compromised. These data suggest that BVRF2 and BdRF1 are not only important for capsid assembly but together with the LC3B conjugation complex of ATG5-ATG12-ATG15L1 are also critical for EBV envelope release.
Collapse
Affiliation(s)
- Maria Pena-Francesch
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich8057, Switzerland
| | - Liliana Danusia Vanoaica
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich8057, Switzerland
| | - Gao-Feng Zhu
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich8057, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg1700, Switzerland
| | | | - Heike Nowag
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich8057, Switzerland
| | | | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research, D-81377Munich, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg1700, Switzerland
| | - Laure-Anne Ligeon
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich8057, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich8057, Switzerland
| |
Collapse
|
18
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
19
|
Mendez-Gomez HR, DeVries A, Castillo P, Stover BD, Qdaisat S, Von Roemeling C, Ogando-Rivas E, Weidert F, McGuiness J, Zhang D, Chung MC, Li D, Zhang C, Marconi C, Campaneria Y, Chardon-Robles J, Grippin A, Karachi A, Thomas N, Huang J, Milner R, Sahay B, Sawyer WG, Ligon JA, Silver N, Simon E, Cleaver B, Wynne K, Hodik M, Molinaro A, Guan J, Kellish P, Doty A, Lee JH, Carrera-Justiz S, Rahman M, Gatica S, Mueller S, Prados M, Ghiaseddin A, Mitchell DA, Sayour EJ. mRNA aggregates harness danger response for potent cancer immunotherapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.12.23287108. [PMID: 36993772 PMCID: PMC10055442 DOI: 10.1101/2023.03.12.23287108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.
Collapse
|
20
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
21
|
Jiang T, Du K, Wang P, Wang X, Zang L, Peng D, Chen X, Sun G, Zhang H, Fan Z, Cao Z, Zhou T. Sugarcane mosaic virus orchestrates the lactate fermentation pathway to support its successful infection. FRONTIERS IN PLANT SCIENCE 2023; 13:1099362. [PMID: 36699858 PMCID: PMC9868461 DOI: 10.3389/fpls.2022.1099362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Viruses often establish their own infection by altering host metabolism. How viruses co-opt plant metabolism to support their successful infection remains an open question. Here, we used untargeted metabolomics to reveal that lactate accumulates immediately before and after robust sugarcane mosaic virus (SCMV) infection. Induction of lactate-involved anaerobic glycolysis is beneficial to SCMV infection. The enzyme activity and transcriptional levels of lactate dehydrogenase (LDH) were up-regulated by SCMV infection, and LDH is essential for robust SCMV infection. Moreover, LDH relocates in viral replicase complexes (VRCs) by interacting with SCMV-encoded 6K2 protein, a key protein responsible for inducing VRCs. Additionally, lactate could promote SCMV infection by suppressing plant defense responses. Taken together, we have revealed a viral strategy to manipulate host metabolism to support replication compartment but also depress the defense response during the process of infection.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Kaitong Du
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Pei Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xinhai Wang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lianyi Zang
- Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, Tai’an, China
| | - Dezhi Peng
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Geng Sun
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Jassey A, Wagner MA, Galitska G, Paudel B, Miller K, Jackson WT. Starvation after infection restricts enterovirus D68 replication. Autophagy 2023; 19:112-125. [PMID: 35446171 PMCID: PMC9809931 DOI: 10.1080/15548627.2022.2062888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a respiratory pathogen associated with acute flaccid myelitis, a childhood paralysis disease. No approved vaccine or antiviral treatment exists against EV-D68. Infection with this virus induces the formation of autophagosomes to enhance its replication but blocks the downstream autophagosome- lysosome fusion steps. Here, we examined the impact of autophagy induction through starvation, either before (starvation before infection, SBI) or after (starvation after infection, SAI) EV-D68 infection. We showed that SAI, but not SBI, attenuated EV-D68 replication in multiple cell lines and abrogated the viral-mediated cleavage of host autophagic flux-related proteins. Furthermore, SAI induced autophagic flux during EV-D68 replication and prevented production of virus-induced membranes, which are required for picornavirus replication. Pharmacological inhibition of autophagic flux during SAI did not rescue EV-D68 titers. SAI had the same effect in multiple cell types, and restricted the replication of several medically relevant picornaviruses. Our results highlight the significance of autophagosomes for picornavirus replication and identify SAI as an attractive broad-spectrum anti-picornavirus strategy.Abbreviations: BAF: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; CVB3: coxsackievirus B3; EV-D68: enterovirus D68; hpi: hour post-infection; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; NSP2B: nonstructural protein 2B; PV: poliovirus; RES: resveratrol; RV14: rhinovirus 14; SAI: starvation after infection; SBI: starvation before infection; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael A. Wagner
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ganna Galitska
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bimal Paudel
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katelyn Miller
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T. Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA,CONTACT William T. Jackson Department of Microbiology and Immunology and Center for Pathogen Research University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
23
|
Kim H, Aponte-Diaz D, Sotoudegan MS, Shengjuler D, Arnold JJ, Cameron CE. The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D. PLoS Biol 2023; 21:e3001693. [PMID: 36689548 PMCID: PMC9894558 DOI: 10.1371/journal.pbio.3001693] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/02/2023] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David Aponte-Diaz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Jamie J. Arnold
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Craig E. Cameron
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
Nagy PD. Co-opted membranes, lipids, and host proteins: what have we learned from tombusviruses? Curr Opin Virol 2022; 56:101258. [PMID: 36166851 DOI: 10.1016/j.coviro.2022.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
Positive-strand RNA viruses replicate in intracellular membranous structures formed after virus-driven intensive manipulation of subcellular organelles and membranes. These unique structures are called viral-replication organelles (VROs). To build VROs, the replication proteins coded by (+)RNA viruses co-opt host proteins, including membrane-shaping, lipid synthesis, and lipid-modification enzymes to create an optimal microenvironment that (i) concentrates the viral replicase and associated host proteins and the viral RNAs; (ii) regulates enzymatic activities and spatiotemporally the replication process; and (iii) protects the viral RNAs from recognition and degradation by the host innate immune defense. Tomato bushy stunt virus (TBSV), a plant (+)RNA virus, serves as an advanced model to study the interplay among viral components, co-opted host proteins, lipids, and membranes. This review presents our current understanding of the complex interaction between TBSV and host with panviral implications.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
25
|
Feng Z, Kovalev N, Nagy PD. Multifunctional role of the co-opted Cdc48 AAA+ ATPase in tombusvirus replication. Virology 2022; 576:1-17. [PMID: 36126429 DOI: 10.1016/j.virol.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022]
Abstract
Replication of positive-strand RNA viruses depends on usurped cellular membranes and co-opted host proteins. Based on pharmacological inhibition and genetic and biochemical approaches, the authors identified critical roles of the cellular Cdc48 unfoldase/segregase protein in facilitating the replication of tomato bushy stunt virus (TBSV). We show that TBSV infection induces the expression of Cdc48 in Nicotiana benthamiana plants. Cdc48 binds to the TBSV replication proteins through its N-terminal region. In vitro TBSV replicase reconstitution experiments demonstrated that Cdc48 is needed for efficient replicase assembly and activity. Surprisingly, the in vitro replication experiments also showed that excess amount of Cdc48 facilitates the disassembly of the membrane-bound viral replicase-RNA template complex. Cdc48 is also needed for the recruitment of additional host proteins. Because several human viruses, including flaviviruses, utilize Cdc48, also called VCP/p97, for replication, we suggest that Cdc48 might be a common panviral host factor for plant and animal RNA viruses.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, USA
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, USA.
| |
Collapse
|
26
|
Ventura-López C, Cervantes-Luevano K, Aguirre-Sánchez JS, Flores-Caballero JC, Alvarez-Delgado C, Bernaldez-Sarabia J, Sánchez-Campos N, Lugo-Sánchez LA, Rodríguez-Vázquez IC, Sander-Padilla JG, Romero-Antonio Y, Arguedas-Núñez MM, González-Canudas J, Licea-Navarro AF. Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial. Biomed Pharmacother 2022; 152:113223. [PMID: 35709650 PMCID: PMC9159967 DOI: 10.1016/j.biopha.2022.113223] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | - Karla Cervantes-Luevano
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | | | | | - Carolina Alvarez-Delgado
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | - Johanna Bernaldez-Sarabia
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | - Noemí Sánchez-Campos
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | | | | | | | | | | | | | - Alexei F Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| |
Collapse
|
27
|
Roingeard P, Eymieux S, Burlaud-Gaillard J, Hourioux C, Patient R, Blanchard E. The double-membrane vesicle (DMV): a virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. Cell Mol Life Sci 2022; 79:425. [PMID: 35841484 PMCID: PMC9287701 DOI: 10.1007/s00018-022-04469-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022]
Abstract
Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France. .,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France.
| | - Sébastien Eymieux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Romuald Patient
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
28
|
Kang Y, Lin W, Liu Y, Nagy PD. Key tethering function of Atg11 autophagy scaffold protein in formation of virus-induced membrane contact sites during tombusvirus replication. Virology 2022; 572:1-16. [DOI: 10.1016/j.virol.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
|
29
|
Molho M, Prasanth KR, Pogany J, Nagy PD. Targeting conserved co-opted host factors to block virus replication: Using allosteric inhibitors of the cytosolic Hsp70s to interfere with tomato bushy stunt virus replication. Virology 2021; 563:1-19. [PMID: 34399236 DOI: 10.1016/j.virol.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.
Collapse
Affiliation(s)
- Melissa Molho
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - K Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
30
|
Feng Z, Inaba JI, Nagy PD. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase. J Virol 2021; 95:e0107621. [PMID: 34406861 PMCID: PMC8513485 DOI: 10.1128/jvi.01076-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Shirogane Y, Rousseau E, Voznica J, Xiao Y, Su W, Catching A, Whitfield ZJ, Rouzine IM, Bianco S, Andino R. Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome. PLoS Pathog 2021; 17:e1009277. [PMID: 34570820 PMCID: PMC8496841 DOI: 10.1371/journal.ppat.1009277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/07/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023] Open
Abstract
During replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model, which enables exploring the parameter space of the WT and DI competition. We also experimentally examined virus and DI replication kinetics during co-infection, and used these data to infer model parameters. Our model identifies, and our experimental measurements confirm, that the efficiencies of DI genome replication and encapsidation are two most critical parameters determining the outcome of WT replication. However, an equilibrium can be established which enables WT to replicate, albeit to reduced levels.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Elsa Rousseau
- Department of Industrial and Applied Genomics, AI and Cognitive Software Division, IBM Almaden Research Center, San Jose, California, United States of America
- NSF Center for Cellular Construction, University of California, San Francisco, California, United States of America
| | - Jakub Voznica
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- ENS Cachan, Université Paris-Saclay, Cachan, France
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Weiheng Su
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Adam Catching
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Zachary J. Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Igor M. Rouzine
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Universite, Institut de Biologie Paris-Seine, Paris, France
| | - Simone Bianco
- Department of Industrial and Applied Genomics, AI and Cognitive Software Division, IBM Almaden Research Center, San Jose, California, United States of America
- NSF Center for Cellular Construction, University of California, San Francisco, California, United States of America
- * E-mail: (SB); (RA)
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- * E-mail: (SB); (RA)
| |
Collapse
|
32
|
Kerviel A, Zhang M, Altan-Bonnet N. A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations. Annu Rev Cell Dev Biol 2021; 37:171-197. [PMID: 34270326 DOI: 10.1146/annurev-cellbio-040621-032416] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Adeline Kerviel
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mengyang Zhang
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
33
|
de Castro IF, Fernández JJ, Dermody TS, Risco C. Electron Tomography to Study the Three-dimensional Structure of the Reovirus Egress Pathway in Mammalian Cells. Bio Protoc 2021; 11:e4080. [PMID: 34327277 DOI: 10.21769/bioprotoc.4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 11/02/2022] Open
Abstract
Mammalian orthoreoviruses (reoviruses) are nonenveloped, double-stranded RNA viruses that replicate and assemble in cytoplasmic membranous organelles called viral inclusions (VIs). To define the cellular compartments involved in nonlytic reovirus egress, we imaged viral egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs). Electron and confocal microscopy showed that reovirus mature virions are recruited from VIs to modified lysosomes termed sorting organelles (SOs). Later in infection, membranous carriers (MCs) emerge from SOs and transport new virions to the plasma membrane for nonlytic egress. Transmission electron microscopy (TEM) combined with electron tomography (ET) and three-dimensional (3D) reconstruction revealed that these compartments are connected and form the exit pathway. Connections are established by channels through which mature virions are transported from VIs to MCs. In the last step, MCs travel across the cytoplasm and fuse with the plasma membrane, which facilitates reovirus egress. This bio-protocol describes the combination of imaging approaches (TEM, ET, and 3D reconstruction) to analyze reovirus egress zones. The spatial information present in the 3D reconstructions, along with the higher resolution relative to 2D projections, allowed us to identify components of a new nonlytic viral egress pathway.
Collapse
Affiliation(s)
- Isabel Fernández de Castro
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
| | - José Jesús Fernández
- Subcellular Architecture Laboratory, Health Research Institute of Asturias (ISPA) and Spanish National Research Council (CINN-CSIC), Asturias, Spain
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
34
|
Molho M, Chuang C, Nagy PD. Co-opting of nonATP-generating glycolytic enzymes for TBSV replication. Virology 2021; 559:15-29. [PMID: 33799077 DOI: 10.1016/j.virol.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Positive-strand RNA viruses build viral replication organelles (VROs) with the help of co-opted host factors. The energy requirement of intensive viral replication processes is less understood. Previous studies on tomato bushy stunt virus (TBSV) showed that tombusviruses hijack two ATP-producing glycolytic enzymes to produce ATP locally within VROs. In this work, we performed a cDNA library screen with Arabidopsis thaliana proteins and the TBSV p33 replication protein. The p33 - plant interactome contained highly conserved glycolytic proteins. We find that the glycolytic Hxk2 hexokinase, Eno2 phosphopyruvate hydratase and Fba1 fructose 1,6-bisphosphate aldolase are critical for TBSV replication in yeast or in a cell-free replicase reconstitution assay. The recruitment of Fba1 is important for the local production of ATP within VROs. Altogether, our data support the model that TBSV recruits and compartmentalizes possibly most members of the glycolytic pathway. This might allow TBSV to avoid competition with the host for ATP.
Collapse
Affiliation(s)
- Melissa Molho
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.
| |
Collapse
|
35
|
The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA : To Carl Woese (1928-2012), for his Conceptual Breakthrough of Cellular Evolution. J Mol Evol 2021; 89:427-447. [PMID: 34173011 DOI: 10.1007/s00239-021-10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The coming of the Last Universal Cellular Ancestor (LUCA) was the singular watershed event in the making of the biotic world. If the coming of LUCA marked the crossing of the "Darwinian Threshold", then pre-LUCA evolution must have been Pre-Darwinian and at least partly non-Darwinian. But how did Pre-Darwinian evolution before LUCA actually operate? I broaden our understanding of the central mechanism of biological evolution (i.e., variation-selection-inheritance) and then extend this broadened understanding to its natural starting point: the origin(s) of the First Universal Cellular Ancestors (FUCAs) before LUCA. My hypothesis centers upon vesicles' making-and-remaking as variation and competition as selection. More specifically, I argue that vesicles' acquisition and merger, via breaking-and-repacking, proto-endocytosis, proto-endosymbiosis, and other similar processes had been a central force of both variation and selection in the pre-Darwinian epoch. These new perspectives shed important new light upon the origin of FUCAs and their subsequent evolution into LUCA.
Collapse
|
36
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
37
|
Abstract
Jones et al. (2021) and Zhang et al. (2021) reveal by cryo-EM the oligomeric crown-like structure formed by a membrane-associated Chikungunya virus replication protein that gates the export of newly synthesized viral RNA from viral replication organelles.
Collapse
Affiliation(s)
- Manish Kumar
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Liao Q, Yuan S, Cao J, Tang K, Qiu Y, Seow HC, Man RC, Shao Z, Huang Y, Liang R, Chan JF, Yuen K, Lam JK. Inhaled Dry Powder Formulation of Tamibarotene, a Broad‐Spectrum Antiviral against Respiratory Viruses Including SARS‐CoV‐2 and Influenza Virus. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Han Cong Seow
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Rico Chi‐Hang Man
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Zitong Shao
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Yaoqiang Huang
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jasper Fuk‐Woo Chan
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Clinical Microbiology and Infection Control The University of Hong Kong‐Shenzhen Hospital Shenzhen Guangdong Province 518053 China
- Hainan Medical University‐The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases Hainan Medical University Haikou Hainan Province 571199 China
| | - Kwok‐Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Clinical Microbiology and Infection Control The University of Hong Kong‐Shenzhen Hospital Shenzhen Guangdong Province 518053 China
- Hainan Medical University‐The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases Hainan Medical University Haikou Hainan Province 571199 China
| | - Jenny Ka‐Wing Lam
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
- Advanced Biomedical Instrumentation Centre Hong Kong Science Park Shatin, New Territories, Hong Kong SAR China
| |
Collapse
|
39
|
Development of Group B Coxsackievirus as an Oncolytic Virus: Opportunities and Challenges. Viruses 2021; 13:v13061082. [PMID: 34198859 PMCID: PMC8227215 DOI: 10.3390/v13061082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.
Collapse
|
40
|
Molho M, Lin W, Nagy PD. A novel viral strategy for host factor recruitment: The co-opted proteasomal Rpn11 protein interaction hub in cooperation with subverted actin filaments are targeted to deliver cytosolic host factors for viral replication. PLoS Pathog 2021; 17:e1009680. [PMID: 34161398 PMCID: PMC8260003 DOI: 10.1371/journal.ppat.1009680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11's interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.
Collapse
Affiliation(s)
- Melissa Molho
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
41
|
Li G, Su B, Fu P, Bai Y, Ding G, Li D, Wang J, Yang G, Chu B. NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry. SCIENCE CHINA-LIFE SCIENCES 2021; 65:341-361. [PMID: 34047913 PMCID: PMC8160554 DOI: 10.1007/s11427-021-1929-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.
Collapse
Affiliation(s)
- Guoli Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Bingqian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Pengfei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guangxu Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Dahua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
42
|
The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles. Proc Natl Acad Sci U S A 2021; 118:2016066118. [PMID: 33376201 DOI: 10.1073/pnas.2016066118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.
Collapse
|
43
|
Nagy PD, Feng Z. Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles. Curr Opin Virol 2021; 48:30-41. [PMID: 33845410 DOI: 10.1016/j.coviro.2021.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/09/2023]
Abstract
Positive-strand RNA viruses depend on intensive manipulation of subcellular organelles and membranes to create unique viral replication organelles (VROs), which represent the sites of robust virus replication. The host endomembrane-based protein-trafficking and vesicle-trafficking pathways are specifically targeted by many (+)RNA viruses to take advantage of their rich resources. We summarize the critical roles of co-opted endoplasmic reticulum subdomains and associated host proteins and COPII vesicles play in tombusvirus replication. We also present the surprising contribution of the early endosome and the retromer tubular transport carriers to VRO biogenesis. The central player is tomato bushy stunt virus (TBSV), which provides an outstanding system based on the identification of a complex network of interactions with the host cells. We present the emerging theme on how TBSV uses tethering and membrane-shaping proteins and lipid modifying enzymes to build the sophisticated VRO membranes with unique lipid composition.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
44
|
Wong LH, Edgar JR, Martello A, Ferguson BJ, Eden ER. Exploiting Connections for Viral Replication. Front Cell Dev Biol 2021; 9:640456. [PMID: 33816489 PMCID: PMC8012536 DOI: 10.3389/fcell.2021.640456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 (coronavirus disease 2019) pandemic, is a positive strand RNA (+RNA) virus. Like other +RNA viruses, SARS-CoV-2 is dependent on host cell metabolic machinery to survive and replicate, remodeling cellular membranes to generate sites of viral replication. Viral RNA-containing double-membrane vesicles (DMVs) are a striking feature of +RNA viral replication and are abundant in SARS-CoV-2-infected cells. Their generation involves rewiring of host lipid metabolism, including lipid biosynthetic pathways. Viruses can also redirect lipids from host cell organelles; lipid exchange at membrane contact sites, where the membranes of adjacent organelles are in close apposition, has been implicated in the replication of several +RNA viruses. Here we review current understanding of DMV biogenesis. With a focus on the exploitation of contact site machinery by +RNA viruses to generate replication organelles, we discuss evidence that similar mechanisms support SARS-CoV-2 replication, protecting its RNA from the host cell immune response.
Collapse
Affiliation(s)
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emily R. Eden
- UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
45
|
Lin W, Feng Z, Prasanth KR, Liu Y, Nagy PD. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog 2021; 17:e1009423. [PMID: 33725015 PMCID: PMC7997005 DOI: 10.1371/journal.ppat.1009423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/26/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.
Collapse
Affiliation(s)
- Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, United States of America
| |
Collapse
|
46
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|
47
|
Joffrin AM, Saunders AM, Barneda D, Flemington V, Thompson AL, Sanganee HJ, Conway SJ. Development of isotope-enriched phosphatidylinositol-4- and 5-phosphate cellular mass spectrometry probes. Chem Sci 2021; 12:2549-2557. [PMID: 34820112 PMCID: PMC8607509 DOI: 10.1039/d0sc06219g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphatidylinositol phosphate (PtdInsPn) derivatives play a pivotal role in broadening our understanding of PtdInsPn metabolism. However, the development of such tools is reliant on efficient enantioselective and regioselective synthetic strategies. Here we report the development of a divergent synthetic route applicable to the synthesis of deuterated PtdIns4P and PtdIns5P derivatives. The synthetic strategy developed involves a key enzymatic desymmetrisation step using Lipozyme TL-IM®. In addition, we optimised the large-scale synthesis of deuterated myo-inositol, allowing for the preparation of a series of saturated and unsaturated deuterated PtdIns4P and PtdIns5P derivatives. Experiments in MCF7 cells demonstrated that these deuterated probes enable quantification of the corresponding endogenous phospholipids in a cellular setting. Overall, these deuterated probes will be powerful tools to help improve our understanding of the role played by PtdInsPn in physiology and disease. We report the synthesis of deuterium-labelled derivatives of phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, and demonstrate their use in quantifying levels of endogenous phospholipids in cells.![]()
Collapse
Affiliation(s)
- Amélie M Joffrin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alex M Saunders
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David Barneda
- Inositide Laboratory, Babraham Institute Babraham Research Campus Cambridge CB22 3AT UK.,Bioscience, Oncology R&D, AstraZeneca Cambridge CB4 0WG UK
| | | | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Hitesh J Sanganee
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
48
|
Casari I, Manfredi M, Metharom P, Falasca M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog Lipid Res 2021; 82:101092. [PMID: 33571544 PMCID: PMC7869689 DOI: 10.1016/j.plipres.2021.101092] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that has infected over a hundred million people globally. There have been more than two million deaths recorded worldwide, with no end in sight until a widespread vaccination will be achieved. Current research has centred on different aspects of the virus interaction with cell surface receptors, but more needs to be done to further understand its mechanism of action in order to develop a targeted therapy and a method to control the spread of the virus. Lipids play a crucial role throughout the viral life cycle, and viruses are known to exploit lipid signalling and synthesis to affect host cell lipidome. Emerging studies using untargeted metabolomic and lipidomic approaches are providing new insight into the host response to COVID-19 infection. Indeed, metabolomic and lipidomic approaches have identified numerous circulating lipids that directly correlate to the severity of the disease, making lipid metabolism a potential therapeutic target. Circulating lipids play a key function in the pathogenesis of the virus and exert an inflammatory response. A better knowledge of lipid metabolism in the host-pathogen interaction will provide valuable insights into viral pathogenesis and to the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Pat Metharom
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia; Western Australian Centre for Thrombosis and Haemostasis, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Curtin Medical School, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
49
|
Abstract
Many animal viruses replicate and are released from cells in close association to membranes. However, whether this is a passive process or is controlled by the virus remains poorly understood. Importantly, the genetic basis and evolvability of membrane-associated viral shedding have not been investigated. To address this, we performed a directed evolution experiment using coxsackievirus B3, a model enterovirus, in which we repeatedly selected the free-virion or the fast-sedimenting membrane-associated viral subpopulations. The virus responded to this selection regime by reproducibly fixing a series of mutations that altered the extent of membrane-associated viral shedding, as revealed by full-genome ultra-deep sequencing. Specifically, using site-directed mutagenesis, we showed that substitution N63H in the viral capsid protein VP3 reduced the ratio of membrane-associated to free viral particles by 2 orders of magnitude. These findings open new avenues for understanding the mechanisms and implications of membrane-associated viral transmission.
Collapse
Affiliation(s)
- Juan-Vicente Bou
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
50
|
The Fatty Acid Lipid Metabolism Nexus in COVID-19. Viruses 2021; 13:v13010090. [PMID: 33440724 PMCID: PMC7826519 DOI: 10.3390/v13010090] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003 and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response and increases disease severity. Such observations are in line with the importance of lipid metabolism in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis. Such observations, along with the known mechanisms of action for these types of drugs, suggest that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively impacting the patient's response to COVID-19.
Collapse
|