1
|
Yang S, Yu F, Yang M, Ni H, Bu W, Yin H, Yang J, Wang W, Zhai D, Wu X, Ma N, Li T, Hao H, Ran J, Song T, Li D, Yoshida S, Lu Q, Yang Y, Zhou J, Liu M. CYLD Maintains Retinal Homeostasis by Deubiquitinating ENKD1 and Promoting the Phagocytosis of Photoreceptor Outer Segments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404067. [PMID: 39373352 DOI: 10.1002/advs.202404067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is essential for retinal homeostasis. Dysregulation of the phagocytotic process is associated with irreversible retinal degenerative diseases. However, the molecular mechanisms underlying the phagocytic activity of RPE cells remain elusive. In an effort to uncover proteins orchestrating retinal function, the cylindromatosis (CYLD) deubiquitinase is identified as a critical regulator of photoreceptor outer segment phagocytosis. CYLD-deficient mice exhibit abnormal retinal structure and function. Mechanistically, CYLD interacts with enkurin domain containing protein 1 (ENKD1) and deubiquitinates ENKD1 at lysine residues K141 and K242. Deubiquitinated ENKD1 interacts with Ezrin, a membrane-cytoskeleton linker, and stimulates the microvillar localization of Ezrin, which is essential for the phagocytic activity of RPE cells. These findings thus reveal a crucial role for the CYLD-ENKD1-Ezrin axis in regulating retinal homeostasis and may have important implications for the prevention and treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Song Yang
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Fan Yu
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Hua Ni
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Hanxiao Yin
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jia Yang
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Weishu Wang
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Xuemei Wu
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Nan Ma
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Te Li
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Huijie Hao
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Sei Yoshida
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, 300462, China
| |
Collapse
|
2
|
Shu LX, Cao LL, Guo X, Wang ZB, Wang SZ. Mechanism of efferocytosis in atherosclerosis. J Mol Med (Berl) 2024; 102:831-840. [PMID: 38727748 DOI: 10.1007/s00109-024-02439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 06/29/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.
Collapse
Affiliation(s)
- Li-Xia Shu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Liu-Li Cao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Xin Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Wu D, Zhang K, Guan K, Tan J, Huang C, Sun F. Retinoic acid tiers mitochondrial metabolism to Sertoli Cell-Mediated efferocytosis via a non-RAR-dependent mechanism. Biochem Pharmacol 2024; 225:116281. [PMID: 38744379 DOI: 10.1016/j.bcp.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Efferocytosis of massive non-viable germ cells by Sertoli cells (SCs), the specialized phagocytes, is essential for maintaining testis homeostasis. What elusive is the contribution of mitochondrial metabolism to this energy-consuming process, as SC has a preference of aerobic glycolysis. All-trans retinoic acid (ATRA, hereafter referred to as RA) is a well-known morphogen that primarily acts through the nuclear RA receptor (RAR). It sustains SC blood-testisbarrier integrity, and it's SC-derived RA sets the timing of meiotic commitment. In this study, we revisited RA in SC biology, from the perspective of SC-mediated efferocytosis. We provide evidence that RA induces transcriptional programming of multiple regulators involved in efferocytosis, which thereby represses SC-mediated efferocytosis, via a RAR-independent mechanism, as blocking pan-RAR activity fails to rescue RA-induced defective efferocytosis. RA-treated SCs exhibit alternations in mitochondrial dynamics and metabolism, and the hindered efferocytosis can be rescued by stimulating mitochondrial OXPHOS via pharmacological targeting of AMPK and PDK. We thus prefer to propose a signaling axis of RA-mitochondrial metabolism-efferocytosis. Our study uncovers a hitherto unappreciated role of RA in SC biology and tiers mitochondria metabolism to SC-mediated efferocytosis, contributing a deeper understanding of SC in male reproduction.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China; School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Jamalvandi M, Khayyatzadeh SS, Hayati MJ, Gheibihayat SM. The role of fat-soluble vitamins in efferocytosis. Cell Biochem Funct 2024; 42:e3972. [PMID: 38500392 DOI: 10.1002/cbf.3972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Cell death and the efficient removal of dead cells are two basic mechanisms that maintain homeostasis in multicellular organisms. efferocytosis, which includes four steps recruitment, recognition, binding and signaling, and engulfment. Effectively and quickly removes apoptotic cells from the body. Any alteration in efferocytosis can lead to several diseases, including autoimmune and inflammatory conditions, atherosclerosis, and cancer. A wide range of dietary components affects apoptosis and, subsequently, efferocytosis. Some vitamins, including fat-soluble vitamins, affect different stages of efferocytosis. Among other things, by affecting macrophages, they are effective in the apoptotic cleansing of cells. Also, polyphenols indirectly intervene in efferocytosis through their effect on apoptosis. Considering that there are limited articles on the effect of nutrition on efferocytosis, in this article we will examine the effect of some dietary components on efferocytosis.
Collapse
Affiliation(s)
- Mona Jamalvandi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
7
|
Berlin A, Matney E, Jones SG, Clark ME, Swain TA, McGwin G, Martindale RM, Sloan KR, Owsley C, Curcio CA. Discernibility of the Interdigitation Zone (IZ), a Potential Optical Coherence Tomography (OCT) Biomarker for Visual Dysfunction in Aging. Curr Eye Res 2023; 48:1050-1056. [PMID: 37539829 PMCID: PMC10592305 DOI: 10.1080/02713683.2023.2240547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE Photoreceptor (PR) outer segments, retinal pigment epithelium apical processes, and inter-PR matrix contribute to the interdigitation zone (IZ) of optical coherence tomography (OCT). We hypothesize that this interface degrades over adulthood, in concert with a delay of rod mediated dark adaptation (RMDA). To explore this idea, we determined IZ discernibility and RMDA in younger and older adults. METHODS For this cross-sectional study, eyes of 20 young (20-30 years) and 40 older (≥60 years) participants with normal maculas according to the AREDS 9-step grading system underwent OCT imaging and RMDA testing at 5° superior to the fovea. Custom FIJI plugins enabled analysis for IZ discernibility at 9 eccentricities in 0.5 mm steps on one single horizontal B-scan through the fovea. Locations with discernible IZ met two criteria: visibility on B-scans and a distinct peak on a longitudinal reflectivity profile. The frequency of sites meeting both criteria was compared between both age groups and correlated with rod intercept time (RIT). RESULTS The median number of locations with discernible IZ was significantly higher (foveal, 4 vs. 0, p = 0.0099; extra-foveal 6 vs. 0, p < 0.001) in eyes of young (26 ± 3 years) compared to older (73 ± 5 years) participants. For the combined young and older sample, the higher frequency of discernible IZ was correlated with shorter RIT (faster dark adaptation) (rs = -0.56, p < 0.0001). This association was significant within young eyes (rs = -0.54; p = 0.0134) and not within older eyes (rs = -0.29, p = 0.706). CONCLUSIONS Results suggest that the interface between outer segments and apical processes degrades in normal aging, potentially contributing to delayed rod-mediated dark adaptation. More research is needed to verify an age-related association between IZ discernibility and rod-mediated dark adaptation. If confirmed in a large sample, IZ discernibility might prove to be a valuable biomarker and predictor for visual function in aging.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
- University Hospital Würzburg, Würzburg, Germany
| | - Emily Matney
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Skyler G. Jones
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham AL USA
| | - Richard M. Martindale
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| |
Collapse
|
8
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Moon B, Yang S, Moon H, Lee J, Park D. After cell death: the molecular machinery of efferocytosis. Exp Mol Med 2023; 55:1644-1651. [PMID: 37612408 PMCID: PMC10474042 DOI: 10.1038/s12276-023-01070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cells constituting a multicellular organism die in a variety of ways throughout life, and most of them die via apoptosis under normal conditions. The occurrence of apoptosis is especially prevalent during development and in tissues with a high cellular turnover rate, such as the thymus and bone marrow. Interestingly, although the number of apoptotic cells produced daily is known to be innumerable in a healthy adult human body, apoptotic cells are rarely observed. This absence is due to the existence of a cellular process called efferocytosis that efficiently clears apoptotic cells. Studies over the past decades have focused on how phagocytes are able to remove apoptotic cells specifically, swiftly, and continuously, resulting in defined molecular and cellular events. In this review, we will discuss the current understanding of the clearance of apoptotic cells at the molecular level.
Collapse
Affiliation(s)
- Byeongjin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Susumin Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
10
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
11
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
12
|
Wu D, Pandupuspitasari NS, Zhang K, Tang Y, Khan FA, Li H, Huang C, Sun F. Cytoskeletal orchestration of glucose uptake in Sertoli cell to support efferocytosis of apoptotic germ cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119434. [PMID: 36716822 DOI: 10.1016/j.bbamcr.2023.119434] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Efferocytosis of non-viable germ cells by Sertoli cells (SCs) constitutes a sentinel for testis homeostasis, yet how SCs signal for the metabolic and cytoskeletal adaption to this energetically costly process remains unexplored. Spectrin is membrane-associated periodic skeleton assembled into an actin-spectrin-based cytoskeletal structure with an interaction with glucose transporter Glut1. The contribution of spectrin to glucose uptake and efferocytosis is unknown. In this study, we identified a cross-regulation between glucose metabolism and efferocytosis in SCs. Pharmacological or genetic inhibition of glucose uptake or glycolysis compromises efferocytosis activity. We further found that βII-spectrin is a hitherto unappreciated regulator of glucose metabolism and cytoskeletal architecture. βII-spectrin deficiency impairs glucose uptake and lactate production in SCs. Moreover, a defective assembly of cytoskeleton and a loss of blood-testis barrier integrity are also featured by SCs deficient in βII-spectrin. The disruption in glucose metabolism and cytoskeletal organization synergistically lead to a defective efferocytosis. In vivo siRNA-mediated targeting of βII-spectrin in testis causes an obvious morphological aberration in seminiferous epithelium with the presence of exfoliated germ cells and multinucleated giant cells. Importantly, a decrease in expression of αII/βII-spectrin was observed in testes of Adjudin-induced infertility model. By exploring the functional relevance of βII-spectrin to the metabolic and cytoskeletal regulation of efferocytosis, our study proposes a potential link between βII-spectrin deregulation and male infertility.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Nuruliarizki Shinta Pandupuspitasari
- Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang 1269, Indonesia; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yuan Tang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore 54782, Pakistan; Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | - Haitao Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
13
|
Xu J, Sang M, Cheng J, Luo C, Shi J, Sun F. Knockdown of disheveled-associated activator of morphogenesis 2 disrupts cytoskeletal organization and phagocytosis in rat Sertoli cells. Mol Cell Endocrinol 2023; 563:111867. [PMID: 36681175 DOI: 10.1016/j.mce.2023.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Disheveled-associated activator of morphogenesis 2 (DAAM2) regulates actin polymerization and cell motility. In this study, we investigated the role of DAAM2 in the cytoskeleton and phagocytosis of rat Sertoli cells in vitro and in vivo through siRNA transfection and intratesticular injection. We found that knockdown of DAAM2 significantly attenuated cytoskeletal and tight junction marker expression and reduced the integrity of the Sertoli cell monolayer. In rats, loss of DAAM2 induced disarrangement and deformation of sperms and promoted accumulation of apoptotic sperms in the testis, accompanied by morphological abnormalities in the blood-testis barrier. DAAM2 silencing also reduced the ability of Sertoli cells to engulf apoptotic spermatogenic cells and green fluorescence-labeled beads. RNA sequencing and bioinformatics analysis revealed that phagocytosis and cytoskeleton-related genes and pathways were significantly associated with DAAM2. Our study suggests that DAAM2 may be involved in spermatogenesis possibly by regulating cytoskeleton organization and phagocytosis of Sertoli cells.
Collapse
Affiliation(s)
- Junjie Xu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China; Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Chunhai Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
14
|
O-GlcNAcylation regulates phagocytosis by promoting Ezrin localization at the cell cortex. J Genet Genomics 2023:S1673-8527(23)00042-5. [PMID: 36796536 DOI: 10.1016/j.jgg.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
O-GlcNAcylation is a post-translational modification that serves as a cellular nutrient sensor and participates in multiple physiological and pathological processes. However, it remains uncertain whether O-GlcNAcylation is involved in the regulation of phagocytosis. Here, we demonstrate a rapid increase in protein O-GlcNAcylation in response to phagocytotic stimuli. Knockout of O-GlcNAc transferase or pharmacological inhibition of O-GlcNAcylation dramatically blocks phagocytosis, resulting in the disruption of retinal structure and function. Mechanistic studies reveal that O-GlcNAc transferase interacts with Ezrin, a membrane-cytoskeleton linker protein, to catalyze its O-GlcNAcylation. Our data further show that Ezrin O-GlcNAcylation promotes its localization to the cell cortex, thereby stimulating the membrane-cytoskeleton interaction needed for efficient phagocytosis. These findings identify a previously unrecognized role for protein O-GlcNAcylation in phagocytosis with important implications in both health and diseases.
Collapse
|
15
|
Wang YT, Trzeciak AJ, Rojas WS, Saavedra P, Chen YT, Chirayil R, Etchegaray JI, Lucas CD, Puleston DJ, Keshari KR, Perry JSA. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell Metab 2023; 35:316-331.e6. [PMID: 36584675 PMCID: PMC9908853 DOI: 10.1016/j.cmet.2022.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Apoptotic cell (AC) clearance (efferocytosis) is performed by phagocytes, such as macrophages, that inhabit harsh physiological environments. Here, we find that macrophages display enhanced efferocytosis under prolonged (chronic) physiological hypoxia, characterized by increased internalization and accelerated degradation of ACs. Transcriptional and translational analyses revealed that chronic physiological hypoxia induces two distinct but complimentary states. The first, "primed" state, consists of concomitant transcription and translation of metabolic programs in AC-naive macrophages that persist during efferocytosis. The second, "poised" state, consists of transcription, but not translation, of phagocyte function programs in AC-naive macrophages that are translated during efferocytosis. Mechanistically, macrophages efficiently flux glucose into a noncanonical pentose phosphate pathway (PPP) loop to enhance NADPH production. PPP-derived NADPH directly supports enhanced efferocytosis under physiological hypoxia by ensuring phagolysosomal maturation and redox homeostasis. Thus, macrophages residing under physiological hypoxia adopt states that support cell fitness and ensure performance of essential homeostatic functions rapidly and safely.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alissa J Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedro Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yan-Ting Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jon Iker Etchegaray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, Scotland, UK; Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, Scotland, UK
| | - Daniel J Puleston
- Bloomberg, Kimmel Institute of Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
16
|
Shi J, Gao S, Chen Z, Chen Z, Yun D, Wu X, Sun F. Absence of MerTK disrupts spermatogenesis in an age-dependent manner. Mol Cell Endocrinol 2023; 560:111815. [PMID: 36379275 DOI: 10.1016/j.mce.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Spermatogenesis is a highly specialized cell differentiation process regulated by the testicular microenvironment. During the process of spermatogenesis, phagocytosis performs an essential role in male germ cell development, and its dysfunction in the testis can cause reproduction defects. MerTK, as a critical protein of phagocytosis, facilitates the removal of apoptotic substrates from the retina and ovaries through cooperation with several phagocytosis receptors. However, its role in mammalian spermatogenesis remains undefined. Here, we found that 30-week-old MerTK-/- male mice developed oligoasthenospermia due to abnormal spermatogenesis. These mice showed damaged seminiferous tubule structure, as well as altered spermatogonia proliferation and differentiation. We also found that Sertoli cells from MerTK-/- mice had decreased phagocytic activity on apoptotic germ cells in vitro. Moreover, a transcriptomic analysis demonstrated that the pivotal genes involved in spermatid differentiation and development changed expression. These results indicate that MerTK is crucial for spermatogenesis, as it regulates the crosstalk between germ cells and Sertoli cells. This provides us insight into the molecular mechanism of MerTK on spermatogenesis and its implications for the diagnosis and treatment of human male infertility.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
17
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
18
|
Vorselen D. Dynamics of phagocytosis mediated by phosphatidylserine. Biochem Soc Trans 2022; 50:1281-1291. [PMID: 36281986 PMCID: PMC9704538 DOI: 10.1042/bst20211254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/13/2023]
Abstract
Phagocytosis triggered by the phospholipid phosphatidylserine (PS) is key for the removal of apoptotic cells in development, tissue homeostasis and infection. Modulation of PS-mediated phagocytosis is an attractive target for therapeutic intervention in the context of atherosclerosis, neurodegenerative disease, and cancer. Whereas the mechanisms of target recognition, lipid and protein signalling, and cytoskeletal remodelling in opsonin-driven modes of phagocytosis are increasingly well understood, PS-mediated phagocytosis has remained more elusive. This is partially due to the involvement of a multitude of receptors with at least some redundancy in functioning, which complicates dissecting their contributions and results in complex downstream signalling networks. This review focusses on the receptors involved in PS-recognition, the signalling cascades that connect receptors to cytoskeletal remodelling required for phagocytosis, and recent progress in our understanding of how phagocytic cup formation is coordinated during PS-mediated phagocytosis.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biology, University of Washington, Seattle, WA 98105, U.S.A
| |
Collapse
|
19
|
Garay JA, Silva JE, Di Genaro MS, Davicino RC. The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines 2022; 10:biomedicines10102570. [PMID: 36289832 PMCID: PMC9599698 DOI: 10.3390/biomedicines10102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO), a signaling molecule, regulates multiple biological functions, including a variety of physiological and pathological processes. In this regard, NO participates in cutaneous inflammations, modulation of mitochondrial functions, vascular diseases, COVID-19, neurologic diseases, and obesity. It also mediates changes in the skeletal muscle function. Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by the malfunction of phagocytes caused by mutations in some of the genes encoding subunits of the superoxide-generating phagocyte NADPH (NOX). The literature consulted shows that there is a relationship between the production of NO and the NADPH oxidase system, which regulates the persistence of NO in the medium. Nevertheless, the underlying mechanisms of the effects of NO on CGD remain unknown. In this paper, we briefly review the regulatory role of NO in CGD and its potential underlying mechanisms.
Collapse
Affiliation(s)
- Juan Agustín Garay
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
- Correspondence:
| |
Collapse
|
20
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Liang W, Huang C, Sun F. Smtnl2 regulates apoptotic germ cell clearance and lactate metabolism in mouse Sertoli cells. Mol Cell Endocrinol 2022; 551:111664. [PMID: 35551947 DOI: 10.1016/j.mce.2022.111664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
Smtnl2 is an epithelial Smoothelin that binds to actin filaments and is crucial for epithelial morphogenesis. We examined the role of Smtnl2 in Sertoli cells, which undergo dynamic cytoskeleton reorganization to phagocytose apoptotic germ cells, a process known as efferocytosis. We observed Smtnl2 expression in primary mouse Sertoli cells and the 15P1 Sertoli cell line. Smtnl2 expression increased in 15P1 cells committing efferocytosis. Smtnl2-deficient Sertoli cells exhibited defective ability to engulf apoptotic germ cells and importantly, the phenomenon occurred in the setting of an unaffected maturation of phagosome. We demonstrated that Smtnl2 regulates the engulfment process through the function of branched actin nucleation protein ARP3, an actin assembly dictator. Intriguingly, a shift in glucose metabolism that restricts lactate production in Sertoli cells was induced upon Smtnl2 depletion, leading to the activation of downstream AMPK and AKT signaling. Using an in vivo RNAi approach, we found that silencing of Smtnl2 in testis triggers an obvious disruption in cytoskeleton architecture and blood-testis barrier integrity across seminiferous epithelium, causing the detachment of massive germ cells from their nest, as evidenced by their exfoliation into the lumen. Overall, our study identifies Smtnl2 as a determinant for Sertoli cells' functioning in supporting spermatogenesis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54782, Pakistan; Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Wangzhang Liang
- Department of Pathology, Second Hospital of Shanxi Medical University, Shanxi, 030001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
21
|
McClusky LM. Several routes of cell death to secondary necrosis in the elasmobranch testis. Apoptosis 2022; 27:454-464. [PMID: 35672487 PMCID: PMC9308584 DOI: 10.1007/s10495-022-01733-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
The process of spermatogenesis features significant germ cell loss through apoptosis. Routine histology of the testes of well-studied animal models hardly discloses any trace of their phagocytic clearance by the supporting Sertoli cells. This review highlights lessons learnt from the cystic, diametric testes of some seasonally migrating elasmobranchs (e.g., spiny dogfish and blue sharks) that offer unconventional investigative paradigms to study these phenomena as these organs readily disclose a pronounced apoptosis gradient affecting exclusively spermatogonial clones that each are enclosed with their own Sertoli cells in spherical structures called spermatocysts. This gradient is visible at a certain time of year in the spermatogenically active shark, and peaks in mature spermatogonial cysts as clustered deaths with sporadic, and not massive secondary necrosis. Conversely, immature spermatogonial cysts in blue sharks reveal a characteristic periluminal display of single apoptotic deaths. Tracing aberrations in the immunostaining patterns of the conserved cell cycle marker, proliferating cell nuclear antigen, the gradual progression of the death process in individual or coalesced spermatogonia in contiguous cysts becomes clear. The multiple apoptotic nuclear fragmentation morphologies inform also of a protracted death process involving three different morphological routes of nuclear fragmentation (of which some are TUNEL-positive and other TUNEL-negative) and concomitant chromatin compaction that culminate in freed apoptotic bodies (i.e., secondary necrosis). It is discussed that the staggered spermatogonial deaths and accompanying intermittent secondary necrosis in mature blue shark spermatogonial cysts may well relate to the low phagocytosis capacity of cyst’s Sertoli cells that are still functionally naïve.
Collapse
Affiliation(s)
- Leon Mendel McClusky
- Anatomy Section, Department of Health & Care, Faculty of Health Sciences, UiT The Arctic University of Norway, Campus Narvik, Narvik, Norway.
| |
Collapse
|
22
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Cho H, Jeong M, Lee S, Yoo S. Comparison of the qualitative and quantitative optical coherence tomographic features between sudden acquired retinal degeneration syndrome and normal eyes in dogs. Vet Ophthalmol 2022; 25 Suppl 1:144-163. [PMID: 35144323 DOI: 10.1111/vop.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To quantitatively and qualitatively characterize the retinal optical coherence tomographic features of sudden acquired retinal degeneration syndrome (SARDS) and SARDS suspect dogs. ANIMALS STUDIED Fourteen SARDS affected dogs, 11 age-, breed-, and sex-matched control dogs, and two SARDS suspect dogs. PROCEDURES Spectral-domain optical coherence tomography (OCT) images were used to evaluate the quantitative features, including thickness, intereye asymmetry, and longitudinal changes in retinal layer thickness and the qualitative features, including retinal architecture and vitreous haze. RESULTS Mean outer retinal layer thickness (ORT), outer nuclear layer thickness (ONL), and photoreceptor layer thickness (PRL) were significantly lower in the SARDS group, whereas mean inner retinal layer thickness was significantly higher in the SARDS group than in the control group. While thickness values of all retinal layers did not differ significantly between paired eyes in each group, the absolute intereye asymmetries in the ORT (p < .0001), ONL (p = .008), and PRL (p < .0001) were significantly higher in the SARDS group than in the control group. Some SARDS patients and SARDS suspects had a greater PRL than the control group, and serial OCT evaluation showed an increase in PRL in one SARDS suspect. Vitreous haze severity was greater in the SARDS group than in the control group (vitreous relative intensity, p = .030). CONCLUSIONS We described the OCT features of SARDS patients and suspects. In particular, PRL thickening in the SARDS suspects might indicate an early change in SARDS. Although further studies are needed, this finding might provide new insights into the pathogenesis of SARDS.
Collapse
|
24
|
Yefimova MG, Béré E, Cantereau-Becq A, Meunier-Balandre AC, Merceron B, Burel A, Merienne K, Ravel C, Becq F, Bourmeyster N. Myelinosome Organelles in the Retina of R6/1 Huntington Disease (HD) Mice: Ubiquitous Distribution and Possible Role in Disease Spreading. Int J Mol Sci 2021; 22:ijms222312771. [PMID: 34884576 PMCID: PMC8657466 DOI: 10.3390/ijms222312771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Visual deficit is one of the complications of Huntington disease (HD), a fatal neurological disorder caused by CAG trinucleotide expansions in the Huntingtin gene, leading to the production of mutant Huntingtin (mHTT) protein. Transgenic HD R6/1 mice expressing human HTT exon1 with 115 CAG repeats recapitulate major features of the human pathology and exhibit a degeneration of the retina. Our aim was to gain insight into the ultrastructure of the pathological HD R6/1 retina by electron microscopy (EM). We show that the HD R6/1 retina is enriched with unusual organelles myelinosomes, produced by retinal neurons and glia. Myelinosomes are present in all nuclear and plexiform layers, in the synaptic terminals of photoreceptors, in the processes of retinal neurons and glial cells, and in the subretinal space. In vitro study shows that myelinosomes secreted by human retinal glial Müller MIO-M1 cells transfected with EGFP-mHTT-exon1 carry EGFP-mHTT-exon1 protein, as revealed by immuno-EM and Western-blotting. Myelinosomes loaded with mHTT-exon1 are incorporated by naive neuronal/neuroblastoma SH-SY5Y cells. This results in the emergence of mHTT-exon1 in recipient cells. This process is blocked by membrane fusion inhibitor MDL 28170. Conclusion: Incorporation of myelinosomes carrying mHTT-exon1 in recipient cells may contribute to HD spreading in the retina. Exploring ocular fluids for myelinosome presence could bring an additional biomarker for HD diagnostics.
Collapse
Affiliation(s)
- Marina G. Yefimova
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Pr. Thorez, 194233 St. Petersburg, Russia
- Laboratoire de Biologie de la Reproduction-CECOS, Hopital SUD, 16 Bd de Bulgarie, CEDEX, 35000 Rennes, France;
- Correspondence:
| | - Emile Béré
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Anne Cantereau-Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Annie-Claire Meunier-Balandre
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
| | - Bruno Merceron
- Plateforme IMAGE-UP, 1 Rue Georges Bonnet, 86022 Poitiers, France; (E.B.); (B.M.)
| | - Agnès Burel
- Plateforme Mric TEM, BIOSIT UMS 34 80, Université de Rennes 1, 2 Av. Pr. Léon Bernard, CEDEX, 35043 Rennes, France;
| | - Karine Merienne
- Laboratory of Cognitive and Adaptive Neurosciences (LNCA), University of Strasbourg, 67000 Strasbourg, France;
- CNRS UMR 7364, 67000 Strasbourg, France
| | - Célia Ravel
- Laboratoire de Biologie de la Reproduction-CECOS, Hopital SUD, 16 Bd de Bulgarie, CEDEX, 35000 Rennes, France;
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
| | - Nicolas Bourmeyster
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers/CNRS, 1 Rue Georges Bonnet, 86022 Poitiers, France; (A.C.-B.); (A.-C.M.-B.); (F.B.); (N.B.)
- Service de Biochimie, CHU de Poitiers, 1, Rue de la Milétrie, 86021 Poitiers, France
| |
Collapse
|
25
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
26
|
Nolan ND, Jenny LA, Wang NK, Tsang SH. Retinal pigment epithelium lipid metabolic demands and therapeutic restoration. Taiwan J Ophthalmol 2021; 11:216-220. [PMID: 34703736 PMCID: PMC8493995 DOI: 10.4103/tjo.tjo_31_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023] Open
Abstract
One of the defining features of the retina is the tight metabolic coupling between cells such as photoreceptors and the retinal pigment epithelium (RPE). This necessitates the compartmentalization and proper substrate availability required for specialized processes such as photo-transduction. Glucose metabolism is preferential in many human cell types for adenosine triphosphate generation, yet fatty acid β-oxidation generates essential fuel for RPE. Here, we provide a brief overview of metabolic demands in both the healthy and dystrophic RPE with an emphasis on fatty acid oxidation. We outline therapies aimed at renormalizing this metabolism and explore future avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas D Nolan
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Laura A Jenny
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Nan-Kai Wang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Institute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ. Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Adv Biol Regul 2021; 82:100832. [PMID: 34717137 DOI: 10.1016/j.jbior.2021.100832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Phagocytosis is a dynamic process that requires an intricate interplay between phagocytic receptors, membrane lipids, and numerous signalling proteins and their effectors, to coordinate the engulfment of a bound particle. These particles are diverse in their physico-chemical properties such as size and shape and include bacteria, fungi, apoptotic cells, living tumour cells, and abiotic particles. Once engulfed, these particles are enclosed within a phagosome, which undergoes a striking transformation referred to as phagosome maturation, which will ultimately lead to the processing and degradation of the enclosed particulate. In this review, we focus on recent advancements in phagosome maturation in macrophages, highlighting new discoveries and emerging themes. Such advancements include identification of new GTPases and their effectors and the intricate spatio-temporal dynamics of phosphoinositides in governing phagosome maturation. We then explore phagosome fission and recycling, the emerging role of membrane contact sites, and delve into mechanisms of phagosome resolution to recycle and reform lysosomes. We further illustrate how phagosome maturation is context-dependent, subject to the type of particle, phagocytic receptors, the phagocytes and their state of activation during phagocytosis. Lastly, we discuss how phagosomes serve as signalling platforms to help phagocytes adapt to their environmental conditions. Overall, this review aims to cover recent findings, identify emerging themes, and highlight current challenges and directions to improve our understanding of phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Aaron Fountain
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Patris Alves
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Munira B Verdawala
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada.
| |
Collapse
|
28
|
Yang S, Zhou J, Li D. Functions and Diseases of the Retinal Pigment Epithelium. Front Pharmacol 2021; 12:727870. [PMID: 34393803 PMCID: PMC8355697 DOI: 10.3389/fphar.2021.727870] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The retinal pigment epithelium is a fundamental component of the retina that plays essential roles in visual functions. Damage to the structure and function of the retinal pigment epithelium leads to a variety of retinopathies, and there is currently no curative therapy for these disorders. Therefore, studying the relationship between the development, function, and pathobiology of the retinal pigment epithelium is important for the prevention and treatment of retinopathies. Here we review the function of the retinal pigment epithelium and its relevance to the pathobiology, and discuss potential strategies for the treatment of retinopathies. In doing so, we provide new viewpoints outlining new ideas for the future study and treatment of retinopathies.
Collapse
Affiliation(s)
- Song Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
29
|
Esposito NJ, Mazzoni F, Vargas JA, Finnemann SC. Diurnal Photoreceptor Outer Segment Renewal in Mice Is Independent of Galectin-3. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 33538769 PMCID: PMC7862728 DOI: 10.1167/iovs.62.2.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Galectin-3 (gal-3) is a soluble glycoprotein that has been associated with diverse forms of phagocytosis, including some mediated by the engulfment receptor MerTK. Retinal pigment epithelium (RPE) in vivo uses MerTK (or the related Tyro3) for phagocytosis of shed outer segment fragments during diurnal outer segment renewal. Here, we test if gal-3 plays a role in outer segment renewal in mice and if exogenous gal-3 can promote MerTK-dependent engulfment of isolated outer segment fragments by primary RPE cells in culture. Methods We explored age- and strain-matched wild-type (wt), lgals3−/− and mertk−/− mice. Immunofluorescence and immunoblotting characterized gal-3 and RPE/retina protein expression, respectively. Outer segment renewal was investigated by live imaging of phosphatidylserine (PS) exposure on photoreceptor outer segment distal tips and by microscopy of rhodopsin-labeled RPE phagosomes in tissue sections. Retinal function was assessed by recording electroretinograms (ERGs). Phagocytosis assays feeding purified outer segment fragments (POS) were conducted with added recombinant proteins testing unpassaged primary mouse RPE. Results Gal-3 localizes to neural retina and RPE in wt mice. The lgals3−/− photoreceptor outer segments display normal diurnal PS exposure at distal tips. The number of rhodopsin-positive phagosomes in wt and lgals3−/− RPE does not differ at peak or trough of diurnal phagocytosis activity. lgals3−/− mice show light responses like wt, and their eyes contain wt levels of retinal and RPE proteins. Unlike purified protein S, recombinant gal-3 fails to promote POS engulfment by mouse primary RPE in culture. Conclusions Gal-3 has no essential role in MerTK-dependent outer segment renewal in mice.
Collapse
Affiliation(s)
- Nicholas J Esposito
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, New York, United States
| | - Francesca Mazzoni
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, New York, United States
| | - Jade A Vargas
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, New York, United States
| | - Silvia C Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, New York, United States
| |
Collapse
|
30
|
Shang P, Stepicheva N, Teel K, McCauley A, Fitting CS, Hose S, Grebe R, Yazdankhah M, Ghosh S, Liu H, Strizhakova A, Weiss J, Bhutto IA, Lutty GA, Jayagopal A, Qian J, Sahel JA, Samuel Zigler J, Handa JT, Sergeev Y, Rajala RVS, Watkins S, Sinha D. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol 2021; 4:850. [PMID: 34239035 PMCID: PMC8266859 DOI: 10.1038/s42003-021-02386-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
The retinal pigmented epithelium (RPE) is a monolayer of multifunctional cells located at the back of the eye. High membrane turnover and polarization, including formation of actin-based apical microvilli, are essential for RPE function and retinal health. Herein, we demonstrate an important role for βA3/A1-crystallin in RPE. βA3/A1-crystallin deficiency leads to clathrin-mediated epidermal growth factor receptor (EGFR) endocytosis abnormalities and actin network disruption at the apical side that result in RPE polarity disruption and degeneration. We found that βA3/A1-crystallin binds to phosphatidylinositol transfer protein (PITPβ) and that βA3/A1-crystallin deficiency diminishes phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), thus probably decreasing ezrin phosphorylation, EGFR activation, internalization, and degradation. We propose that βA3/A1-crystallin acquired its RPE function before evolving as a structural element in the lens, and that in the RPE, it modulates the PI(4,5)P2 pool through PITPβ/PLC signaling axis, coordinates EGFR activation, regulates ezrin phosphorylation and ultimately the cell polarity.
Collapse
Affiliation(s)
- Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth Teel
- Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Austin McCauley
- Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | | | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rhonda Grebe
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anastasia Strizhakova
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiang Qian
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raju V S Rajala
- Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Simon Watkins
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Freeman S, Grinstein S. Promoters and Antagonists of Phagocytosis: A Plastic and Tunable Response. Annu Rev Cell Dev Biol 2021; 37:89-114. [PMID: 34152790 DOI: 10.1146/annurev-cellbio-120219-055903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Spencer Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
32
|
Lebo DPV, McCall K. Murder on the Ovarian Express: A Tale of Non-Autonomous Cell Death in the Drosophila Ovary. Cells 2021; 10:cells10061454. [PMID: 34200604 PMCID: PMC8228772 DOI: 10.3390/cells10061454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Throughout oogenesis, Drosophila egg chambers traverse the fine line between survival and death. After surviving the ten early and middle stages of oogenesis, egg chambers drastically change their size and structure to produce fully developed oocytes. The development of an oocyte comes at a cost, the price is the lives of the oocyte’s 15 siblings, the nurse cells. These nurse cells do not die of their own accord. Their death is dependent upon their neighbors—the stretch follicle cells. Stretch follicle cells are nonprofessional phagocytes that spend the final stages of oogenesis surrounding the nurse cells and subsequently forcing the nurse cells to give up everything for the sake of the oocyte. In this review, we provide an overview of cell death in the ovary, with a focus on recent findings concerning this phagocyte-dependent non-autonomous cell death.
Collapse
|
33
|
MERTK-Mediated LC3-Associated Phagocytosis (LAP) of Apoptotic Substrates in Blood-Separated Tissues: Retina, Testis, Ovarian Follicles. Cells 2021; 10:cells10061443. [PMID: 34207717 PMCID: PMC8229618 DOI: 10.3390/cells10061443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Timely and efficient elimination of apoptotic substrates, continuously produced during one’s lifespan, is a vital need for all tissues of the body. This task is achieved by cells endowed with phagocytic activity. In blood-separated tissues such as the retina, the testis and the ovaries, the resident cells of epithelial origin as retinal pigmented epithelial cells (RPE), testis Sertoli cells and ovarian granulosa cells (GC) provide phagocytic cleaning of apoptotic cells and cell membranes. Disruption of this process leads to functional ablation as blindness in the retina and compromised fertility in males and females. To ensure the efficient elimination of apoptotic substrates, RPE, Sertoli cells and GC combine various mechanisms allowing maintenance of tissue homeostasis and avoiding acute inflammation, tissue disorganization and functional ablation. In tight cooperation with other phagocytosis receptors, MERTK—a member of the TAM family of receptor tyrosine kinases (RTK)—plays a pivotal role in apoptotic substrate cleaning from the retina, the testis and the ovaries through unconventional autophagy-assisted phagocytosis process LAP (LC3-associated phagocytosis). In this review, we focus on the interplay between TAM RTKs, autophagy-related proteins, LAP, and Toll-like receptors (TLR), as well as the regulatory mechanisms allowing these components to sustain tissue homeostasis and prevent functional ablation of the retina, the testis and the ovaries.
Collapse
|
34
|
Yefimova MG, Lefevre C, Bashamboo A, Eozenou C, Burel A, Lavault MT, Meunier AC, Pimentel C, Veau S, Neyroud AS, Jaillard S, Jégou B, Bourmeyster N, Ravel C. Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis. Hum Reprod 2021; 35:1346-1362. [PMID: 32531067 DOI: 10.1093/humrep/deaa097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/14/2020] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Do human granulosa cells (GCs) ingest and destroy apoptotic oocytes? SUMMARY ANSWER Somatic GCs ingest and destroy apoptotic oocytes and other apoptotic substrates through unconventional autophagy-assisted phagocytosis. WHAT IS KNOWN ALREADY Most (99%) ovarian germ cells undergo apoptosis through follicular atresia. The mode of cleaning of atretic follicles from the ovary is unclear. Ovarian GCs share striking similarities with testicular Sertoli cells with respect to their origin and function. Somatic Sertoli cells are responsible for the elimination of apoptotic spermatogenic cells through unconventional autophagy-assisted phagocytosis. STUDY DESIGN, SIZE, DURATION Human GCs were tested for the ability to ingest and destroy the apoptotic oocytes and other apoptotic substrates. A systemic study of the main phagocytosis steps has been performed at different time points after loading of apoptotic substrates into the GC. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of GC retrieved following controlled ovarian stimulation of five women for IVF/ICSI and a human granulosa KGN cell line were incubated with different apoptotic substrates: oocytes which underwent spontaneous apoptosis during the cultivation of immature germ cells for IVF/ICSI; apoptotic KGN cells; and apoptotic membranes from rat retinas. Cultured GC were analyzed for the presence of specific molecular markers characteristic of different steps of phagocytic and autophagy machineries by immunocytochemistry, confocal microscopy, transmission electron microscopy and western blotting, before and after loading with apoptotic substrates. MAIN RESULTS AND THE ROLE OF CHANCE Incubation of human GC with apoptotic substrates resulted in their translocation in cell cytoplasm, concomitant with activation of the phagocytosis receptor c-mer proto-oncogene tyrosine kinase MERTK (P < 0.001), clumping of motor molecule myosin II, recruitment of autophagy proteins: autophagy-related protein 5 (ATG5), autophagy-related protein 6 (Beclin1) and the rise of a membrane form of microtubule-associated protein 1 light chain 3 (LC3-II) protein. Ingestion of apoptotic substrates was accompanied by increased expression of the lysosomal protease Cathepsin D (P < 0.001), and a rise of lysosomes in the GCs, as assessed by different techniques. The level of autophagy adaptor, sequestosome 1/p62 (p62) protein remained unchanged. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of patients described here is limited. Also the dependence of phagocytosis on reproductive hormone status of patients should be analyzed. WIDER IMPLICATIONS OF THE FINDINGS Removal of apoptotic oocytes by surrounding GC seems likely to be a physiological mechanism involved in follicular atresia. Proper functioning of this mechanism may be a new strategy for the treatment of ovarian dysfunctions associated with an imbalance in content of germ cells in the ovaries, such as premature ovarian failure and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by Rennes Metropole (AIS 2015) and Agence de BioMédecine. This work was supported by funding from Université de Rennes1, Institut National de la Santé et de la Recherche Médicale (INSERM) and CHU de Rennes. A.B. is funded in part by the program Actions Concertées Interpasteuriennes (ACIP) and a research grant from the European Society of Pediatric Endocrinology. This work is supported by the Agence Nationale de la Recherche Grants ANR-17-CE14-0038 and ANR-10-LABX-73. The authors declare no competing interests.
Collapse
Affiliation(s)
- M G Yefimova
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - C Lefevre
- Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - A Bashamboo
- Human Developmental Genetics, Institut Pasteur, 75724, Paris, France
| | - C Eozenou
- Human Developmental Genetics, Institut Pasteur, 75724, Paris, France
| | - A Burel
- MRic TEM Plateform, BIOSIT, Université Rennes 1, 35000 Rennes, France
| | - M T Lavault
- MRic TEM Plateform, BIOSIT, Université Rennes 1, 35000 Rennes, France
| | - A C Meunier
- Laboratoire STIM, Université de Poitiers, 86022 Poitiers Cedex, France
| | - C Pimentel
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - S Veau
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - A S Neyroud
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - S Jaillard
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - B Jégou
- Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - N Bourmeyster
- Laboratoire STIM, Université de Poitiers, 86022 Poitiers Cedex, France.,CHU POITIERS, Pôle Biospharm, secteur Biochimie, 86022 Poitiers Cedex, France
| | - C Ravel
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France.,Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
35
|
Hughes LD, Wang Y, Meli AP, Rothlin CV, Ghosh S. Decoding Cell Death: From a Veritable Library of Babel to Vade Mecum? Annu Rev Immunol 2021; 39:791-817. [PMID: 33902311 DOI: 10.1146/annurev-immunol-102819-072601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.
Collapse
Affiliation(s)
- Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Yaqiu Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Alexandre P Meli
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , , .,Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA;
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; .,Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
36
|
Cooperative epithelial phagocytosis enables error correction in the early embryo. Nature 2021; 590:618-623. [PMID: 33568811 DOI: 10.1038/s41586-021-03200-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/24/2020] [Indexed: 01/31/2023]
Abstract
Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development.
Collapse
|
37
|
Göppner C, Soria AH, Hoegg-Beiler MB, Jentsch TJ. Cellular basis of ClC-2 Cl - channel-related brain and testis pathologies. J Biol Chem 2021; 296:100074. [PMID: 33187987 PMCID: PMC7949093 DOI: 10.1074/jbc.ra120.016031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.
Collapse
Affiliation(s)
- Corinna Göppner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Audrey H Soria
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maja B Hoegg-Beiler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
38
|
Kwon W, Freeman SA. Phagocytosis by the Retinal Pigment Epithelium: Recognition, Resolution, Recycling. Front Immunol 2020; 11:604205. [PMID: 33281830 PMCID: PMC7691529 DOI: 10.3389/fimmu.2020.604205] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident phagocytes are responsible for the routine binding, engulfment, and resolution of their meals. Such populations of cells express appropriate surface receptors that are tailored to recognize the phagocytic targets of their niche and initiate the actin polymerization that drives internalization. Tissue-resident phagocytes also harbor enzymes and transporters along the endocytic pathway that orchestrate the resolution of ingested macromolecules from the phagolysosome. Solutes fluxed from the endocytic pathway and into the cytosol can then be reutilized by the phagocyte or exported for their use by neighboring cells. Such a fundamental metabolic coupling between resident phagocytes and the tissue in which they reside is well-emphasized in the case of retinal pigment epithelial (RPE) cells; specialized phagocytes that are responsible for the turnover of photoreceptor outer segments (POS). Photoreceptors are prone to photo-oxidative damage and their long-term health depends enormously on the disposal of aged portions of the outer segment. The phagocytosis of the POS by the RPE is the sole means of this turnover and clearance. RPE are themselves mitotically quiescent and therefore must resolve the ingested material to prevent their toxic accumulation in the lysosome that otherwise leads to retinal disorders. Here we describe the sequence of events underlying the healthy turnover of photoreceptors by the RPE with an emphasis on the signaling that ensures the phagocytosis of the distal POS and on the transport of solutes from the phagosome that supersedes its resolution. While other systems may utilize different receptors and transporters, the biophysical and metabolic manifestations of such events are expected to apply to all tissue-resident phagocytes that perform regular phagocytic programs.
Collapse
Affiliation(s)
- Whijin Kwon
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Bryan ER, Kollipara A, Trim LK, Armitage CW, Carey AJ, Mihalas B, Redgrove KA, McLaughlin EA, Beagley KW. Hematogenous dissemination of Chlamydia muridarum from the urethra in macrophages causes testicular infection and sperm DNA damage†. Biol Reprod 2020; 101:748-759. [PMID: 31373361 DOI: 10.1093/biolre/ioz146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/27/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
The incidence of Chlamydia infection, in both females and males, is increasing worldwide. Male infections have been associated clinically with urethritis, epididymitis, and orchitis, believed to be caused by ascending infection, although the impact of infection on male fertility remains controversial. Using a mouse model of male chlamydial infection, we show that all the major testicular cell populations, germ cells, Sertoli cells, Leydig cells, and testicular macrophages can be productively infected. Furthermore, sperm isolated from vas deferens of infected mice also had increased levels of DNA damage as early as 4 weeks post-infection. Bilateral vasectomy, prior to infection, did not affect the chlamydial load recovered from testes at 2, 4, and 8 weeks post-infection, and Chlamydia-infected macrophages were detectable in blood and the testes as soon as 3 days post-infection. Partial depletion of macrophages with clodronate liposomes significantly reduced the testicular chlamydial burden, consistent with a hematogenous route of infection, with Chlamydia transported to the testes in infected macrophages. These data suggest that macrophages serve as Trojan horses, transporting Chlamydia from the penile urethra to the testes within 3 days of infection, bypassing the entire male reproductive tract. In the testes, infected macrophages likely transfer infection to Leydig, Sertoli, and germ cells, causing sperm DNA damage and impaired spermatogenesis.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Bettina Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,Science and Technology Office, University of Canberra, Bruce, ACT, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| |
Collapse
|
40
|
Masaeli E, Forster V, Picaud S, Karamali F, Nasr-Esfahani MH, Marquette C. Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication 2020; 12:025006. [PMID: 31578006 DOI: 10.1088/1758-5090/ab4a20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammalian retina contains multiple cellular layers, each carrying out a specific task. Such a controlled organization should be considered as a crucial factor for designing retinal therapies. The maintenance of retinal layered complexity through the use of scaffold-free techniques has recently emerged as a promising approach for clinical ocular tissue engineering. In an attempt to fabricate such layered retinal model, we are proposing herein a unique inkjet bioprinting system applied to the deposition of a photoreceptor cells (PRs) layer on top of a bioprinted retinal pigment epithelium (RPE), in a precise arrangement and without any carrier material. The results showed that, after bioprinting, both RPE and PRs were well positioned in a layered structure and expressed their structural markers, which was further demonstrated by ZO1, MITF, rhodopsin, opsin B, opsin R/G and PNA immunostaining, three days after bioprinting. We also showed that considerable amounts of human vascular endothelial growth factors (hVEGF) were released from the RPE printed layer, which confirmed the formation of a functional RPE monolayer after bioprinting. Microstructures of bioprinted cells as well as phagocytosis of photoreceptor outer segments by apical RPE microvilli were finally established through transmission electron microscopy (TEM) imaging. In summary, using this carrier-free bioprinting method, it was possible to develop a reasonable in vitro retina model for studying some sight-threatening diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bat. Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
41
|
Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 2019; 50:1149-1162. [PMID: 31117011 DOI: 10.1016/j.immuni.2019.04.018] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023]
Abstract
Nearly every tissue in the body undergoes routine turnover of cells as part of normal healthy living. The majority of these cells undergoing turnover die via apoptosis, and then are rapidly removed by phagocytes by the process of efferocytosis that is anti-inflammatory. However, a number of pathologies have recently been linked to defective clearance of apoptotic cells. Perturbed clearance arises for many reasons, including overwhelming of the clearance machinery, disruptions at different stages of efferocytosis, and responses of phagocytes during efferocytosis, all of which can alter the homeostatic tissue environment. This review covers linkages of molecules involved in the different phases of efferocytosis to disease pathologies that can arise due to their loss or altered function.
Collapse
|
42
|
Stabilin Receptors: Role as Phosphatidylserine Receptors. Biomolecules 2019; 9:biom9080387. [PMID: 31434355 PMCID: PMC6723754 DOI: 10.3390/biom9080387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylserine is a membrane phospholipid that is localized to the inner leaflet of the plasma membrane. Phosphatidylserine externalization to the outer leaflet of the plasma membrane is an important signal for various physiological processes, including apoptosis, platelet activation, cell fusion, lymphocyte activation, and regenerative axonal fusion. Stabilin-1 and stabilin-2 are membrane receptors that recognize phosphatidylserine on the cell surface. Here, we discuss the functions of Stabilin-1 and stabilin-2 as phosphatidylserine receptors in apoptotic cell clearance (efferocytosis) and cell fusion, and their ligand-recognition and signaling pathways.
Collapse
|
43
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|