1
|
Gao D. The role of non-malignant B cells in malignant hematologic diseases. Hematology 2025; 30:2466261. [PMID: 39964954 DOI: 10.1080/16078454.2025.2466261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
The tumor microenvironment (TME) represents a heterogeneous, complicated ecosystem characterized by intricate interactions between tumor cells and immune cells. During the past decade, immune cells especially T cells were found to play an important role in the progression of tumor and many related immune checkpoints drugs were created. In recent years, more and more scientists revealed the critical role of B-cells within the TME, particularly various populations of non-malignant B cells. Some studies indicated that non-malignant B cells may exert a 'double-edged sword' role in solid tumors. However, there has been comparatively less focus on the role of non-malignant B cells in hematologic malignancies. In this review, we characterized the development of B cells and summarized its functions of antitumor immunity within TME, with an emphasis on elucidating the roles and potential mechanisms of non-malignant B cells in the progression of hematologic diseases including classical Hodgkin's lymphoma, non-Hodgkin's B-cell lymphoma, non-Hodgkin's T-cell lymphoma, leukemia and multiple myeloma.
Collapse
Affiliation(s)
- Daquan Gao
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
O’Sullivan A, Case S, McCrudden A, Hackett E, Gallagher L, Martin D, Johnson GP, Mahadik K, Kienzle T, Lim JK, Nashat A, Srinivasan K, Lowdell MW, O’Flynn L, Frankish J. Increased functional potency of multi-edited CAR-T cells manufactured by a non-viral transfection system. Mol Ther Methods Clin Dev 2025; 33:101389. [PMID: 39811687 PMCID: PMC11730244 DOI: 10.1016/j.omtm.2024.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical. Here, we report that Solupore, a Good Manufacturing Practice-aligned, non-viral physicochemical transfection system, can be used to manufacture multi-edited CAR-T cells using CRISPR-Cas9 ribonucleoproteins while maintaining robust cell functionality. When compared to electroporation, an industry standard, T cells that were triple edited using Solupore had reduced levels of apoptosis and maintained similar proportions of stem cell memory T cells with higher oxidative phosphorylation levels. Following lentiviral transduction with a CD19 CAR, and subsequent cryopreservation, triple-edited CAR-T cells manufactured using Solupore demonstrated improved immunological synapse strength to target CD19+ Raji cells and enhanced cellular cytotoxicity compared with electroporated CAR-T cells. In an in vivo mouse model (NSG), Solupore triple-edited CAR-T cells enhanced tumor growth inhibition by more than 30-fold compared to electroporated cells.
Collapse
Affiliation(s)
| | - Sarah Case
- Avectas, Cherrywood Business Park, Dublin, Ireland
| | | | - Emer Hackett
- Avectas, Cherrywood Business Park, Dublin, Ireland
| | | | | | | | | | | | | | - Aya Nashat
- Avectas, Cherrywood Business Park, Dublin, Ireland
| | | | | | - Lisa O’Flynn
- Avectas, Cherrywood Business Park, Dublin, Ireland
| | | |
Collapse
|
3
|
Jin Z, Li Y, Yi H, Wang M, Wang C, Du S, Zeng W, Zong Z. Pathogenetic development, diagnosis and clinical therapeutic approaches for liver metastasis from colorectal cancer (Review). Int J Oncol 2025; 66:22. [PMID: 39950314 PMCID: PMC11844340 DOI: 10.3892/ijo.2025.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy and a significant proportion of patients with CRC develop liver metastasis (CRLM), which is a major contributor to CRC‑related mortality. The present review aimed to comprehensively examine the pathogenetic development and diagnosis of CRLM and the clinical therapeutic approaches for treatment of this disease. The molecular mechanisms underlying CRLM were discussed, including the role of the tumour microenvironment and epithelial‑mesenchymal transition. The present review also highlighted the importance of early detection and the current challenges in predicting the development of CRLM. Various treatment strategies were reviewed, including surgical resection, chemotherapy and immunotherapy, and the potential of novel therapies, such as selective internal radiation therapy and Traditional Chinese Medicine. Despite recent advancements in treatment options, the treatment of CRLM remains a therapeutic challenge due to the complexity of the liver microenvironment and the heterogeneity of CRC. The present review emphasized the need for a multidisciplinary approach and the integration of emerging therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Li
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chaofeng Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaokun Du
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Gui H, Wang S, Li B. Glycolysis-related gene signatures and the functional role of P4HA1 in osteosarcoma prognosis. Exp Cell Res 2025:114492. [PMID: 40023306 DOI: 10.1016/j.yexcr.2025.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor predominantly affecting children and adolescents, is characterized by aerobic glycolysis, which is intricately linked to tumor progression and metastasis, yet its prognostic implications remain underexplored. This study aimed to develop a prognostic model utilizing glycolysis-related genes and to elucidate the functional role of P4HA1, a key gene within this model, in osteosarcoma prognosis and immune cell infiltration. We collected clinical and transcriptomic data from osteosarcoma patients in the UCSC Xena and GEO databases. Through univariate Cox and LASSO regression analyses, we identified 12 glycolysis-related genes that significantly influence osteosarcoma prognosis. These genes were employed to construct a risk score model, which accurately predicted patient outcomes as demonstrated by survival analysis and ROC curves, with an AUC of 0.899, 0.881, and 0.878 for 1-year, 3-year, and 5-year survival predictions, respectively. The model was particularly effective across different clinical subgroups. Immune cell infiltration analysis revealed that CD8+ T cells, naïve CD4+ T cells, resting dendritic cells, and activated mast cells significantly contributed to the model's predictive power. The model also showed significant enrichment of immune-related signaling pathways, indicating a robust association between immune status and glycolytic-related risk scores in osteosarcoma prognosis. Notably, P4HA1 was upregulated in osteosarcoma tissues and promoted cell proliferation in a glycolysis-dependent manner, as evidenced by increased intracellular ATP levels, inhibited glucose absorption, and elevated lactate levels in P4HA1-overexpressing osteosarcoma cells. The promotion of proliferation by P4HA1 could be significantly attenuated by the glycolysis inhibitor 2-DG, highlighting the glycolysis dependency of P4HA1's action. In conclusion, we developed a prognostic model for osteosarcoma by integrating glycolysis-related genes, with a particular emphasis on the functional role of P4HA1. Our findings highlight the interplay between glycolysis and immune cell infiltration in disease prognosis. This model provides insights for targeted therapies and a foundation for further research into osteosarcoma treatment.
Collapse
Affiliation(s)
- Haoran Gui
- Department of Orthopedics, Yantai Shan Hospital, Yantai, 264008, China
| | - Shuai Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, PR China
| | - Bo Li
- Department of Radiation Oncology Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
| |
Collapse
|
6
|
Xu J, You Z, Zhu Z, Liu M, Zhang Z, Xu P, Dong J, Huang Y, Wang C, Qin H. Integrative analysis of m7G methylation-associated genes prognostic signature with immunotherapy and identification of LARP1 as a key oncogene in head and neck squamous cell carcinoma. Front Immunol 2025; 16:1520070. [PMID: 40018039 PMCID: PMC11864954 DOI: 10.3389/fimmu.2025.1520070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
Background N7-methylguanosine (m7G) methylation is an RNA modification associated with cancer progression, but its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. Methods This study analyzed the differential expression of m7G-related genes (m7GRGs) in HNSCC using the TCGA-HNSCC dataset, identifying key pathways associated with the cell cycle, DNA replication, and focal adhesion. A LASSO-Cox regression model was constructed based on four m7GRGs (EIF3D, EIF1, LARP1, and METTL1) and validated with GEO datasets and clinical samples. Further validation of gene upregulation in HNSCC tissues was conducted using RT-qPCR and immunohistochemistry, while the role of LARP1 in HNSCC cells was assessed via knockout experiments. Results The constructed model demonstrated strong predictive performance, with the risk score significantly correlating with prognosis, immune infiltration, and drug sensitivity. An external dataset and clinical specimens further confirmed the model's predictive accuracy for immunotherapy response. Additionally, two regulatory axes-LINC00707/hsa-miR-30b-5p/LARP1 and SNHG16/hsa-miR-30b-5p/LARP1-were identified. LARP1 knockout experiments revealed that suppressing LARP1 markedly inhibited HNSCC cell proliferation, migration, and invasion. Conclusion The m7GRG-based prognostic model developed in this study holds strong clinical potential for predicting prognosis and therapeutic responses in HNSCC. The identification of LARP1 and its related regulatory pathways offers new avenues for targeted therapy in HNSCC.
Collapse
Affiliation(s)
- Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zihao You
- Anhui Medical University, Hefei, China
| | | | - Min Liu
- Emergency Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zheng Zhang
- Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Panpan Xu
- Department of Otolaryngology Head and Neck Surgery, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Dong
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yuting Huang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chao Wang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Xuanyuan X, Liu W, Jiang M, Zhang X, Wen B, Zheng R, Yao N, Zhang T, Feng Y, Qiao C, Zhang H, Luo D, Feng S, Li M, Gao J, Lu Z. Harnessing prazosin for tumors: Liposome hybrid nanovesicles activate tumor immunotherapy via autophagy inhibition. Biomaterials 2025; 319:123184. [PMID: 39985978 DOI: 10.1016/j.biomaterials.2025.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Prazosin (Prz), an antagonist of alpha-1 adrenergic receptors, is conventionally employed in the treatment of hypertension. Our study pioneers the exploration of Prz in oncology, examining its impact on cellular autophagy and its potential to trigger antitumor immune responses. We have developed a novel Prz-loaded liposome hybrid nanovesicle (Prz@LINV) system, integrating tumor-derived nanovesicles (TNV) with liposomes (LIP) to facilitate targeted Prz delivery to tumor sites. This formulation enhances Prz bioavailability and markedly inhibits tumor cell autophagy, leading to immunogenic cell death (ICD) and the activation of antitumor immune responses. Furthermore, Prz@LINV modulates dendritic cells (DCs), augmenting their antigen cross-presentation capacity and thereby potentiating antitumor immunity. These effects were validated in a colorectal cancer mouse model, demonstrating the good biocompatibility of Prz@LINV and its significant inhibition in tumor growth, along with the enhancement of antitumor immune responses. Our findings elucidate a novel mechanism by which Prz inhibits autophagy and enhances the antitumor immune response, providing a foundation for the development of innovative immunotherapeutic strategies. The efficacy of Prz@LINV suggests that Prz may emerge as a pivotal component in future immunotherapeutic regimens, offering patients more potent therapeutic options.
Collapse
Affiliation(s)
- Xinyang Xuanyuan
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Jiang
- The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - BeiBei Wen
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Rui Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ning Yao
- Department of General Surgery, Joint Support Force 903rd Hospital, Hangzhou, 310013, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yu Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaofeng Qiao
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huiqi Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Dong Luo
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Sa Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Besliu C, Tanase AD, Rotaru I, Espinoza J, Vidal L, Poelman M, Juan M, de Larrea CF, Saini KS. The Evolving Landscape in Multiple Myeloma: From Risk Stratification to T Cell-Directed Advanced Therapies. Cancers (Basel) 2025; 17:525. [PMID: 39941892 PMCID: PMC11817212 DOI: 10.3390/cancers17030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Multiple myeloma is biologically and clinically a complex and heterogeneous disease which develops late in life, with the median age at the time of initial diagnosis being 66 years. In 1975, Durie and Salmon developed the first broadly adopted staging system in multiple myeloma, and in the ensuing decades, the risk stratification tools have improved and now incorporate different parameters to better predict the prognosis and to guide the treatment decisions. The International Staging System (ISS) was initially developed in 2005, revised in 2015 (R-ISS), and again in 2022 (R2-ISS). Tremendous progress has been achieved in multiple myeloma therapy over the past 25 years with the approval of immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies, resulting in a major paradigm shift. The dysfunction of the innate and adaptive immune system, especially in the T cell repertoire, represents a hallmark of multiple myeloma evolution over time, supporting the need for additional therapeutic approaches to activate the host's immune system and to overcome the immunosuppressive tumor microenvironment. Novel T cell-directed therapies include chimeric antigen receptor (CAR) T cell therapies and bispecific antibodies that leverage the immune system's T cells to recognize and attack the tumor cells. Second-generation anti-BCMA CAR T cell therapies and bispecific antibodies that bind the tumor antigen BCMA or GPRC5D onto myeloma cells and CD3 on the T cell's surface are currently available for the treatment of relapsed/refractory multiple myeloma. Despite impressive results obtained with currently approved treatments, multiple myeloma remains incurable, and almost all patients eventually relapse. Moreover, patients with extramedullary disease and plasma cell leukemia represent an unmet medical need that require additional strategies to improve the outcome. In this review, we provide an overview of the evolution of risk stratification and the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Carmen Besliu
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Alina Daniela Tanase
- Department of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute Bucharest, 022328 Bucharest, Romania;
| | - Ionela Rotaru
- Department of Hematology, Municipal Hospital Craiova, 010024 Craiova, Romania;
| | - Jose Espinoza
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Laura Vidal
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Martine Poelman
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Manel Juan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.J.); (C.F.d.L.)
| | - Carlos Fernández de Larrea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.J.); (C.F.d.L.)
| | - Kamal S. Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
9
|
Lim BJW, Liu M, Wang L, Kong SLY, Yin T, Yan C, Xiang K, Cao C, Wu H, Mihai A, Tay FPL, Wang E, Jiang Q, Ma Z, Tan L, Chia RN, Qin D, Pan CC, Wang XF, Li QJ. Neoadjuvant anti-4-1BB confers protection against spontaneous metastasis through low-affinity intratumor CD8 + T cells in triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635356. [PMID: 39975187 PMCID: PMC11838326 DOI: 10.1101/2025.01.29.635356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neoadjuvant immunotherapy seeks to harness the primary tumor as a source of relevant tumor antigens to enhance systemic anti-tumor immunity through improved immunological surveillance. Despite having revolutionized the treatment of patients with high-risk early-stage triple-negative breast cancer (TNBC), a significant portion of patients remain unresponsive and succumb to metastatic recurrence post-treatment. Here, we found that optimally scheduled neoadjuvant administration of anti-4-1BB monotherapy was able to counteract metastases and prolong survival following surgical resection. Phenotypic and transcriptional profiling revealed enhanced 4-1BB expression on tumor-infiltrating intermediate (T int ), relative to progenitor (T prog ) and terminally exhausted (T term ) T cells. Furthermore, T int was enriched in low-affinity T cells. Treatment with anti-4-1BB drove clonal expansion of T int , with reduced expression of tissue-retention marker CD103 in T prog . This was accompanied by increased TCR clonotype sharing between paired tumors and pre-metastatic lungs. Further interrogation of sorted intratumor T cells confirmed enhanced T cell egress into circulation following anti-4-1BB treatment. In addition, gene signature extracted from anti-4-1BB treated T int was consistently associated with improved clinical outcomes in BRCA patients. Combinatorial neoadjuvant anti-4-1BB and ablation of tumor-derived CXCL16 resulted in enhanced therapeutic effect. These findings illustrate the intratumor changes underpinning the efficacy of neoadjuvant anti-4-1BB, highlighting the reciprocity between local tissue-retention and distant immunologic fortification, suggesting treatment can reverse the siphoning of intratumor T cells to primary tumor, enabling redistribution to distant tissues and subsequent protection against metastases.
Collapse
|
10
|
Qi L, Wang J, Hou S, Liu S, Zhang Q, Zhu S, Liu S, Zhang S. Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189264. [PMID: 39805342 DOI: 10.1016/j.bbcan.2025.189264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC. Single-cell multi-omics technology, particularly single-cell transcriptome sequencing, have shed light on the expression profiles of individual cells and the molecular characteristics of distinct tumor cell populations. This review summarizes the latest literature on single-cell research in the field of ESCC, aiming to elucidate the heterogeneity of tumor cells, immune cells, and stromal cells at the single-cell level. Furthermore, it explores the impact of cellular interactions within the TME on the progression of ESCC. By compiling a comprehensive overview of single-cell omics research on ESCC, this article aims to enhance our understanding of ESCC diagnosis and treatment by elucidating the intricate interplay within the TME. It explores the cellular composition, spatial arrangement, and functional attributes of the ESCC TME, offering potential therapeutic targets and biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Jiaxin Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Songyuan Hou
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Siying Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Shengtao Zhu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| |
Collapse
|
11
|
Qi MH, Wang DD, Qian W, Zhang ZL, Ao YW, Li JM, Huang SW. High-Efficiency Gold Nanoaggregates for NIR LED-Driven Sustained Mild Photothermal Therapy Achieving Complete Tumor Eradication and Immune Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412191. [PMID: 39676384 DOI: 10.1002/adma.202412191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/04/2024] [Indexed: 12/17/2024]
Abstract
For millennia, humans have harnessed thermal energy to treat cancer. However, delivering energy to tumor tissues in traditional hyperthermia remains a significant challenge. Nanotechnology has revolutionized this approach, enabling nanomaterials to target tumors precisely and act as internal heat sources. Nanomaterial-based photothermal therapy employs nano-photothermal agents to absorb near-infrared light and convert it into heat, offering non-invasive, highly controllable, and specific treatment for solid tumors. Nonetheless, achieving complete tumor eradication, preventing recurrence, and ensuring safety continue to be major concerns. To address these issues, sustained mild photothermal therapy (smPTT) is proposed, utilizing gold nanoaggregates (AuNAs) with a high photothermal conversion efficiency (92.8%) in combination with a single irradiation of low-power (∼0.1 W cm- 2) sustained LED light. This method achieved complete tumor eradication in animal models, with no recurrence over long-term (>180 days) monitoring. This strategy provides superior therapeutic effects compared to mild photothermal therapy and higher safety than high-temperature photothermal therapy. Additionally, it induces a strong immune response and immune memory, crucial for preventing tumor recurrence and metastasis. This novel approach to photothermal therapy may significantly impact clinical applications for shallow tumor treatment and offer new avenues for immunotherapy.
Collapse
Affiliation(s)
- Ming-Hui Qi
- Department of Chemistry, Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Dan-Dan Wang
- Department of Chemistry, Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Wang Qian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhi-Li Zhang
- Department of Chemistry, Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Ya-Wen Ao
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Mi Li
- Department of Chemistry, Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Shi-Wen Huang
- Department of Chemistry, Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Liu WS, Lu ZM, Pu XH, Li XY, Zhang HQ, Zhang ZZ, Zhang XY, Shi T, Jiang XH, Zhou JS, Zhou X, Xin ZY, Li MG, Yuan J, Chen CM, Zhang XW, Gao J, Li M. A dendritic cell-recruiting, antimicrobial blood clot hydrogel for melanoma recurrence prevention and infected wound management. Biomaterials 2025; 313:122776. [PMID: 39236629 DOI: 10.1016/j.biomaterials.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach. The hydrogel, crosslinked by calcium ions with sodium alginate, encapsulates a blood clot rich in dendritic cells (DCs) chemoattractants and melanoma cell-derived nanovesicles (NVs), functioning as a potent immunostimulant. This in situ recruitment strategy overcomes the limitations of subcutaneous tumor vaccine injections and more effectively achieves antitumor immunity. Additionally, the hydrogel incorporates Chlorella extracts, enhancing its antimicrobial properties to prevent wound infections and promote healing. One of the key findings of our research is the dual functionality of Chlorella extracts; they not only expedite the healing process of infected wounds but also increase the hydrogel's ability to stimulate an antitumor immune response. Given the patient-specific nature of the blood clot and NVs, our hydrogel system offers customizable solutions for individual postoperative requirements. This personalized approach is highlighted by our study, which demonstrates the synergistic impact of the composite hydrogel on preventing melanoma recurrence and hastening wound healing, potentially transforming postsurgical melanoma management.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Hui Pu
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Xin-Ying Li
- Department of Laboratory & Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hui-Qi Zhang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhuan-Zhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin-Yi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Te Shi
- Department of Gastroenterology, People's Liberation Army of China Naval Medical Center, Shanghai, 200052, People's Republic of China
| | - Xiang-He Jiang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Jing-Sheng Zhou
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhong-Yuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Mei-Gui Li
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jing Yuan
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Wei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
13
|
Zhu Y, Lu Z, Wang Z, Liu J, Ning K. Based on the immune system: the role of the IL-2 family in pancreatic disease. Front Immunol 2025; 16:1480496. [PMID: 39958351 PMCID: PMC11825815 DOI: 10.3389/fimmu.2025.1480496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
The IL-2 family, consisting of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, is a key regulator of the immune response. As an important endocrine and digestive organ, the function of the pancreas is regulated by the immune system. Studies have shown that each cytokine of the IL-2 family influences the occurrence and development of pancreatic diseases by participating in the regulation of the immune system. In this paper, we review the structural and functional characteristics of IL-2 family members, focus on their molecular mechanisms in pancreatic diseases including acute pancreatitis, chronic pancreatitis and pancreatic cancer, and highlight the importance of the related proteins in the regulation of immune response and disease progression, which will provide valuable insights for new biomarkers in pancreatic diseases, early diagnosis of the diseases, assessment of the disease severity, and development of new therapeutic regimens. The insights of the study are summarized in the following sections.
Collapse
Affiliation(s)
| | | | | | | | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
14
|
Park SY, Ju S, Lee J, Kim HR, Sub Y, Park DJ, Park S, Kwon D, Kang HG, Shin JE, Kim DH, Paik JE, Cho SC, Shim H, Kim YJ, Guan KL, Chun KH, Choi J, Ha SJ, Gee HY, Roe JS, Lee HW, Park SY, Park HW. Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis. SCIENCE ADVANCES 2025; 11:eadq2395. [PMID: 39841821 PMCID: PMC11753377 DOI: 10.1126/sciadv.adq2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway. Depletion of TAZ in tumor-associated macrophages promoted tumor growth by suppressing the recruitment of tumor-infiltrating lymphocytes. Moreover, in a diet-induced metabolic dysfunction-associated steatohepatitis model, macrophage-specific deletion of TAZ ameliorated liver inflammation and hepatic fibrosis. Thus, targeted therapies being developed against YAP/TAZ-TEAD are ineffective in macrophages. Together, our results introduce Golgi-associated TAZ as a potential molecular target for therapeutic intervention to treat tumor progression and chronic inflammatory diseases.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Inc., Seoul 03722, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Doru Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Eun Paik
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Seok Chan Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou 310030, China
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Inc., Seoul 03722, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Wu S, Liu Z, Li X, Gao S, Xia P. Association between systemic immune-inflammation index and the risk of all-cause, cancer and non-cancer mortality in the general population: results from national health and nutrition examination survey 2005-2018. BMC Public Health 2025; 25:227. [PMID: 39833806 PMCID: PMC11744828 DOI: 10.1186/s12889-025-21423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Inflammation plays an important role in the progression of cancer and other diseases, such as diabetes and cardiovascular and cerebrovascular diseases. The systemic immune-inflammation index (SII) was recognized as an objective biomarker reflecting immunoinflammatory status. This study aimed to identify the association between SII with all-cause, cancer and non-cancer mortality among general population in the United States. METHODS 25,955 participants (≥ 20 years) were included from 2005 to 2018 National Health and Nutrition Examination Survey (NHANES) and were divided into four groups according to the SII quartiles. Weighted multivariate Cox regression was used to assess the correlation between SII and mortality. Subgroup analyses were conducted to identify the effects of other covariates on the relationship between SII and mortality. A restricted cubic spline (RCS) model was subsequently used to explore the dose-response relationship between SII and mortality. Survival analysis was assessed using Kaplan-Meier method. RESULTS In fully adjusted model, the adjusted hazard ratio (aHR) and 95% confidence intervals (CIs) of individuals in Q4 were 1.24 (1.09, 1.41) for all-cause mortality and 1.41 (1.23, 1.63) for non-cancer mortality compared with Q1. Besides, the aHR and 95% CIs in Q2 of SII were 0.70 (0.50, 0.99) and in Q3 were 0.68 (0.52, 0.87) compared with Q1 for cancer mortality. In RCS analysis, non-linear relationships of J-shaped curves were observed in the association between SII with all-cause and non-cancer mortality. Additionally, a U-shaped curve was identified between SII and cancer mortality with a threshold value of 445.22. CONCLUSION Our findings imply that SII can serve as a potential prognosis indicator among general population. Elevated SII is associated with higher all-cause and non-cancer mortality. Furthermore, both the lowest and highest quartiles of the SII exhibit a correlation with heightened cancer mortality.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Breast Surgery, Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an, 710061, P.R. China
| | - Zhao Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xing Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Shan Gao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Peng Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
16
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
17
|
Huang W, Wang J, Liu C, Yang C, Chen Z, Ding J, Jiang W, Wang Y, Meng Y, Li L, Liu Y, Liu X, Li H, Sun B. Norepinephrine promotes activated B cells to identify and kill effector CD8 + T cells through FasL/Fas pathway in spleen mononuclear cells isolated from experimental autoimmune encephalomyelitis. Brain Behav Immun 2025; 125:294-307. [PMID: 39824471 DOI: 10.1016/j.bbi.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
It has been reported that the nervous system can regulate immune reactions through various mechanisms. However, the role of splenic sympathetic nerve activity in the autoimmune reactions during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) remained unclear. Here, we blocked the activity of the splenic sympathetic nerve and found that the number of adaptive immune cells, such as CD4+ T cells, CD8+ T cells and B cells, were upregulated. Additionally, there was an increase in the secretion of inflammatory cytokines in the spleen, and the neurological symptoms of EAE were exacerbated. In vitro experiments, we found that norepinephrine (NE), the neurotransmitter of the splenic sympathetic nerve, indirectly drove the death of effector CD8+ T cells. Furthermore, activated B cells, under the influence of NE, specifically recognized effector CD8+ T cells by upregulating MHC-I molecules and killed these cells via the FasL/Fas pathway. Our findings provide a new perspective on B cells killing effect in vitro, which was boosted by NE and demonstrate that the splenic sympathetic nerve controls the degree of autoimmune responses in EAE. This adds a new dimension to the diversity of NE's regulatory effects on adaptive immune cells and suggests a potential new therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Chao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Changxin Yang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Zhengyi Chen
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Jianwen Ding
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Wenkang Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yanping Wang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Yanting Meng
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China
| | - Lei Li
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Yumei Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Xijun Liu
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China
| | - Hulun Li
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China.
| | - Bo Sun
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China.
| |
Collapse
|
18
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025:S0022-202X(24)03024-0. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
19
|
Cao Y, Wen E, Chen Q, Li X, Wang Z. Multifunctional ICG-SB@Lip-ZA Nanosystem Focuses on Remodeling the Inflammatory-Immunosuppressive Microenvironment After Photothermal Therapy to Potentiate Cancer Photothermal Immunotherapy. Adv Healthc Mater 2025; 14:e2402211. [PMID: 39440627 DOI: 10.1002/adhm.202402211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Achieving full eradication of residual tumors post photothermal therapy (PTT) hinges on the immune system's activation and response. Nevertheless, the resultant local inflammation attracts a significant influx of aberrant immune cells and fibroblasts, such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), following tumor PTT. This phenomenon exacerbates immune evasion and the persistence of residual tumor cells, culminating in tumor recurrence and advancement. To tackle this challenge, a combined therapeutic approach utilizing multifunctional ICG-SB@Lip-ZA nanosystem has been introduced. Indocyanine green (ICG) as a photothermal-transducer ablated tumor cells, zoledronic acid (ZA) depletes TAMs recruited by the inflammatory tumor microenvironment (mostly M2-like phenotype), SB-505124 affects CAFs proliferation in the tumor microenvironment (TME) by inhibiting the transforming growth factor-β (TGF-β) pathway, thereby removing physical barriers to T cell infiltration. In a breast cancer model, these immunomodulatory nanoliposomes markedly decrease the population of M2-like TAMs in the TME, eliminate physical barriers hindering T cell infiltration, reshape the inflammatory immune-suppressive tumor microenvironment, eventually leading to a rate of tumor eradication of 94%. This multifunctional ICG-SB@Lip-ZA nanosystem (including photothermal conversion, TAM depletion, and TGF-β pathway blockade) offers a promising strategy for mitigating the deteriorating tumor microenvironment following PTT and presents a more efficient approach for clinical photothermal-immune combination therapy.
Collapse
Affiliation(s)
- Yi Cao
- Department of ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - E Wen
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiaoqi Chen
- Department of ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xingsheng Li
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
20
|
Wang M, Wan Q, Wang C, Jing Q, Nie Y, Zhang X, Chen X, Yang D, Pan R, Li L, Zhu L, Gui H, Chen S, Deng Y, Chen T, Nie Y. Combinational delivery of TLR4 and TLR7/8 agonist enhanced the therapeutic efficacy of immune checkpoint inhibitors to colon tumor. Mol Cell Biochem 2025; 480:445-458. [PMID: 38507020 DOI: 10.1007/s11010-024-04966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/11/2024] [Indexed: 03/22/2024]
Abstract
Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Mengjiao Wang
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Quan Wan
- School of Preclinical Medicine of Zunyi Medical University, Zunyi, 563000, China
| | - Chenglv Wang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qianyu Jing
- School of Preclinical Medicine of Zunyi Medical University, Zunyi, 563000, China
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA
| | - Runsang Pan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Linzhao Li
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Lan Zhu
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Huan Gui
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Shuanghui Chen
- GuiZhou University Medical College, Guiyang, 550025, China
| | - Yuezhen Deng
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yingjie Nie
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China.
| |
Collapse
|
21
|
Jiang W, Xu S, Li P. SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration. Curr Gene Ther 2025; 25:157-177. [PMID: 38778609 PMCID: PMC11774314 DOI: 10.2174/0115665232291300240509104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME). METHODS Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3. RESULTS A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape. CONCLUSION Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.
Collapse
Affiliation(s)
- Wei Jiang
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sheng Xu
- Department of Dental Laboratory, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ping Li
- Department of Pathology, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Sun S, Chen Y, Ouyang Y, Tang Z. Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases. Clin Rev Allergy Immunol 2024; 68:2. [PMID: 39751934 DOI: 10.1007/s12016-024-09011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention. This review presents a summary of the significant functions of SWI/SNF complexes during the overall process from the development to the activation of innate and adaptive immune cells. In addition, the correlation between various SWI/SNF subunits and diverse inflammatory diseases is explored. Further investigations are warranted in terms of the mechanism of SWI/SNF complexes' preference for binding sites and opposite pro-/anti-inflammatory effects. In conclusion, further efforts are needed to evaluate the druggability of targeting SWI/SNF complexes in inflammatory diseases, and we hope this review will inspire the development of novel immune modulators in clinical practice.
Collapse
Affiliation(s)
- Shunan Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
23
|
Chen P, Cheng L, Zhao C, Tang Z, Wang H, Shi J, Li X, Zhou C. Machine learning identifies immune-based biomarkers that predict efficacy of anti-angiogenesis-based therapies in advanced lung cancer. Int Immunopharmacol 2024; 143:113588. [PMID: 39556888 DOI: 10.1016/j.intimp.2024.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND The anti-angiogenic drugs showed remarkable efficacy in the treatment of lung cancer. Nonetheless, the potential roles of the intra-tumoral immune cell abundances and peripheral blood immunological features in prognosis prediction of patients with advanced lung cancer receiving anti-angiogenesis-based therapies remain unknown. In this study, we aimed to develop an immune-based model for early identification of patients with advanced lung cancer who would benefit from anti-angiogenesis-based therapies. METHODS We assembled the real-world cohort of 1058 stage III-IV lung cancer patients receiving the anti-angiogenesis-based therapies. We comprehensively evaluated the tumor immune microenvironment characterizations (CD4, CD8, CD68, FOXP3, and PD-L1) by multiplex immunofluorescence (mIF), as well as calculated the systemic inflammatory index by flow cytometry and medical record review. Based on the light gradient boosting machine (LightGBM) algorithm, a machine-learning model with meaningful parameters was developed and validated in real-world populations. RESULTS In the first-line anti-angiogenic therapy plus chemotherapy cohort (n = 385), the intra-tumoral proportion of CD68 + Macrophages and several circulating inflammatory indexes were significantly related to drug response (p < 0.05). Further, neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), the systemic inflammation response index (SIRI), and myeloid to lymphoid ratio (M:L) were identified to construct the non-invasive prediction model with high predictive performance (AUC: 0.799 for treatment response and 0.7006-0.915 for progression-free survival (PFS)). Additionally, based on the unsupervised hierarchical clustering results, the circulating cluster 3 with the highest levels of NLR, MLR, SIRI, and M: L had the worst PFS with the first-line anti-angiogenic therapy plus chemotherapy compared to other circulating clusters (2.5 months, 95 % confidence interval 2.3-2.7 vs. 6.0-9.7 months, 95 % confidence interval 4.9-11.1, p < 0.01). The predictive power of the machine-learning model in PFS was also validated in the anti-angiogenic therapy plus immunotherapy cohort (n = 103), the anti-angiogenic monotherapy cohort (n = 284), and the second-line anti-angiogenic therapy plus chemotherapy cohort (n = 286). CONCLUSIONS Integrating pre-treatment circulating inflammatory biomarkers could non-invasively and early forecast clinical outcomes for anti-angiogenic response in lung cancer. The immune-based prognostic model is a promising tool to reflect systemic inflammatory status and predict clinical prognosis for anti-angiogenic treatment in patients with stage III-IV lung cancer.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Lei Cheng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chao Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 2000922, China.
| |
Collapse
|
24
|
Li X, Han H, Yang K, Li S, Ma L, Yang Z, Zhao YX. Crosstalk between thyroid CSCs and immune cells: basic principles and clinical implications. Front Immunol 2024; 15:1476427. [PMID: 39776907 PMCID: PMC11703838 DOI: 10.3389/fimmu.2024.1476427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Thyroid cancer has become the most common endocrine malignancy. Although the majority of differentiated thyroid cancers have a favorable prognosis, advanced thyroid cancers, iodine-refractory thyroid cancers, and highly malignant undifferentiated carcinomas still face a serious challenge of poor prognosis and even death. Cancer stem cells are recognized as one of the central drivers of tumor evolution, recurrence and treatment resistance. A fresh viewpoint on the oncological aspects of thyroid cancer, including proliferation, invasion, recurrence, metastasis, and therapeutic resistance, has been made possible by the recent thorough understanding of the defining and developing features as well as the plasticity of thyroid cancer stem cells (TCSCs). The above characteristics of TCSCs are complicated and regulated by cell-intrinsic mechanisms (including activation of key stem signaling pathways, somatic cell dedifferentiation, etc.) and cell-extrinsic mechanisms. The complex communication between TCSCs and the infiltrating immune cell populations in the tumor microenvironment (TME) is a paradigm for cell-extrinsic regulators. This review introduces the current advances in the studies of TCSCs, including the origin of TCSCs, the intrinsic signaling pathways regulating the stemness of TCSCs, and emerging biomarkers; We further highlight the underlying principles of bidirectional crosstalk between TCSCs and immune cell populations driving thyroid cancer progression, recurrence, or metastasis, including the specific mechanisms by which immune cells maintain the stemness and other properties of TCSCs and how TCSCs reshape the immune microenvironmental landscape to create an immune evasive and pro-tumorigenic ecological niche. Finally, we outline promising strategies and challenges for targeting key programs in the TCSCs-immune cell crosstalk process to treat thyroid cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Dagotto G, Colarusso A, Patio RC, Li D, Anioke T, Giffin V, Guan R, Anand T, Mbiwan E, Aid M, Barouch D. Adenoviral-vectored neoantigen vaccine augments hyperexpanded CD8 + T cell control of tumor challenge in mice. J Immunother Cancer 2024; 12:e009644. [PMID: 39694702 DOI: 10.1136/jitc-2024-009644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Neoantigens are promising immunogens for cancer vaccines and are often delivered as adjuvanted peptide vaccines. Adenoviral (Ad) vectors have been shown to induce strong CD8+ T cell responses as vaccines against SARS-CoV-2, Ebola, and Zika, but their utility as neoantigen delivery vectors remains largely unexplored. In this study, we examine how an Ad-vectored neoantigen vaccine would impact tumor immunity compared with a peptide neoantigen vaccine. METHODS We generated Ad serotype 26 (Ad26) vaccine candidates encoding B16-F10-ovalbumin (OVA) and MC38-specific neoantigens. Ad26 vaccines were compared with adjuvanted peptide delivery as prophylactic vaccines in B16-F10-OVA and MC38 challenge models. Immune responses induced by the best Ad26 vaccine (Ad26.VP22.7Epi) were compared with peptide vaccination systemically and within the tumor. Following vaccination with Ad26.VP22.7Epi, peptide, or sham, tumor-infiltrating CD45+ cells were analyzed using single-cell RNA sequencing (scRNA-seq) and T cell receptor sequencing (TCR-seq) to identify vaccine-induced differences in the tumor microenvironment. RESULTS Single-shot Ad26 vaccines induced greater neoantigen-specific interferon-γ CD8+ T cell immune responses than two-shot adjuvanted peptide vaccines in mice, and Ad26.VP22.7Epi also provided superior protective efficacy compared with the peptide vaccine following tumor challenge. Ad26.VP22.7Epi induced a robust immunodominant CD8+ T cell response against the Adpgk neoantigen, while the peptide vaccine-induced lower responses against both Adpgk and Reps1 neoantigens. scRNA-seq analysis of CD45+ tumor-infiltrating cells demonstrated that both Ad26.VP22.7Epi and peptide vaccine-induced similar numbers of infiltrating CD8+ T cells. However, Ad26.VP22.7Epi induced CD8+ T cells showed more upregulation of T cell maturation, activation, and Th1 pathways compared with peptide vaccine induced CD8+ T cells, suggesting improved functional T cell quality. TCR-seq of these tumor-infiltrating lymphocytes also demonstrated that Ad26.VP22.7Epi generated larger T cell hyperexpanded clones compared with the peptide vaccine. CONCLUSIONS These results suggest that the Ad26.VP22.7Epi vaccine led to improved tumor control compared with the peptide vaccine due to increased T cell hyperexpansion and functional activation. Our data suggest that future cancer vaccine development strategies should focus on inducing functional hyperexpanded CD8+ T cell responses and not only maximizing tumor infiltrating CD8+ T cell numbers.
Collapse
Affiliation(s)
- Gabriel Dagotto
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Alessandro Colarusso
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert C Patio
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Victoria Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ruoran Guan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Trisha Anand
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Esther Mbiwan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Malika Aid
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Dan Barouch
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
27
|
Qiu Z, Li Z, Liu X, Zhang R, Li Y, Gao C, Mao X, Bao Y, Zhang M, Guo C. From tumor microenvironment to emerging biomarkers: the reshaping of the esophageal squamous cell carcinoma tumor microenvironment by neoadjuvant chemotherapy combined with immunotherapy. Front Immunol 2024; 15:1478922. [PMID: 39703499 PMCID: PMC11655454 DOI: 10.3389/fimmu.2024.1478922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Esophageal squamous cell carcinoma is a cancer with high morbidity and mortality. The advent of immune checkpoint inhibitors has significantly increased complete response rates and postoperative R0 resection rates after neoadjuvant therapy. These drugs can largely reverse the suppression of the immune system caused by the tumor microenvironment, allowing the reactivation of anti-tumor immune infiltrating cells, significantly improving the patient's tumor microenvironment, and thus preventing tumor development. However, there are still some patients who respond poorly to neoadjuvant combined immunotherapy and cannot achieve the expected results. It is now found that exploring changes in the tumor microenvironment not only elucidates patient responsiveness to immunotherapy and identifies more reliable biomarkers, but also addresses the limitations of prediction with imaging examination such as CT and the instability of existing biomarkers. In light of these considerations, this review aims to delve into the alterations within the tumor microenvironment and identify potential predictive biomarkers ensuing from neoadjuvant immunotherapy in the context of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Zhengzhou Qiu
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Zhao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Xingfei Liu
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Ruilin Zhang
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Yongxuan Li
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Chenggen Gao
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Xiaoling Mao
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
- Medical College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yin Bao
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
- Medical College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Mingyue Zhang
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
- Medical College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Changying Guo
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
- Zhejiang-Jiangxi Joint Thoracic Oncology Research Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Tang H, Geng Y, Wang K, Zhu Y, Fan Y, Wang Y. Integrative analysis of FADS3 as a marker for prognosis and immunity in head and neck squamous cell carcinoma. Cell Signal 2024; 124:111437. [PMID: 39343114 DOI: 10.1016/j.cellsig.2024.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Long-chain polyunsaturated fatty acid formation requires fatty acid desaturase (FADS), which is strongly linked to cancer progression. Nevertheless, it's unclear how FADS3 functions in head and neck squamous cell carcinoma (HNSCC). METHODS HNSCC cases were retrieved from TCGA and GEO databases, and FADS members with transcriptionally differential expression were identified. Clinical survival, tumor microenvironment (TME), and potential pathogenic mechanism in HNSCC were also investigated. These results were validated using tissue staining, flow cytometry and functional studies in HNSCC cell lines. RESULTS When comparing HNSCC to normal epithelial tissues, FADS3 expression was much higher in the former. FADS3 upregulation was correlated with poor clinical outcomes. FADS3 was an independent prognostic factor for poor overall survival in HNSCC patients. KEGG, GO, and GSEA revealed that FADS3 expression correlated with several immune-related pathways and the epithelial-mesenchymal transition (EMT). Knocking down FADS3 restrained HNSCC cell proliferation, migration, invasion, and EMT. Single-cell dataset analysis showed an association between FADS3 and TME features. Further investigation revealed that FADS3high tumor was accompanied with less CD8+ T cells in situ tissue and peripheral blood. FADS3 was positively correlated with immune-related molecules and could predict the adverse efficacy of immunotherapy. Finally, we constructed a CYTOR/hsa-let-7c-5p axis regulating FADS3 expression in HNSCC progression. CONCLUSIONS FADS3 may represent a target for treatment in HNSCC, which is linked to prognosis, EMT, immune infiltration, and ceRNA regulatory network of HNSCC.
Collapse
Affiliation(s)
- Haonan Tang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yanlin Geng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Keyi Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yuchi Zhu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| | - Yanting Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| |
Collapse
|
29
|
Wang N, Wang C, Wei C, Chen M, Gao Y, Zhang Y, Wang T. Constructing the cGAMP-Aluminum Nanoparticles as a Vaccine Adjuvant-Delivery System (VADS) for Developing the Efficient Pulmonary COVID-19 Subunit Vaccines. Adv Healthc Mater 2024; 13:e2401650. [PMID: 39319481 DOI: 10.1002/adhm.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The cGAMP-aluminum nanoparticles (CAN) are engineered as a vaccine adjuvant-delivery system to carry mixed RBD (receptor-binding domain) of the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new variant for developing bivalent pulmonary coronavirus disease 2019 (COVID-19) vaccines (biRBD-CAN). High phosphophilicity/adsorptivity made intrapulmonary CAN instantly form the pulmonary ingredient-coated CAN (piCAN) to possess biomimetic features enhancing biocompatibility. In vitro biRBD-CAN sparked APCs (antigen-presenting cells) to mature and make extra reactive oxygen species, engendered lysosome escape effects and enhanced proteasome activities. Through activating the intracellular stimulator of interferon genes (STING) and nucleotide-binding domain and leucine-rich repeat and pyrin domain containing proteins 3 (NALP3) inflammasome pathways to exert synergy between cGAMP and AN, biRBD-CAN stimulated APCs to secret cytokines favoring mixed Th1/Th2 immunoresponses. Mice bearing twice intrapulmonary biRBD-CAN produced high levels of mucosal antibodies, the long-lasting systemic antibodies, and potent cytotoxic T lymphocytes which efficiently erased cells displaying cognate epitopes. Notably, biRBD-CAN existed in mouse lungs and different lymph nodes for at least 48 h, unveiling their sustained immunostimulatory activity as the main mechanism underlying the long-lasting immunity and memory. Hamsters bearing twice intrapulmonary biRBD-CAN developed high resistance to pseudoviral challenges performed using different recombinant strains including the ones with distinct SARS-CoV-2-spike mutations. Thus, biRBD-CAN as a broad-spectrum pulmonary COVID-19 vaccine candidate may provide a tool for controlling the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 420 Jade Road, Hefei, Anhui Province, 230601, China
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Can Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
- Department of Pharmacy, The Second People's Hospital of Lianyungang, 41 Hailian East Road, Lianyungang, Jiangsu Province, 222006, China
| | - Chunliu Wei
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuhao Gao
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Yuxi Zhang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province, 230032, China
| |
Collapse
|
30
|
You YY, Zhang N, Wang Z, Yin ZH, Bao QY, Lei SX, Xie XJ. DLK1 promoted ischemic angiogenesis through notch1 signaling in endothelial progenitor cells. Acta Pharmacol Sin 2024; 45:2553-2566. [PMID: 39060522 PMCID: PMC11579026 DOI: 10.1038/s41401-024-01346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Delta like non-canonical Notch ligand 1 (DLK1), as a member of epidermal growth factor-like family, plays a critical role in somatic growth, tissue development and possibly tissue renewal. Though previous studies had indicated that DLK1 contributed to adipogenesis and myogenesis, it's still controversial whether DLK1 affects angiogenesis and how it interacts with Notch signaling with numerous conflicting reports from different models. Based on our preliminary finding that DLK1 expression was up-regulated in mice ischemic gastrocnemius and in the border zone of infarcted myocardium, we administered either recombinant DLK1 (rDLK1) or PBS in C57BL/6 mice after establishment of hindlimb ischemia (HLI) and myocardial infarction (MI), respectively. Exogenous rDLK1 administration significantly improved both blood perfusion of mice ischemic hindlimbs and muscle motor function on the 3rd, 7th day after HLI, by promoting neovascularization. Similar effect on neovascularization was verified in mice on the 28th day after MI as well as improvement of cardiac failure. Correspondingly, the number of CD34+KDR+ cells, indicated as endothelial progenitor cells (EPCs), was significantly in mice ischemic gastrocnemius by rDLK1 administration, which was abrogated by DAPT as the specific inhibitor of Notch intracellular domain (NICD). Furthermore, bone marrow mononuclear cells were obtained from C57BL/6 mice and differentiated to EPCs ex vivo. Incubation with rDLK1 triggered Notch1 mRNA and NICD protein expressions in EPCs as exposed to hypoxia and serum deprivation, promoting EPCs proliferation, migration, anti-apoptosis and tube formation. Otherwise, rDLK1 incubation significantly decreased intracellular and mitochondrial reactive oxygen species, increased ATP content and mitochondrial membrane potential, downregulated short isoform of OPA-1 expression whereas upregulated mitofusin (-1, -2) expression in EPCs by Notch1 signaling, which were all abrogated by DAPT. In summary, the present study unveils the pro-angiogenesis and its mechanism of rDLK1 through activation of Notch1 signaling in endothelial progenitor cells.
Collapse
Affiliation(s)
- Ya-Yu You
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ning Zhang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310009, China
| | - Zhuo Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Zhe-Hui Yin
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qin-Yi Bao
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shu-Xin Lei
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiao-Jie Xie
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
31
|
Liu H, Ouyang Z, Li S. Advances of M1 macrophages-derived extracellular vesicles in tumor therapy. Biomed Pharmacother 2024; 181:117735. [PMID: 39644871 DOI: 10.1016/j.biopha.2024.117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles derived from classically activated M1 macrophages (M1 EVs) have shown great potential in both tumor treatment and drug delivery. M1 EVs inherit specific biological messengers from their parent cells and possess the capability to activate immune cells residing in close or distant tumor tissues for antitumor therapy. Moreover, M1 EVs are commonly used as an attractive drug delivery system due to their tumor-targeting ability, biocompatibility, and non-toxic. They can effectively encapsulate various therapeutic cargoes through specific methods such as electroporation, co-incubation, sonication, extrusion, transfection, or click chemistry reaction. In this review, we provide a comprehensive summary of the advancements in M1 EVs for tumor therapy, discussing their application prospects and existing problems.
Collapse
Affiliation(s)
- Houli Liu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| | - Zhaorong Ouyang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Siyu Li
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| |
Collapse
|
32
|
Yang C, Zhang Y, Wang R, Cheng B, Wu Y, Fu X. IL-10 +CD19 + regulatory B cells induce CD4 +Foxp3 +regulatory T cells in serum of cervical cancer patients. Autoimmunity 2024; 57:2290909. [PMID: 38084896 DOI: 10.1080/08916934.2023.2290909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Increase of regulatory T cells (Tregs) in the tumour microenvironment predicts worse survival of patients with various types of cancer. Recently, B cells play a significant role in the maintenance of Treg cells. However, the relevance of regulatory B cells (Bregs) to tumour immunity in humans remains elusive. Flow cytometry analysis was used to detect the Bregs and Tregs. Double staining results illustrated that the proportion of Bregs and Tregs were prominently higher in cervical cancer than normal tissues. Increase of Bregs and Tregs in cervical cancer microenvironment was associated with poor survival. Furthermore, Bregs cocultured with cervical cancer cell lines increased and induced Tregs. To sum up, the increased expression of Bregs contributes to the differentiation of CD4+ T cells into Tregs in the cervical cancer.
Collapse
Affiliation(s)
- Chunfeng Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Rui Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Cheng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xi Fu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Province Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macoa Greater Bay Area Higher Educaiton Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Huang F, Wang F, Hu Q, Li Y, Jiang D. PTGR1-mediated immune evasion mechanisms in late-stage triple-negative breast cancer: mechanisms of M2 macrophage infiltration and CD8 + T cell suppression. Apoptosis 2024; 29:2002-2024. [PMID: 39068625 DOI: 10.1007/s10495-024-01991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by metabolic dysregulation. Tumor cell immune escape plays an indispensable role in the development of TNBC tumors. Furthermore, in the abstract, we explicitly mention the techniques used and enhance the clarity and impact of our findings. "Based on bioinformatics analysis results, we utilized CRISPR/Cas9 technology to knockout the target gene and established a mouse model of breast cancer. Through experiments such as CCK8, scratch assay, and Transwell assay, we further investigated the impact of target gene knockout on the malignant behavior of tumor cells. Subsequently, we conducted immunohistochemistry and Western Blot experiments to study the expression of macrophage polarization and infiltration-related markers and evaluate the effect of the target gene on macrophage polarization. Next, through co-culture experiments, we simulated the tumor microenvironment and used immunohistochemistry staining to observe and analyze the distribution and activation status of M2 macrophages and CD8+ T cells in the co-culture system. We validated in vivo experiments the molecular mechanism by which the target gene regulates immune cell impact on TNBC progression.
Collapse
Affiliation(s)
- Fang Huang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Fuhe Wang
- Department of General surgery, Hebei Yiling Hospital, Shijiazhuang, 050000, P. R. China
| | - Qilu Hu
- Department of Radiotherapy, Heze Traditional Chinese Medicine Hospital, Heze, 274008, P. R. China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China.
| |
Collapse
|
34
|
Guo Z, Zhuang H, Shi X. Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review). Oncol Lett 2024; 28:563. [PMID: 39390976 PMCID: PMC11465226 DOI: 10.3892/ol.2024.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, and the second leading cause of cancer-associated mortality. The incidence and mortality rates of CRC remain high, posing a significant threat to humans and overall quality of life. Current therapeutic strategies, such as surgery and chemotherapy, are limited due to disease recurrence, chemotherapeutic drug resistance and toxicity. Thus, research is focused on the development of novel treatment approaches. In 2012, ferroptosis was identified as a form of regulated cell death that is iron-dependent and driven by lipid peroxidation. Notably, therapies targeting ferroptosis exhibit potential in the treatment of disease; however, their role in CRC treatment remains controversial. The present study aimed to systematically review the mechanisms and signaling pathways of ferroptosis in CRC, and the specific role within the tumor microenvironment. Moreover, the present study aimed to review the role of ferroptosis in drug resistance, offering novel perspectives for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Zhao Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Haoyan Zhuang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Xuewen Shi
- Department of Anorectal, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
35
|
Wu P, Zhang J, Guo L, Chen B, Xiong L, Du Y. LAMP5, One of Four Genes Related to Oxidative Stress That Predict Biochemical Recurrence-Free Survival, Promotes Proliferation and Invasion in Prostate Cancer. Adv Appl Bioinform Chem 2024; 17:119-138. [PMID: 39634037 PMCID: PMC11616484 DOI: 10.2147/aabc.s489131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Prostate cancer (PCa) development largely depends on increased levels of oxidative stress (OS) and a deficient anti-oxidative system. Identifying genes associated with oxidative stress is critical in order to direct PCa therapy and future research. Methods The TCGA and GTEx databases provided the bulk RNA-seq data, and the GEO database provided the single-cell data GSE141445. Utilizing reactive oxygen species (ROS) markers, single-cell analysis and cluster identification related to oxidative stress were conducted using the R packages "Seurat" and "AUCell". The differentially expressed genes (DEGs) in normal and PCa samples were identified with the "limma" R package. LASSO regression analysis was used to build a recurrence score (RS) model. The R packages "maftools" and the CIBERSORT method were employed to explore genetic mutation and the infiltrating immune cell, respectively. LAMP5 was chosen for further investigation after random forest analysis was performed. Results The RS model for PCa was found to be an independent predictor. The tumor immune microenvironment and the frequency of gene mutations differed significantly between the high- and low-risk score groups. Further investigation revealed that downregulation of LAMP5 in PC-3 and DU145 cell lines suppressed cell proliferation and invasion, as demonstrated by the results of in vitro experiments. Conclusion We successfully created a robust RS model. The result of the study indicates that LAMP5 could contribute to cell proliferation and invasion in PCa.
Collapse
Affiliation(s)
- Peiqiang Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Jianlei Zhang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Li Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Lingxiao Xiong
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yuefeng Du
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
36
|
Cui K, Wang K, Huang Z. Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:315. [PMID: 39614322 PMCID: PMC11607824 DOI: 10.1186/s13046-024-03235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by its non-apoptotic, iron-dependent and oxidative nature. Since its discovery in 2012, extensive research has demonstrated its pivotal roles in tumorigenesis, metastasis and cancer therapy. The tumor microenvironment (TME) is a complex ecosystem comprising cancer cells, non-cancer cells, extracellular matrix, metabolites and cytokines. Recent studies have underscored a new paradigm in which non-cancer cells in the TME, such as immune and stromal cells, also play significant roles in regulating tumor progression and therapeutic resistance typically through complicated crosstalk with cancer cells. Notably, this crosstalk in the TME were partially mediated through ferrotopsis-related mechanisms. This review provides a comprehensive and systematic summary of the current findings concerning the roles of ferroptosis in the TME and how ferroptosis-mediated TME reprogramming impacts cancer therapeutic resistance and progression. Additionally, this review outlines various ferroptosis-related therapeutic strategies aimed at targeting the TME.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China
| | - Kang Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Huihe Road 200, Wuxi, Jiangsu, 214062, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
37
|
Fouillet J, Torchio J, Rubira L, Fersing C. Unveiling the Tumor Microenvironment Through Fibroblast Activation Protein Targeting in Diagnostic Nuclear Medicine: A Didactic Review on Biological Rationales and Key Imaging Agents. BIOLOGY 2024; 13:967. [PMID: 39765634 PMCID: PMC11673949 DOI: 10.3390/biology13120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [18F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.
Collapse
Affiliation(s)
- Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Jade Torchio
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
38
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
39
|
Zhou L, Zhu Y, Guo F, Long H, Yin M. Pan-cancer analysis of oncogenic role of CEP55 and experiment validation in clear cell renal cell carcinoma. Sci Rep 2024; 14:28279. [PMID: 39550427 PMCID: PMC11569145 DOI: 10.1038/s41598-024-80057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Immunotherapy has emerged as a vital component in the contemporary landscape of cancer treatment. Recent studies have indicated that CEP55 plays an oncogenic role; however, its specific mechanisms in promoting tumor proliferation and its potential value in prognosis and immunotherapy prediction across various cancers remain to be elucidated. CEP55 was significantly overexpressed in 22 cancer types compared with their adjacent normal tissues. Elevated CEP55 expression was positively correlated with younger onset age, worse tumor stage, lower response rate to the first treatment, lower tumor-free survival rate, and poorer overall survival (OS) and disease-free survival (DFS) prognosis in most cancers. Moreover, CEP55 expression was positively correlated with its binding and related genes, such as KIF11 (R = 0.83, P < 0.001), CDK1 (R = 0.77, P < 0.001) and CCNA2 (R = 0.76, P < 0.001), and the classic proliferation markers, including MKI67 and PCNA. Enrichment analyses indicated that CEP55 was predominantly associated with cell division, cell cycle activities and proliferation. Immune cell infiltration analysis by TIMER2.0 revealed that CEP55 expression was positively correlated with many kinds of infiltrating cells, such as Th2 cells and some CD4+ T cell subsets. The CEP55 expression was positively associated with increased MSI and TMB in various cancers. Our analyzation indicated that the CEP55 expression level in patients with complete remission (CR) or partial remission (PR) to anti-PDL1 therapy was significantly higher than patients with stable disease (SD) or progressive disease (PD) based on IMvigor210 cohort. We also used Gene Set Cancer Analysis (GSCA) to predict a serious of small molecule CEP55 targeted drugs, such as AZ628, SB52334, SB590885, A-770,041, AZD7762, Elesclomol, panobinostat, BRD-A94377914, and LRRK2-IN-1. Furthermore, the patients with high level of CEP55-posivie tumor epithelial cells had inferior overall survival in ccRCC according to single-cell analysis. Finally, our wet lab experiments verified that the CEP55-positive rate in ccRCC tissues (19/30, 63.3%) was significantly higher than that in renal adjacent tissues (10/30, 33.3%). The clinicopathologic analysis revealed that CEP55 protein level was significantly associated with tumor size (P = 0.044), histology grade (P < 0.001) and stage (P = 0.034). Our study indicated that CEP55 overexpression in most caner types was associated with poor prognosis. Notably, CEP55 was closely relevant to immune cell infiltration and impacted the response to immunotherapy and small molecule drugs against cancers.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yimeng Zhu
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Shaoxing, Zhejiang, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Huimin Long
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Min Yin
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
40
|
Huang J, Zhang H, Ma L, Ma N, Luo N, Jin W, Shi J, Xu S, Xiong Y. Rhein and hesperidin nanoparticles remodel tumor immune microenvironment by reducing CAFs and CCL2 secreted by CAAs for efficient triple-negative breast cancer therapy. Int Immunopharmacol 2024; 141:113001. [PMID: 39186835 DOI: 10.1016/j.intimp.2024.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
In triple-negative breast cancer (TNBC), the tumor immune microenvironment (TIME) is a highly heterogeneous ecosystem that exerts indispensable roles in tumorigenesis and tumor progression. Cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs) are the main matrix components in the TIME of TNBC. CAFs mediate the edesmoplastic response, which is a major driver of the immunosuppressive microenvironment to promote tumor growth. In addition, CAAs, a type of tumor-educated adipocyte, participate in crosstalk with breast cancer and are capable of secreting various cytokines, adipokines and chemokines, especially C-C Motif Chemokine Ligand 2 (CCL2), resulting in changes of cancer cell phenotype and function. Therefore, how to treat tumors by regulating the CAFs and the secretion of CCL2 by CAAs in TIME is investigated here. Our research group previously found that rhein (Rhe) has been identified as effective against CAFs, while hesperidin (Hes) could effectively diminish CCL2 secretion by CAAs. Inspired by the above, we developed unique PLGA-based nanoparticles loaded with Rhe and Hes (RH-NP) using the emulsion solvent diffusion method. The RH-NP particles have an average size of 114.1 ± 0.98 nm. RH-NP effectively reduces CAFs and inhibits CCL2 secretion by CAAs, promoting increased infiltration of cytotoxic T cells and reducing immunosuppressive cell presence within tumors. This innovative, safe, low-toxic, and highly effective anti-tumor strategy could be prospective in TNBC treatment.
Collapse
Affiliation(s)
- Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ninghui Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ningchao Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wanyu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shujun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
41
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
42
|
Xu Q, Cheng X, Sun H, Su G, Fei Y, Wang C, Han C. Effect of Remimazolam- Vs Propofol-Based Intravenous Anesthesia on Surgical Stress Response and Post-Operative Immune Function in Patients with Gastric Radical Surgery. Drug Des Devel Ther 2024; 18:5183-5192. [PMID: 39559791 PMCID: PMC11570524 DOI: 10.2147/dddt.s489167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose This study aimed to compare the impact of remimazolam-based versus propofol-based intravenous anesthesia on surgical stress and post-operative immune function in patients undergoing gastric radical surgery. Patients and Methods Sixty-eight patients aged 50 to 80 undergoing gastric radical surgery were randomly assigned to the remimazolam group (group R) or the propofol group (group P), receiving remimazolam or propofol-based intravenous anesthesia, respectively. The primary outcome measured was peri-operative serum stress indicators and lymphocyte subtypes. Secondary outcomes included hemodynamic vitals, recovery quality, postoperative pain profiles and potential adverse effects. Results The demographic and surgical characteristics of the 60 analyzed patients were comparable. The absolute counts of CD3+CD4+ and CD3+CD8+ cell decreased significantly on POD1 compared with baseline. On POD3, the numbers of CD3+CD4+ cells in group R were lower than baseline and Group P, whereas the CD3+CD8+ cell counts in both groups were lower than baseline, with group R higher than group P. The CD3-CD16+CD56+ cell numbers in both groups on POD1 and POD3 decreased significantly compared to baseline with group P lower than group R on POD3. The serum levels of IL-1β, IL-6, TNF-α, ACTH and COR rose sharply 2 hours after the beginning of surgery compared to baseline. Notably, all these parameters in group R were higher than those in group P. Additionally, blood pressure and intra-operative vasoactive drug frequency in group R were higher than that in group P. No significant differences in recovery quality, postoperative pain profiles, and potential adverse effects were observed. Conclusion Remimazolam-based intravenous anesthesia might favour the recovery of cellular immune function in early postoperative period compared to propofol. On the contrary, remimazolam was inferior to propofol in suppressing surgical stress. Further studies with larger sample sizes are needed to confirm our findings.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| | - Xue Cheng
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| | - Hong Sun
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| | - Guangyuan Su
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| | - Yuanhui Fei
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| | - Chunhui Wang
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| | - Chao Han
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China
| |
Collapse
|
43
|
Zhang Y, Yi J, Wei G, Ren T, Zhao H, Zhang H, Yang H, Zhang D. CWF19L1 promotes T-cell cytotoxicity through the regulation of alternative splicing. J Biol Chem 2024; 300:107982. [PMID: 39542248 DOI: 10.1016/j.jbc.2024.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Effective cancer immunotherapy relies on enhancing the host's immune response, particularly by boosting T cell-mediated cytotoxicity against tumor cells. In this study, we identify CWF19-like cell cycle control factor 1 (CWF19L1) as a novel splicing regulator that enhances T cell-mediated cytotoxicity. CWF19L1 interacts prominently with key splicing factors within the nucleus, including components of the U5 small nuclear ribonucleoprotein and the pre-mRNA processing factor 19 (PRPF19) complex. Deficiency of CWF19L1 disrupts alternative splicing of immune-related genes, resulting in diminished expression of cytotoxic molecules. Furthermore, CWF19L1 plays a critical role in promoting T cell-mediated antitumor responses by upregulating the expression of effector cytokines. Our findings unveil previously undocumented functions of CWF19L1 in alternative splicing and its involvement in the regulation of antitumor immunity, highlighting its potential as a therapeutic target for novel cancer immunotherapies.
Collapse
Affiliation(s)
- Yuqi Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jingjing Yi
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gaigai Wei
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tingrong Ren
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haiping Zhao
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiling Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Wang S, Nie F, Yin Q, Tian H, Gong P, Ju J, Liu J, Yang P, Yang C. Periodontitis promotes tumor growth and immune evasion via PD-1/PD-L1. Cancer Immunol Immunother 2024; 74:22. [PMID: 39535607 PMCID: PMC11561227 DOI: 10.1007/s00262-024-03865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Our study investigated the role of experimental periodontitis on tumor growth, local and systemic immunosuppressive status, and programmed death receptor 1 (PD-1) / programmed death ligand 1 (PD-L1) expression in oral squamous cell carcinoma (OSCC) and prostate cancer. METHODS Mouse oral or prostate cancer xenograft models were divided into control, periodontitis and periodontitis + anti-PD-1 groups. Tumor volume and weight were recorded and the levels of relevant immune-suppressive cells and T cells were detected by flow cytometry or immunofluorescence. THP-1 cells were stimulated using conditioned media of LPS-stimulated Cal-27 cells and PD-L1 expression was measured by quantitative real-time PCR, western blotting and immunofluorescence. Tumor specimens from OSCC patients with or without periodontitis were also collected for immunofluorescence. RESULTS Periodontitis significantly promoted tumor volume and weight. Compared to the control, the proportions of tumor-associated macrophages (TAMs), regulatory T cells (Tregs), PD-L1+TAMs and PD-1+CD8+T cells increased, while CD8+T cells decreased in the periodontitis group. Immunofluorescence demonstrated that there was an increase in PD-L1+TAMs and PD-1+CD8+T cells, but a decrease in IFN-γ+CD8+T cells in both xenografts and clinical OSCC samples with periodontitis. In vitro, LPS-stimulated Cal-27 cells had a stronger potential to induce PD-L1 expression in macrophages compared with unstimulated Cal-27 cells. And the promoting effect of periodontitis on tumor growth and immune evasion was significantly attenuated after anti-PD-1 therapy. CONCLUSION Periodontitis may facilitate tumor growth and immune escape evidenced by the increased immune-suppressive cells and the decreased functional T cells, via enhancing PD-1/PD-L1 expression in the tumor microenvironment.
Collapse
Affiliation(s)
- Suli Wang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Qiuyue Yin
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Haoyang Tian
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Pizhang Gong
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Jinhong Ju
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Jiayi Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, 250012, Jinan, Shandong, China.
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Road West, 250012, Jinan, Shandong, China.
| |
Collapse
|
45
|
Wang C, Zhang R, Zhang H, Gao H, Zhu Y, Jiao L, Yi Z, Zhou M, Li X. Lipid metabolism-related gene signature predicts prognosis and unveils novel anti-tumor drugs in specific type of diffuse large B cell lymphoma. Mol Med 2024; 30:210. [PMID: 39538125 PMCID: PMC11559131 DOI: 10.1186/s10020-024-00988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma which possess highly aggressive and heterogeneous. Despite advances in understanding heterogeneity and development of novel targeted agents, the prognosis of DLBCL patients remains unsatisfied. Lipids are crucial components of biological membranes and signal transduction while accumulating evidence has supported the vital roles of abnormal lipid metabolism in tumorigenesis. Furthermore, some related pathways could serve as prognostic biomarkers and potential therapeutic targets. However, the clinical significance of abnormal lipid metabolism reprogramming in DLBCL has not been investigated. In the current study, we developed a prognostic risk model for DLBCL based on the abnormal expressed lipid metabolism genes and moreover based on our risk model we classified patients with DLBCL into novel subtypes and identified potential drugs for DLBCL patients with certain lipid metabolism profiles. METHODS We utilized univariate Cox regression analysis to identify the prognosis-related lipid metabolism genes, and then performed LASSO Cox regression to identify prognostic related lipid metabolism related genes. Multivariate cox regression was used to establish the prognostic model. Patients were divided in to high and low risk groups based on the median risk score. Immune cell infiltration and GSEA were used to identify the pathways between high and low risk groups. Oncopredict algorithm was utilized to identify potential drug for high-risk patients. In vitro cell apoptosis and viability analysis were employed to verify the specific tumor inhibition effects of AZD5153. RESULTS Nineteen survival related lipid metabolism genes TMEM176B, LAYN, RAB6B, MMP9, ATAD3B, SLC2A11, CD3E, SLIT2, SLC2A13, SLC43A3, CD6, SIRPG, NEK6, LCP2, CTTN, CXCL2, SNX22, BCL6 and FABP4 were identified and subjected to build the prognostic model which was further verified in four external microarray cohorts and one RNA seq cohorts. Tumor immune microenvironment analysis and GSEA results showed that the activation of MYC targets genes rather than immunosuppression contribute to the poor survival outcome of patients in the high-risk group. AZD5153, a novel bivalent BET bromodomain inhibitor which could inhibit the transcription of MYC and E2F exhibited specific antitumor function for cells with high-risk score. CONCLUSIONS Our results provide the first lipid metabolism-based gene signature for predicting the survival of patients with DLBCL. Furthermore, by determining novel subtypes with our lipid metabolism prognostic model we illustrated that drugs that compromising MYC target genes rather than immune checkpoint inhibitors may be beneficial to DLBCL patients with certain lipid metabolism profiles.
Collapse
Affiliation(s)
- Cancan Wang
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Ran Zhang
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Huan Zhang
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Haixia Gao
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Yubing Zhu
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Lichao Jiao
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Zhiqiang Yi
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Meiyu Zhou
- Chongqing University Fuling Hospital, Chongqing, China.
| | - Xinxia Li
- Department of Pathology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China.
| |
Collapse
|
46
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Lu X, Yu Z, Wang J, Tian A, Wu T, Cheng Y, Han Q, Li F, Xia W. The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:697-713. [PMID: 39811730 PMCID: PMC11725424 DOI: 10.20517/evcna.2023.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025]
Abstract
Aim: The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. Methods: The methods employed in this study include in vitro cell experiments such as co-culture, Western Blot, and flow cytometry. In vivo experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells. The experiments encompassed parameters such as survival rate, body weight, tumor size, flow cytometry, immunohistochemistry, and spectral live imaging system. Results: Our study revealed that CDEVs could be used as drugs to effectively downregulate the phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/programmed cell death ligand 1 (PD-L1) axis in lung cancer cells. In co-culture experiments, CDEVs were observed to impede the expression of PD-L1, thereby interfering with the interaction between PD-L1 and programmed death 1 (PD-1) and subsequently preventing the suppression of T cells. In in vivo distribution experiments, CDEVs loaded with paclitaxel (PTX) demonstrated better tumor targeting capabilities. Remarkably, following CDEVs-PTX treatment, CD8+ T cell levels in mice were increased, presumably leading to improved antitumor effects. Conclusion: CDEVs not only serve as drug carriers but also function as drugs themselves; as such, through a single administration of CDEVs, it is possible to combine immunotherapy and chemotherapy to achieve better effects between the two, providing a more comprehensive and effective cancer treatment strategy that promises to improve treatment outcomes and reduce the adverse effects of therapy.
Collapse
Affiliation(s)
- Xin Lu
- Authors contributed equally
| | | | | | | | | | | | | | | | - Weiliang Xia
- Correspondence to: Prof. Weiliang Xia, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China. E-mail:
| |
Collapse
|
48
|
Yue H, Xu H, Ma L, Li X, Yang B, Wang X, Zeng Q, Li H, Zhang D, Geng M, Meng T, Xie Z. A DXd/TLR7-Agonist Dual-Conjugate Anti-HER2 ADC Exerts Robust Antitumor Activity Through Tumor Cell Killing and Immune Activation. Mol Cancer Ther 2024; 23:1639-1651. [PMID: 39082754 DOI: 10.1158/1535-7163.mct-24-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 11/05/2024]
Abstract
The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll like receptor 7 (TLR7) agonist MTT5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment. This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT5. In vivo evaluation of Tras-DXd-MTL1's antitumor potency revealed a notably superior performance compared with the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.
Collapse
Affiliation(s)
- Hangtian Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lanping Ma
- Division of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Biyu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Deqiang Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Tao Meng
- Division of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Zhou B, Sha S, Wang Q, Sun S, Tao J, Zhu J, Dong L. The prognostic implications of cuproptosis-related gene signature and the potential of PPIC as a promising biomarker in cutaneous melanoma. Pigment Cell Melanoma Res 2024; 37:864-880. [PMID: 39115044 DOI: 10.1111/pcmr.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 10/29/2024]
Abstract
Cutaneous melanoma is the most lethal of all skin tumors. Recently, cuproptosis, a novel form of cell death linked to oxidative phosphorylation, has emerged as an important factor. However, the precise role of cuproptosis in melanoma remains unclear. Our research explored the potential links between cuproptosis-related genes, prognosis, immune microenvironments, and melanoma treatments. Significantly, cuproptosis regulators showed remarkable differences between melanoma and normal tissues, establishing their relevance to melanoma. The newly developed cuproptosis-related gene signature (CGS) demonstrated a robust ability to predict overall survival (OS) in melanoma. We constructed a novel nomogram that combined clinical features with CGS to improve predictive accuracy. In addition, the study revealed correlations between CGS and immune cell populations, including CD8+T cells, Tfh cells, B cells, and myeloid-derived suppressor cells. Within the CGS, Peptidylprolyl isomerase C (PPIC) emerged as the most strongly associated with poor prognosis and drug resistance in melanoma. PPIC was identified as a promoter of melanoma progression, enhancing cell invasiveness while concurrently suppressing CD8+T cell activation. This comprehensive study not only elucidated the intricate connections between CGS, melanoma prognosis, immune microenvironment, and drug resistance but also provided compelling evidence supporting PPIC as a promising biomarker for predicting OS in melanoma treatment.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Qi Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Shuomin Sun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Liyun Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| |
Collapse
|
50
|
Moon S, Rha MS. Revisiting T Cells in Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:585-600. [PMID: 39622684 PMCID: PMC11621483 DOI: 10.4168/aair.2024.16.6.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024]
Abstract
A variety of immune cells in the nasal tissue are involved in the immunopathogenesis of chronic rhinosinusitis (CRS), a chronic inflammatory disease affecting the nasal cavity and paranasal sinuses. T cells play a pivotal role in orchestrating immune dysregulation in CRS by producing key cytokines. Recent studies have expanded the understanding of T cell biology across the inflammatory endotypes of CRS. This review summarizes current knowledge on the multifaceted roles of T cells in the pathophysiology of CRS. Particularly, we highlight the alterations in phenotypes and functions of various T cell subsets in CRS. Additionally, as functional studies of effector and regulatory T cell populations have revealed potential translational targets, we suggest perspectives for future research into T cell-oriented therapeutic strategies for CRS.
Collapse
Affiliation(s)
- Sungmin Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|