1
|
Lewis TR, Klementieva NV, Phan S, Castillo CM, Kim KY, Cao LY, Ellisman MH, Arshavsky VY, Alekseev O. Unique ultrastructural organization of human rod photoreceptors. Commun Biol 2025; 8:63. [PMID: 39820780 DOI: 10.1038/s42003-025-07473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Rod and cone photoreceptor cells are specialized neurons responsible for transforming the information reaching the eyes in the form of photons into the language of neuronal activity. Rods are the most prevalent photoreceptor type, primarily responsible for light detection under conditions of limited illumination. Here we demonstrate that human rods have a morphological organization unique among all described species, whereby the cell soma extends alongside the light-sensitive outer segment compartment to form a structure we have termed the "accessory inner segment." These structures have two striking features: they are reinforced by a massive microtubular cytoskeleton and contain electron-dense adhesions that mediate their attachment to outer segments. Given that the spacing of human rod photoreceptors is sparser than in most other species, the accessory inner segment likely provides mechanical support to the closely apposed outer segment. This discovery expands our understanding of the human retina and directs future studies of human photoreceptor function in health and disease.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carson M Castillo
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren Y Cao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Oleg Alekseev
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Prasai A, Ivashchenko O, Maskova K, Bykova S, Schmidt Cernohorska M, Stepanek O, Huranova M. BBSome-deficient cells activate intraciliary CDC42 to trigger actin-dependent ciliary ectocytosis. EMBO Rep 2025; 26:36-60. [PMID: 39587330 PMCID: PMC11724091 DOI: 10.1038/s44319-024-00326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of the BBSome, a cargo adaptor essential for export of transmembrane receptors from cilia. Although actin-dependent ectocytosis has been proposed to compensate defective cargo retrieval, its molecular basis remains unclear, especially in relation to BBS pathology. In this study, we investigated how actin polymerization and ectocytosis are regulated within the cilium. Our findings reveal that ciliary CDC42, a RHO-family GTPase triggers in situ actin polymerization, ciliary ectocytosis, and cilia shortening in BBSome-deficient cells. Activation of the Sonic Hedgehog pathway further enhances CDC42 activity specifically in BBSome-deficient cilia. Inhibition of CDC42 in BBSome-deficient cells decreases the frequency and duration of ciliary actin polymerization events, causing buildup of G protein coupled receptor 161 (GPR161) in bulges along the axoneme during Sonic Hedgehog signaling. Overall, our study identifies CDC42 as a key trigger of ciliary ectocytosis. Hyperactive ciliary CDC42 and ectocytosis and the resulting loss of ciliary material might contribute to BBS disease severity.
Collapse
Affiliation(s)
- Avishek Prasai
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Department of Developmental and Cell Biology, Charles University, Prague, Czech Republic
- Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Olha Ivashchenko
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Department of Developmental and Cell Biology, Charles University, Prague, Czech Republic
| | - Kristyna Maskova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sofiia Bykova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Gupta M, Lewis TR, Stuck MW, Spencer WJ, Klementieva NV, Arshavsky VY, Pazour GJ. Inpp5e Is Critical for Photoreceptor Outer Segment Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609873. [PMID: 39253441 PMCID: PMC11383302 DOI: 10.1101/2024.08.27.609873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed. In both cases, the loss of Inpp5e led to severe defects in photoreceptor outer segment morphology and ultimately photoreceptor cell loss. The primary morphological defect consisted of outer segment shortening and reduction in the number of newly forming discs at the outer segment base. This was accompanied by structural abnormalities of the Golgi apparatus, mislocalized rhodopsin, and an accumulation of extracellular vesicles. In addition, knockout cells showed a reduction in the size and prevalence of the actin network at the site of new disc morphogenesis and the occasional formation of membrane whorls instead of discs in a subset of cells. Together, these data demonstrate that Inpp5e plays a critical role in maintaining the outer segment and the normal process of outer segment renewal depends on the activity of this enzyme.
Collapse
|
4
|
Ayyagari R, Borooah S, Durham T, Gelfman C, Bowman A. Current and Future Directions in Developing Effective Treatments for PRPH2-Associated Retinal Diseases: A Workshop Report. Transl Vis Sci Technol 2024; 13:16. [PMID: 39382871 PMCID: PMC11469193 DOI: 10.1167/tvst.13.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Purpose and Methods A workshop of affected individuals and their families, clinicians, researchers, and industry representatives was convened in March 2023 to define the knowledge landscape of peripherin 2 (PRPH2) biology and identify challenges and opportunities towards developing PRPH2-associated inherited retinal disease (IRD) treatments. Results The results of an online survey and presentations from affected individuals and their family members revealed disease characteristics and impacts on daily living. Scientific sessions highlighted the significant heterogeneity in clinical presentation of PRPH2-related retinopathy; PRPH2's crucial function in rod and cone outer segment formation and maintenance; the usefulness of existing animal and cellular models for understanding disease pathophysiology; and possible therapeutic approaches for autosomal dominant PRPH2-associated IRDs, including gene-specific therapies and gene-agnostic approaches. Priority gaps identified by the workshop included having a more complete understanding of PRPH2's fundamental biology and factors contributing to PRPH2-related disease phenotypic diversity, establishing genotype-phenotype correlations, and creating additional models to probe the functional consequences of PRPH2 variants and to test therapies. Additionally, a natural history study involving a large number of participants is required to more fully characterize PRPH2-related disease progression, aiding in interventional clinical trial design. Conclusions Because PRPH2-associated IRDs are rare, maximizing opportunities for communication and collaboration among stakeholders, such as that provided by the workshop, is crucial to overcome the challenges to developing effective treatments and improve the lives of affected individuals. Translational Relevance Fostering communication among stakeholders to identify knowledge gaps, therapeutic challenges, and potential opportunities toward developing effective treatments for PRPH2-related IRDs.
Collapse
Affiliation(s)
- Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, CA, USA
| | | | - Todd Durham
- Foundation Fighting Blindness, Columbia, MD, USA
| | | | | |
Collapse
|
5
|
Lewis TR, Castillo CM, Klementieva NV, Hsu Y, Hao Y, Spencer WJ, Drack AV, Pazour GJ, Arshavsky VY. Contribution of intraflagellar transport to compartmentalization and maintenance of the photoreceptor cell. Proc Natl Acad Sci U S A 2024; 121:e2408551121. [PMID: 39145934 PMCID: PMC11348033 DOI: 10.1073/pnas.2408551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT). Here, we report three major findings from the analysis of mice in which ciliary transport was acutely impaired by conditional knockouts of IFT-B subunits. First, we demonstrate the existence of a sorting mechanism whereby mislocalized rhodopsin is recruited to and concentrated in extracellular vesicles prior to their release, presumably to protect the cell from adverse effects of protein mislocalization. Second, reducing rhodopsin expression significantly delays photoreceptor degeneration caused by IFT disruption, suggesting that controlling rhodopsin levels may be an effective therapy for some cases of retinal degenerative disease. Last, the loss of IFT-B subunits does not recapitulate a phenotype observed in mutants of the BBSome (another ciliary transport protein complex relying on IFT) in which non-ciliary proteins accumulate in the outer segment. Whereas it is widely thought that the role of the BBSome is to primarily participate in ciliary transport, our data suggest that the BBSome has another major function independent of IFT and possibly related to maintaining the diffusion barrier of the ciliary transition zone.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | | | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - William J. Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA52242
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA01605
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
6
|
Xu J, Zhao C, Kang Y. The Formation and Renewal of Photoreceptor Outer Segments. Cells 2024; 13:1357. [PMID: 39195247 DOI: 10.3390/cells13161357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The visual system is essential for humans to perceive the environment. In the retina, rod and cone photoreceptor neurons are the initial sites where vision forms. The apical region of both cone and rod photoreceptors contains a light-sensing organelle known as the outer segment (OS), which houses tens of thousands of light-sensitive opsins. The OSs of photoreceptors are not static; they require rhythmic renewal to maintain normal physiological functions. Disruptions in OS renewal can lead to various genetic disorders, such as retinitis pigmentosa (RP). Understanding the patterns and molecular mechanisms of photoreceptor OS renewal remains one of the most intriguing topics in visual biology. This review aims to elucidate the structure of photoreceptor OSs, the molecular mechanisms underlying photoreceptor OS renewal, and the retinal diseases resulting from defects in this renewal process. Additionally, we will explore retinal diseases related to photoreceptor OS renewal and potential therapeutic strategies, concluding with a discussion on future research directions for OS renewal.
Collapse
Affiliation(s)
- Jingjin Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chengtian Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Lewis TR, Klementieva NV, Phan S, Castillo CM, Kim KY, Cao LY, Ellisman MH, Arshavsky VY, Alekseev O. Human rod photoreceptor outer segments are supported by accessory inner segment structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607370. [PMID: 39149258 PMCID: PMC11326293 DOI: 10.1101/2024.08.09.607370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The first steps in vision take place in photoreceptor cells, which are highly compartmentalized neurons exhibiting significant structural variation across species. The light-sensitive ciliary compartment, called the outer segment, is located atop of the cell soma, called the inner segment. In this study, we present an ultrastructural analysis of human photoreceptors, which reveals that, in contrast to this classic arrangement, the inner segment of human rods extends alongside the outer segment to form a structure hereby termed the "accessory inner segment". While reminiscent of the actin-based microvilli known as "calyceal processes" observed in other species, the accessory inner segment is a unique structure: (1) it contains an extensive microtubule-based cytoskeleton, (2) it extends far alongside the outer segment, (3) its diameter is comparable to that of the outer segment, (4) it contains numerous mitochondria, and (5) it forms electron-dense structures that likely mediate adhesion to the outer segment. Given that the spacing of extrafoveal human photoreceptors is more sparse than in non-primate species, with vast amounts of interphotoreceptor matrix present between cells, the closely apposed accessory inner segment likely provides structural support to the outer segment. This discovery expands our understanding of the human retina and directs future studies of human photoreceptor function in health and disease.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University, Durham, NC
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | | | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | | | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Lauren Y. Cao
- Department of Ophthalmology, Duke University, Durham, NC
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Oleg Alekseev
- Department of Ophthalmology, Duke University, Durham, NC
| |
Collapse
|
8
|
Usmani M, Coudray N, Riggi M, Raghu R, Ramchandani H, Bobe D, Kopylov M, Zhong ED, Iwasa JH, Ekiert DC, Bhabha G. Cryo-ET reveals the in situ architecture of the polar tube invasion apparatus from microsporidian parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603322. [PMID: 39026755 PMCID: PMC11257570 DOI: 10.1101/2024.07.13.603322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microsporidia are divergent fungal pathogens that employ a harpoon-like apparatus called the polar tube (PT) to invade host cells. The PT architecture and its association with neighboring organelles remain poorly understood. Here, we use cryo-electron tomography to investigate the structural cell biology of the PT in dormant spores from the human-infecting microsporidian species, Encephalitozoon intestinalis . Segmentation and subtomogram averaging of the PT reveal at least four layers: two protein-based layers surrounded by a membrane, and filled with a dense core. Regularly spaced protein filaments form the structural skeleton of the PT. Combining cryo-electron tomography with cellular modeling, we propose a model for the 3-dimensional organization of the polaroplast, an organelle that is continuous with the membrane layer that envelops the PT. Our results reveal the ultrastructure of the microsporidian invasion apparatus in situ , laying the foundation for understanding infection mechanisms.
Collapse
|
9
|
Ran J, Guo G, Zhang S, Zhang Y, Zhang L, Li D, Wu S, Cong Y, Wang X, Xie S, Zhao H, Liu H, Ou G, Zhu X, Zhou J, Liu M. KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400569. [PMID: 38666385 PMCID: PMC11220646 DOI: 10.1002/advs.202400569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 07/04/2024]
Abstract
The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Guizhi Guo
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yufei Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Shian Wu
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yusheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou310036China
| | - Xiaohong Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammation BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Songbo Xie
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Huijie Zhao
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Hongbin Liu
- Center for Reproductive MedicineCheeloo College of MedicineKey Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinan250014China
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life SciencesMinistry of Education Key Laboratory for Protein ScienceSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Jun Zhou
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
10
|
Otsu W. [Role of endosomal pathway in the ciliary transport and the membrane organization of outer segment disc membrane in photoreceptors]. Nihon Yakurigaku Zasshi 2024; 159:203-208. [PMID: 38684400 DOI: 10.1254/fpj.23077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A photoreceptor is a specialized neuron that is responsible for the conversion of light into an electrical signal. Photoreceptors are classified into rods and cones, and both photoreceptors possess light-sensing ciliary organelles called outer segments (OSs), anchored in the cells by a microtubule-based axoneme. The OS consists of a stack of disc membranes, which are abundant for the retinal phototransduction proteins such as rhodopsin. Recently, modern protein synchronization techniques using in vivo transfection in rodents revealed that rhodopsin transits through Rab11-positive recycling endosomes, preferentially entering the OS in the dark. Moreover, Peripherin-2 (PRPH2, also called retinal degeneration slow, RDS), a photoreceptor-specific tetraspanin protein essential for the morphogenesis of disc membranes, is delivered to the OS following complementary to that of rhodopsin. Various PRPH2 disease-causing mutations have been found in humans, and most of the mutations in the cytosolic C-terminus of PRPH2 are linked to cone-dominant macular dystrophies. It has been shown that the late endosome is the waystation that sorts newly synthesized PRPH2 into the cilium. The multiple C-terminal motifs of PRPH2 regulate its late endosome and ciliary targeting through ubiquitination and binding to an Endosomal Sorting Complexes Required for Transport (ESCRT) component, Hrs. These findings suggest that the late endosomes play an important role in the biosynthetic pathway of ciliary proteins and can be a new therapeutic target for the diseases caused by ciliary defects.
Collapse
Affiliation(s)
- Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University
| |
Collapse
|
11
|
Annan WE, Asamani EOA, White D. Mathematical model for rod outer segment dynamics during retinal detachment. PLoS One 2024; 19:e0297419. [PMID: 38848326 PMCID: PMC11161088 DOI: 10.1371/journal.pone.0297419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Retinal detachment (RD) is the separation of the neural layer from the retinal pigmented epithelium thereby preventing the supply of nutrients to the cells within the neural layer of the retina. In vertebrates, primary photoreceptor cells consisting of rods and cones undergo daily renewal of their outer segment through the addition of disc-like structures and shedding of these discs at their distal end. When the retina detaches, the outer segment of these cells begins to degenerate and, if surgical procedures for reattachment are not done promptly, the cells can die and lead to blindness. The precise effect of RD on the renewal process is not well understood. Additionally, a time frame within which reattachment of the retina can restore proper photoreceptor cell function is not known. Focusing on rod cells, we propose a mathematical model to clarify the influence of retinal detachment on the renewal process. Our model simulation and analysis suggest that RD stops or significantly reduces the formation of new discs and that an alternative removal mechanism is needed to explain the observed degeneration during RD. Sensitivity analysis of our model parameters points to the disc removal rate as the key regulator of the critical time within which retinal reattachment can restore proper photoreceptor cell function.
Collapse
Affiliation(s)
- William Ebo Annan
- Department of Mathematics, Clarkson University, Potsdam, NY, United States of America
| | | | - Diana White
- Department of Mathematics, Clarkson University, Potsdam, NY, United States of America
| |
Collapse
|
12
|
Rutan Woods CT, Makia MS, Lewis TR, Crane R, Zeibak S, Yu P, Kakakhel M, Castillo CM, Arshavsky VY, Naash MI, Al-Ubaidi MR. Downregulation of rhodopsin is an effective therapeutic strategy in ameliorating peripherin-2-associated inherited retinal disorders. Nat Commun 2024; 15:4756. [PMID: 38834544 PMCID: PMC11150396 DOI: 10.1038/s41467-024-48846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.
Collapse
Affiliation(s)
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Stephanie Zeibak
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Paul Yu
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
13
|
Brotherton C, Megaw R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes (Basel) 2024; 15:727. [PMID: 38927662 PMCID: PMC11202562 DOI: 10.3390/genes15060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone-rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs.
Collapse
Affiliation(s)
- Chloe Brotherton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU1, UK;
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Chalmers St., Edinburgh EH3 9HA, UK
| |
Collapse
|
14
|
Yanardag S, Rhodes S, Saravanan T, Guan T, Ramamurthy V. Prominin 1 is crucial for the early development of photoreceptor outer segments. Sci Rep 2024; 14:10498. [PMID: 38714794 PMCID: PMC11076519 DOI: 10.1038/s41598-024-60989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/10/2024] Open
Abstract
Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.
Collapse
Affiliation(s)
- Sila Yanardag
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Scott Rhodes
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
15
|
Otsuka Y, Imamura K, Oishi A, Asakawa K, Kondo T, Nakai R, Suga M, Inoue I, Sagara Y, Tsukita K, Teranaka K, Nishimura Y, Watanabe A, Umeyama K, Okushima N, Mitani K, Nagashima H, Kawakami K, Muguruma K, Tsujikawa A, Inoue H. Phototoxicity avoidance is a potential therapeutic approach for retinal dystrophy caused by EYS dysfunction. JCI Insight 2024; 9:e174179. [PMID: 38646933 PMCID: PMC11141876 DOI: 10.1172/jci.insight.174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.
Collapse
Affiliation(s)
- Yuki Otsuka
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiko Imamura
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Takayuki Kondo
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Risako Nakai
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mika Suga
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ikuyo Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yukako Sagara
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
| | - Kayoko Tsukita
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kaori Teranaka
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Nishimura
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Watanabe
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Nanako Okushima
- Division of Systems Medicine and Gene Therapy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kohnosuke Mitani
- Division of Systems Medicine and Gene Therapy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruhisa Inoue
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
16
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. FASEB J 2024; 38:e23518. [PMID: 38441532 PMCID: PMC10917122 DOI: 10.1096/fj.202301641rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.
Collapse
Affiliation(s)
- Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Meredith G. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Evan R. Boitet
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Seth T. Hubbard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Anushree Gade
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Bryan W. Jones
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, 84132 USA
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294 USA
| |
Collapse
|
17
|
Garner MA, Hubbard MG, Boitet ER, Hubbard ST, Gade A, Ying G, Jones BW, Baehr W, Gross AK. NUDC is critical for rod photoreceptor function, maintenance, and survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568878. [PMID: 38076848 PMCID: PMC10705250 DOI: 10.1101/2023.11.28.568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (r NudC -/- ). Loss of NUDC in rods led to complete photoreceptor cell death at six weeks of age. By 3 weeks of age, r NudC -/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of r NudC -/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. Absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor. Significance Statement Nuclear distribution protein C (NUDC) has been studied extensively as an essential protein for mitotic cell division. In this study, we discovered its expression and role in the postmitotic rod photoreceptor cell. In the absence of NUDC in mouse rods, we detected functional loss, protein mislocalization, and rapid retinal degeneration consistent with dynein inactivation. In the early phase of retinal degeneration, we observed ultrastructural defects and an upregulation of inflammatory markers suggesting additional, dynein-independent functions of NUDC.
Collapse
|
18
|
Lewis TR, Makia MS, Castillo CM, Hao Y, Al-Ubaidi MR, Skiba NP, Conley SM, Arshavsky VY, Naash MI. ROM1 is redundant to PRPH2 as a molecular building block of photoreceptor disc rims. eLife 2023; 12:RP89444. [PMID: 37991486 PMCID: PMC10665016 DOI: 10.7554/elife.89444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Visual signal transduction takes place within a stack of flattened membranous 'discs' enclosed within the light-sensitive photoreceptor outer segment. The highly curved rims of these discs, formed in the process of disc enclosure, are fortified by large hetero-oligomeric complexes of two homologous tetraspanin proteins, PRPH2 (a.k.a. peripherin-2 or rds) and ROM1. While mutations in PRPH2 affect the formation of disc rims, the role of ROM1 remains poorly understood. In this study, we found that the knockout of ROM1 causes a compensatory increase in the disc content of PRPH2. Despite this increase, discs of ROM1 knockout mice displayed a delay in disc enclosure associated with a large diameter and lack of incisures in mature discs. Strikingly, further increasing the level of PRPH2 rescued these morphological defects. We next showed that disc rims are still formed in a knockin mouse in which the tetraspanin body of PRPH2 was replaced with that of ROM1. Together, these results demonstrate that, despite its contribution to the formation of disc rims, ROM1 can be replaced by an excess of PRPH2 for timely enclosure of newly forming discs and establishing normal outer segment structure.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of HoustonHoustonUnited States
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of HoustonHoustonUnited States
- College of Optometry, University of HoustonHoustonUnited States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Muna I Naash
- Department of Biomedical Engineering, University of HoustonHoustonUnited States
- College of Optometry, University of HoustonHoustonUnited States
| |
Collapse
|
19
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565151. [PMID: 37961114 PMCID: PMC10635059 DOI: 10.1101/2023.11.01.565151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. elegans males release EVs in a mechanically-induced manner and deposit PKD-2-labeled EVs onto the hermaphrodite vulva during mating, suggesting an active release process. Here, we study the dynamics of ciliary EV release using time-lapse imaging and find that cilia can sustain the release of PKD-2-labeled EVs for a two-hour duration. Intriguingly, this extended release doesn't require neuronal synaptic transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The ciliary kinesin-3 motor KLP-6 is necessary for both initial and extended ciliary EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dihydroceramide desaturase DEGS1/2 ortholog TTM-5 is highly expressed in the EV-releasing sensory neurons, localizes to cilia, and is required for sustained but not initial ciliary EV release, implicating ceramide in ciliary ectocytosis. The study offers a comprehensive portrait of real-time ciliary EV release, and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Truong HM, Cruz-Colón KO, Martínez-Márquez JY, Willer JR, Travis AM, Biswas SK, Lo WK, Bolz HJ, Pearring JN. The tectonic complex regulates membrane protein composition in the photoreceptor cilium. Nat Commun 2023; 14:5671. [PMID: 37704658 PMCID: PMC10500017 DOI: 10.1038/s41467-023-41450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition but the mechanism remains unknown. To understand tectonic's role, we generate a photoreceptor-specific Tctn1 knockout mouse. Loss of Tctn1 results in the absence of the entire tectonic complex and associated MKS proteins yet has minimal effects on the transition zone structure of rod photoreceptors. We find that the protein composition of the photoreceptor cilium is disrupted as non-resident membrane proteins accumulate in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that fluorescent rhodopsin moves faster through the transition zone in photoreceptors lacking tectonic, which suggests that the tectonic complex acts as a physical barrier to slow down membrane protein diffusion in the photoreceptor transition zone to ensure proper removal of non-resident membrane proteins.
Collapse
Affiliation(s)
- Hanh M Truong
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kevin O Cruz-Colón
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Lewis TR, Makia MS, Castillo CM, Hao Y, Al-Ubaidi MR, Skiba NP, Conley SM, Arshavsky VY, Naash MI. ROM1 is redundant to PRPH2 as a molecular building block of photoreceptor disc rims. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547380. [PMID: 37693615 PMCID: PMC10491102 DOI: 10.1101/2023.07.02.547380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Visual signal transduction takes place within a stack of flattened membranous "discs" enclosed within the light-sensitive photoreceptor outer segment. The highly curved rims of these discs, formed in the process of disc enclosure, are fortified by large hetero-oligomeric complexes of two homologous tetraspanin proteins, PRPH2 (a.k.a. peripherin-2 or rds) and ROM1. While mutations in PRPH2 affect the formation of disc rims, the role of ROM1 remains poorly understood. In this study, we found that the knockout of ROM1 causes a compensatory increase in the disc content of PRPH2. Despite this increase, discs of ROM1 knockout mice displayed a delay in disc enclosure associated with a large diameter and lack of incisures in mature discs. Strikingly, further increasing the level of PRPH2 rescued these morphological defects. We next showed that disc rims are still formed in a knockin mouse in which the tetraspanin body of PRPH2 was replaced with that of ROM1. Together, these results demonstrate that, despite its contribution to the formation of disc rims, ROM1 can be replaced by an excess of PRPH2 for timely enclosure of newly forming discs and establishing normal outer segment structure.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Mustafa S. Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA, 77204
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA, 77204
- College of Optometry, University of Houston, Houston, TX, USA, 77204
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA, 73104
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA, 77204
- College of Optometry, University of Houston, Houston, TX, USA, 77204
| |
Collapse
|
23
|
Derderian C, Canales GI, Reiter JF. Seriously cilia: A tiny organelle illuminates evolution, disease, and intercellular communication. Dev Cell 2023; 58:1333-1349. [PMID: 37490910 PMCID: PMC10880727 DOI: 10.1016/j.devcel.2023.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs. Over the last decades, we have learned how non-motile, primary cilia play important roles in intercellular communication. Reflecting their diverse motility and signaling functions, compromised cilia cause a diverse range of diseases collectively called "ciliopathies." In this review, we highlight how cilia signal, focusing on how second messengers generated in cilia convey distinct information; how cilia are a potential source of signals to other cells; how evolution may have shaped ciliary function; and how cilia research may address thorny outstanding questions.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriela I Canales
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Lewis TR, Phan S, Castillo CM, Kim KY, Coppenrath K, Thomas W, Hao Y, Skiba NP, Horb ME, Ellisman MH, Arshavsky VY. Photoreceptor disc incisures form as an adaptive mechanism ensuring the completion of disc enclosure. eLife 2023; 12:e89160. [PMID: 37449984 PMCID: PMC10361718 DOI: 10.7554/elife.89160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California, San DiegoLa JollaUnited States
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California, San DiegoLa JollaUnited States
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus ResourceWoods HoleUnited States
| | - William Thomas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus ResourceWoods HoleUnited States
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus ResourceWoods HoleUnited States
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California, San DiegoLa JollaUnited States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
25
|
Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, Pasolli HA, Liu Y, Gamazon ER, Alwaseem H, Hite RK, Birsoy K. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab 2023; 35:1057-1071.e12. [PMID: 37100056 PMCID: PMC10367582 DOI: 10.1016/j.cmet.2023.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yeeun Son
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lishu Yue
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
26
|
Spencer WJ. Extracellular vesicles highlight many cases of photoreceptor degeneration. Front Mol Neurosci 2023; 16:1182573. [PMID: 37273908 PMCID: PMC10233141 DOI: 10.3389/fnmol.2023.1182573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The release of extracellular vesicles is observed across numerous cell types and serves a range of biological functions including intercellular communication and waste disposal. One cell type which stands out for its robust capacity to release extracellular vesicles is the vertebrate photoreceptor cell. For decades, the release of extracellular vesicles by photoreceptors has been documented in many different animal models of photoreceptor degeneration and, more recently, in wild type photoreceptors. Here, I review all studies describing extracellular vesicle release by photoreceptors and discuss the most unifying theme among them-a photoreceptor cell fully, or partially, diverts its light sensitive membrane material to extracellular vesicles when it has defects in the delivery or morphing of this material into the photoreceptor's highly organized light sensing organelle. Because photoreceptors generate an enormous amount of light sensitive membrane every day, the diversion of this material to extracellular vesicles can cause a massive accumulation of these membranes within the retina. Little is known about the uptake of photoreceptor derived extracellular vesicles, although in some cases the retinal pigment epithelial cells, microglia, Müller glia, and/or photoreceptor cells themselves have been shown to phagocytize them.
Collapse
|
27
|
Thorson MT, Wei SE, Johnson C, Gabriel CJ, Arshavsky VY, Pearring JN. Nrl:CreERT2 mouse model to induce mosaic gene expression in rod photoreceptors. Front Mol Neurosci 2023; 16:1161127. [PMID: 37181654 PMCID: PMC10166802 DOI: 10.3389/fnmol.2023.1161127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptors are sensory neurons that capture light within their outer segment, a narrow cylindrical organelle stacked with disc-shaped membranes housing the visual pigment. Photoreceptors are the most abundant neurons in the retina and are tightly packed to maximize the capture of incoming light. As a result, it is challenging to visualize an individual cell within a crowded photoreceptor population. To address this limitation, we developed a rod-specific mouse model that expresses tamoxifen-inducible cre recombinase under the control of the Nrl promoter. We characterized this mouse using a farnyslated GFP (GFPf) reporter mouse and found mosaic rod expression throughout the retina. The number of GFPf-expressing rods stabilized within 3 days post tamoxifen injection. At that time, the GFPf reporter began to accumulate in basal disc membranes. Using this new reporter mouse, we attempted to quantify the time course of photoreceptor disc renewal in WT and Rd9 mice, a model of X-linked retinitis pigmentosa previously proposed to have a reduced disc renewal rate. We measured GFPf accumulation in individual outer segments at 3 and 6 days post-induction and found that basal accumulation of the GFPf reporter was unchanged between WT and Rd9 mice. However, rates of renewal based on the GFPf measurements were inconsistent with historical calculations from radiolabeled pulse-chase experiments. By extending GFPf reporter accumulation to 10 and 13 days we found that this reporter had an unexpected distribution pattern that preferentially labeled the basal region of the outer segment. For these reasons the GFPf reporter cannot be used for measuring rates of disc renewal. Therefore, we used an alternative method that labels newly forming discs with a fluorescent dye to measure disc renewal rates directly in the Rd9 model and found it was not significantly different from WT. Our study finds that the Rd9 mouse has normal rates of disc renewal and introduces a novel Nrl:CreERT2 mouse for gene manipulation of individual rods.
Collapse
Affiliation(s)
- Molly T. Thorson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Stephanie E. Wei
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | | | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Jillian N. Pearring
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Lewis TR, Phan S, Castillo CM, Kim KY, Coppenrath K, Thomas W, Hao Y, Skiba NP, Horb ME, Ellisman MH, Arshavsky VY. Photoreceptor disc incisures form as an adaptive mechanism ensuring the completion of disc enclosure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535932. [PMID: 37066355 PMCID: PMC10104153 DOI: 10.1101/2023.04.06.535932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or "discs", located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called "incisures". The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA, USA, 92093
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA, USA, 92093
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, USA, 02543
| | - William Thomas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, USA, 02543
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, USA, 02543
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA, USA, 92093
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA, 27710
| |
Collapse
|
29
|
Vedula P, Fina ME, Bell BA, Nikonov SS, Kashina A, Dong DW. β -actin is essential for structural integrity and physiological function of the retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534392. [PMID: 37034790 PMCID: PMC10081178 DOI: 10.1101/2023.03.27.534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of non-muscle β -actin gene (Actb) leads to early embryonic lethality in mice, however mice with β - to γ -actin replacement develop normally and show no detectable phenotypes at young age. Here we investigated the effect of this replacement in the retina. During aging, these mice have accelerated de-generation of retinal structure and function, including elongated microvilli and defective mitochondria of retinal pigment epithelium (RPE), abnormally bulging photoreceptor outer segments (OS) accompanied by reduced transducin concentration and light sensitivity, and accumulation of autofluorescent microglia cells in the subretinal space between RPE and OS. These defects are accompanied by changes in the F-actin binding of several key actin interacting partners, including ezrin, myosin, talin, and vinculin known to play central roles in modulating actin cytoskeleton and cell adhesion and mediating the phagocytosis of OS. Our data show that β -actin protein is essential for maintaining normal retinal structure and function.
Collapse
|
30
|
Spencer WJ, Schneider NF, Lewis TR, Castillo CM, Skiba NP, Arshavsky VY. The WAVE complex drives the morphogenesis of the photoreceptor outer segment cilium. Proc Natl Acad Sci U S A 2023; 120:e2215011120. [PMID: 36917665 PMCID: PMC10041111 DOI: 10.1073/pnas.2215011120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
The photoreceptor outer segment is a modified cilium filled with hundreds of flattened "disc" membranes responsible for efficient light capture. To maintain photoreceptor health and functionality, outer segments are continuously renewed through the addition of new discs at their base. This process is driven by branched actin polymerization nucleated by the Arp2/3 complex. To induce actin polymerization, Arp2/3 requires a nucleation promoting factor. Here, we show that the nucleation promoting factor driving disc morphogenesis is the pentameric WAVE complex and identify all protein subunits of this complex. We further demonstrate that the knockout of one of them, WASF3, abolishes actin polymerization at the site of disc morphogenesis leading to formation of disorganized membrane lamellae emanating from the photoreceptor cilium instead of an outer segment. These data establish that, despite the intrinsic ability of photoreceptor ciliary membranes to form lamellar structures, WAVE-dependent actin polymerization is essential for organizing these membranes into a proper outer segment.
Collapse
Affiliation(s)
- William J. Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
- Department of Ophthalmology and Visual Sciences, State University of New York, Upstate Medical University, Syracuse, NY13210
| | | | - Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
31
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
32
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
33
|
Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schäfer J, Sturm D, Fritze J, Gür B, Kaplan L, Andreani T, Goldmann T, Brooks M, Starostik MR, Lokhande A, Apel M, Fath KR, Stingl K, Kohl S, DeAngelis MM, Schlötzer-Schrehardt U, Kim IK, Owen LA, Vetter JM, Pfeiffer N, Andrade-Navarro MA, Grosche A, Swaroop A, Wolfrum U. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet 2023; 32:431-449. [PMID: 35997788 PMCID: PMC9851744 DOI: 10.1093/hmg/ddac211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin R Fadl
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirjana M Becker
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Sturm
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Fritze
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Burcu Gür
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Tommaso Andreani
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tobias Goldmann
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anagha Lokhande
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa Apel
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Karl R Fath
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Department of Biology, Queens College of CUNY, Kissena Blvd, Flushing, NY 11367, USA
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY 14209, USA
| | | | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jan M Vetter
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Antje Grosche
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
34
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
35
|
Lewis TR, Al-Ubaidi MR, Naash MI, Arshavsky VY. The Role of Peripherin-2/ROM1 Complexes in Photoreceptor Outer Segment Disc Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:277-281. [PMID: 37440045 DOI: 10.1007/978-3-031-27681-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The light-sensitive outer segment organelle of photoreceptor cells contains a stack of hundreds of flat, disc-shaped membranes called discs. The rims of these discs contain a photoreceptor-specific tetraspanin protein peripherin-2 (also known as rds or PRPH2). Mutations in the PRPH2 gene lead to a wide variety of inherited retinal degenerations in humans. The vast majority of these mutations occur within a large, intradiscal loop of peripherin-2, known as the D2 loop. The D2 loop mediates well-established intermolecular interactions of peripherin-2 molecules among themselves and a homologous protein ROM1. These interactions lead to the formation of large, highly ordered oligomers. In this chapter, we discuss the supramolecular organization of peripherin-2/ROM1 complexes and their contribution to the process of outer segment disc morphogenesis and enclosure.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, College of Engineering, University of Houston, Houston, TX, USA
- College of Optometry, University of Houston, Houston, TX, USA
| | - Muna I Naash
- Department of Biomedical Engineering, College of Engineering, University of Houston, Houston, TX, USA
- College of Optometry, University of Houston, Houston, TX, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Spencer WJ, Arshavsky VY. A Ciliary Branched Actin Network Drives Photoreceptor Disc Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:507-511. [PMID: 37440079 DOI: 10.1007/978-3-031-27681-1_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The light-detecting organelle of the photoreceptor cell is a modified primary cilium, called the outer segment. The outer segment houses hundreds of light-sensitive membrane, "discs," that are continuously renewed by the constant formation of new discs at the outer segment base and the phagocytosis of old ones from outer segment tips by the retinal pigment epithelium. In this chapter, we describe how an actin cytoskeleton network, residing precisely at the site of disc formation, provides the driving force that pushes out the ciliary plasma membrane to form each disc evagination that subsequently can mature into a bona fide disc. We highlight the functions of actin-binding proteins, particularly PCARE and Arp2/3, that are known to participate in disc formation. Finally, we describe a working model of disc formation built upon the many studies focusing on the role of actin during disc morphogenesis.
Collapse
Affiliation(s)
- William J Spencer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
- Duke Eye Center, Durham, NC, USA.
- Upstate Medical University, Syracuse, NY, USA.
| | | |
Collapse
|
37
|
El Mazouni D, Gros P. Cryo-EM structures of peripherin-2 and ROM1 suggest multiple roles in photoreceptor membrane morphogenesis. SCIENCE ADVANCES 2022; 8:eadd3677. [PMID: 36351012 PMCID: PMC9645710 DOI: 10.1126/sciadv.add3677] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Mammalian peripherin-2 (PRPH2) and rod outer segment membrane protein 1 (ROM1) are retina-specific tetraspanins that partake in the constant renewal of stacked membrane discs of photoreceptor cells that enable vision. Here, we present single-particle cryo-electron microscopy structures of solubilized PRPH2-ROM1 heterodimers and higher-order oligomers. High-risk PRPH2 and ROM1 mutations causing blindness map to the protein-dimer interface. Cysteine bridges connect dimers forming positive-curved oligomers, whereas negative-curved oligomers were observed occasionally. Hexamers and octamers exhibit a secondary micelle that envelopes four carboxyl-terminal helices, supporting a potential role in membrane remodeling. Together, the data indicate multiple structures for PRPH2-ROM1 in creating and maintaining compartmentalization of photoreceptor cells.
Collapse
Affiliation(s)
- Dounia El Mazouni
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Netherlands
| | | |
Collapse
|
38
|
Lewis TR, Phan S, Kim KY, Jha I, Castillo CM, Ding JD, Sajdak BS, Merriman DK, Ellisman MH, Arshavsky VY. Microvesicle release from inner segments of healthy photoreceptors is a conserved phenomenon in mammalian species. Dis Model Mech 2022; 15:dmm049871. [PMID: 36420970 PMCID: PMC9796728 DOI: 10.1242/dmm.049871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Many inherited visual diseases arise from mutations that affect the structure and function of photoreceptor cells. In some cases, the pathology is accompanied by a massive release of extracellular vesicles from affected photoreceptors. In this study, we addressed whether vesicular release is an exclusive response to ongoing pathology or a normal homeostatic phenomenon amplified in disease. We analyzed the ultrastructure of normal photoreceptors from both rod- and cone-dominant mammalian species and found that these cells release microvesicles budding from their inner segment compartment. Inner segment-derived microvesicles vary in their content, with some of them containing the visual pigment rhodopsin and others appearing to be interconnected with mitochondria. These data suggest the existence of a fundamental process whereby healthy mammalian photoreceptors release mistrafficked or damaged inner segment material as microvesicles into the interphotoreceptor space. This release may be greatly enhanced under pathological conditions associated with defects in protein targeting and trafficking. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Isha Jha
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Benjamin S. Sajdak
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
- Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Dana K. Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
39
|
Abstract
Cilia sense and transduce sensory stimuli, homeostatic cues and developmental signals by orchestrating signaling reactions. Extracellular vesicles (EVs) that bud from the ciliary membrane have well-studied roles in the disposal of excess ciliary material, most dramatically exemplified by the shedding of micrometer-sized blocks by photoreceptors. Shedding of EVs by cilia also affords cells with a powerful means to shorten cilia. Finally, cilium-derived EVs may enable cell-cell communication in a variety of organisms, ranging from single-cell parasites and algae to nematodes and vertebrates. Mechanistic understanding of EV shedding by cilia is an active area of study, and future progress may open the door to testing the function of ciliary EV shedding in physiological contexts. In this Cell Science at a Glance and the accompanying poster, we discuss the molecular mechanisms that drive the shedding of ciliary material into the extracellular space, the consequences of shedding for the donor cell and the possible roles that ciliary EVs may have in cell non-autonomous contexts.
Collapse
Affiliation(s)
- Irene Ojeda Naharros
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Maxence V. Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| |
Collapse
|
40
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
41
|
Luxmi R, King SM. Cilia-derived vesicles: An ancient route for intercellular communication. Semin Cell Dev Biol 2022; 129:82-92. [PMID: 35346578 PMCID: PMC9378432 DOI: 10.1016/j.semcdb.2022.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) provide a mechanism for intercellular communication that transports complex signals in membrane delimited structures between cells, tissues and organisms. Cells secrete EVs of various subtypes defined by the pathway leading to release and by the pathological condition of the cell. Cilia are evolutionarily conserved organelles that can act as sensory structures surveilling the extracellular environment. Here we discuss the secretory functions of cilia and their biological implications. Studies in multiple species - from the nematode Caenorhabditis elegans and the chlorophyte alga Chlamydomonas reinhardtii to mammals - have revealed that cilia shed bioactive EVs (ciliary EVs or ectosomes) by outward budding of the ciliary membrane. The content of ciliary EVs is distinct from that of other vesicles released by cells. Peptides regulate numerous aspects of metazoan physiology and development through evolutionarily conserved mechanisms. Intriguingly, cilia-derived vesicles have recently been found to mediate peptidergic signaling. C. reinhardtii releases the peptide α-amidating enzyme (PAM), bioactive amidated products and components of the peptidergic signaling machinery in ciliary EVs in a developmentally regulated manner. Considering the origin of cilia in early eukaryotes, it is likely that release of peptidergic signals in ciliary EVs represents an alternative and ancient mode of regulated secretion that cells can utilize in the absence of dedicated secretory granules.
Collapse
Affiliation(s)
- Raj Luxmi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
42
|
Ziaka K, van der Spuy J. The Role of Hsp90 in Retinal Proteostasis and Disease. Biomolecules 2022; 12:biom12070978. [PMID: 35883534 PMCID: PMC9313453 DOI: 10.3390/biom12070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease.
Collapse
|
43
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
44
|
Grotz S, Schäfer J, Wunderlich KA, Ellederova Z, Auch H, Bähr A, Runa-Vochozkova P, Fadl J, Arnold V, Ardan T, Veith M, Santamaria G, Dhom G, Hitzl W, Kessler B, Eckardt C, Klein J, Brymova A, Linnert J, Kurome M, Zakharchenko V, Fischer A, Blutke A, Döring A, Suchankova S, Popelar J, Rodríguez-Bocanegra E, Dlugaiczyk J, Straka H, May-Simera H, Wang W, Laugwitz KL, Vandenberghe LH, Wolf E, Nagel-Wolfrum K, Peters T, Motlik J, Fischer MD, Wolfrum U, Klymiuk N. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol Med 2022; 14:e14817. [PMID: 35254721 PMCID: PMC8988205 DOI: 10.15252/emmm.202114817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Sophia Grotz
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Kirsten A Wunderlich
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Hannah Auch
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Petra Runa-Vochozkova
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Janet Fadl
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vanessa Arnold
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Miroslav Veith
- Ophthalmology Clinic, University Hospital Kralovske Vinohrady, Praha, Czech Republic
| | - Gianluca Santamaria
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Georg Dhom
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Wolfgang Hitzl
- Biostatistics and Data Science, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Christian Eckardt
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Joshua Klein
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Anna Brymova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Valeri Zakharchenko
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Döring
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Stepanka Suchankova
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jiri Popelar
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Eduardo Rodríguez-Bocanegra
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Hans Straka
- Faculty of Biology, LMU Munich, Planegg, Germany
| | - Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, JGU Mainz, Mainz, Germany
| | - Weiwei Wang
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Karl-Ludwig Laugwitz
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Tobias Peters
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, NDCN, University of Oxford, Oxford, UK
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| |
Collapse
|
45
|
Kanamaru T, Neuner A, Kurtulmus B, Pereira G. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J 2022; 41:e108843. [PMID: 34981518 PMCID: PMC8724769 DOI: 10.15252/embj.2021108843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.
Collapse
Affiliation(s)
- Taishi Kanamaru
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Annett Neuner
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| |
Collapse
|
46
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
47
|
Wang J, Nikonorova IA, Silva M, Walsh JD, Tilton PE, Gu A, Akella JS, Barr MM. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr Biol 2021; 31:3943-3951.e3. [PMID: 34270950 DOI: 10.1016/j.cub.2021.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Ciliary extracellular vesicle (EV) shedding is evolutionarily conserved. In Chlamydomonas and C. elegans, ciliary EVs act as signaling devices.1-3 In cultured mammalian cells, ciliary EVs regulate ciliary disposal but also receptor abundance and signaling, ciliary length, and ciliary membrane dynamics.4-7 Mammalian cilia produce EVs from the tip and along the ciliary membrane.8,9 This study aimed to determine the functional significance of shedding at distinct locations and to explore ciliary EV biogenesis mechanisms. Using Airyscan super-resolution imaging in living C. elegans animals, we find that neuronal sensory cilia shed TRP polycystin-2 channel PKD-2::GFP-carrying EVs from two distinct sites: the ciliary tip and the ciliary base. Ciliary tip shedding requires distal ciliary enrichment of PKD-2 by the myristoylated coiled-coil protein CIL-7. Kinesin-3 KLP-6 and intraflagellar transport (IFT) kinesin-2 motors are also required for ciliary tip EV shedding. A big unanswered question in the EV field is how cells sort EV cargo. Here, we show that two EV cargoes- CIL-7 and PKD-2-localized and trafficked differently along cilia and were sorted to different environmentally released EVs. In response to mating partners, C. elegans males modulate EV cargo composition by increasing the ratio of PKD-2 to CIL-7 EVs. Overall, our study indicates that the cilium and its trafficking machinery act as a specialized venue for regulated EV biogenesis and signaling.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Malan Silva
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Amanda Gu
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Lewis TR, Makia MS, Castillo CM, Al-Ubaidi MR, Naash MI, Arshavsky VY. Photoreceptor Disc Enclosure Is Tightly Controlled by Peripherin-2 Oligomerization. J Neurosci 2021; 41:3588-3596. [PMID: 33707293 PMCID: PMC8055076 DOI: 10.1523/jneurosci.0041-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the PRPH2 gene encoding the photoreceptor-specific protein PRPH2 (also known as peripherin-2 or rds) cause a broad range of autosomal dominant retinal diseases. Most of these mutations affect the structure of the light-sensitive photoreceptor outer segment, which is composed of a stack of flattened "disc" membranes surrounded by the plasma membrane. The outer segment is renewed on a daily basis in a process whereby new discs are added at the outer segment base and old discs are shed at the outer segment tip. New discs are formed as serial membrane evaginations, which eventually enclose through a complex process of membrane remodeling (completely in rods and partially in cones). As disc enclosure proceeds, PRPH2 localizes to the rims of enclosed discs where it forms oligomers which fortify the highly curved membrane structure of these rims. In this study, we analyzed the outer segment phenotypes of mice of both sexes bearing a single copy of either the C150S or the Y141C PRPH2 mutation known to prevent or increase the degree of PRPH2 oligomerization, respectively. Strikingly, both mutations increased the number of newly forming, not-yet-enclosed discs, indicating that the precision of disc enclosure is regulated by PRPH2 oligomerization. Without tightly controlled enclosure, discs occasionally over-elongate and form large membranous "whorls" instead of disc stacks. These data show that the defects in outer segment structure arising from abnormal PRPH2 oligomerization are manifested at the stage of disc enclosure.SIGNIFICANCE STATEMENT The light-sensitive photoreceptor outer segment contains a stack of flattened "disc" membranes that are surrounded, or "enclosed," by the outer segment membrane. Disc enclosure is an adaptation increasing photoreceptor light sensitivity by facilitating the diffusion of the second messenger along the outer segment axes. However, the molecular mechanisms by which photoreceptor discs enclose within the outer segment membrane remain poorly understood. We now demonstrate that oligomers of the photoreceptor-specific protein peripherin-2, or PRPH2, play an active role in this process. We further propose that defects in disc enclosure because of abnormal PRPH2 oligomerization result in major structural abnormalities of the outer segment, ultimately leading to loss of visual function and cell degeneration in PRPH2 mutant models and human patients.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
49
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
50
|
The GARP Domain of the Rod CNG Channel's β1-Subunit Contains Distinct Sites for Outer Segment Targeting and Connecting to the Photoreceptor Disk Rim. J Neurosci 2021; 41:3094-3104. [PMID: 33637563 DOI: 10.1523/jneurosci.2609-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Vision begins when light is captured by the outer segment organelle of photoreceptor cells in the retina. Outer segments are modified cilia filled with hundreds of flattened disk-shaped membranes. Disk membranes are separated from the surrounding plasma membrane, and each membrane type has unique protein components. The mechanisms underlying this protein sorting remain entirely unknown. In this study, we investigated the outer segment delivery of the rod cyclic nucleotide-gated (CNG) channel, which is located in the outer segment plasma membrane, where it mediates the electrical response to light. Using Xenopus and mouse models of both sexes, we now show that the targeted delivery of the CNG channel to the outer segment uses the conventional secretory pathway, including protein processing in both ER and Golgi, and requires preassembly of its constituent α1 and β1 subunits. We further demonstrate that the N-terminal glutamic acid-rich protein (GARP) domain of CNGβ1 contains two distinct functional regions. The glutamic acid-rich region encodes specific information targeting the channel to rod outer segments. The adjacent proline-enriched region connects the CNG channel to photoreceptor disk rims, likely through an interaction with peripherin-2. These data reveal fine functional specializations within the structural domains of the CNG channel and suggest that its sequestration to the outer segment plasma membrane requires an interaction with peripherin-2.SIGNIFICANCE STATEMENT Neurons and other differentiated cells have a remarkable ability to deliver and organize signaling proteins at precise subcellular locations. We now report that the CNG channel, mediating the electrical response to light in rod photoreceptors, contains two specialized regions within the N terminus of its β-subunit: one responsible for delivery of this channel to the ciliary outer segment organelle and another for subsequent channel sequestration into the outer segment plasma membrane. These findings expand our understanding of the molecular specializations used by neurons to populate their critical functional compartments.
Collapse
|