1
|
Duan D, Koleske AJ. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. J Cell Sci 2024; 137:jcs263470. [PMID: 39679446 DOI: 10.1242/jcs.263470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Protein liquid-liquid phase separation (LLPS) is driven by intrinsically disordered regions and multivalent binding domains, both of which are common features of diverse microtubule (MT) regulators. Many in vitro studies have dissected the mechanisms by which MT-binding proteins (MBPs) regulate MT nucleation, stabilization and dynamics, and investigated whether LLPS plays a role in these processes. However, more recent in vivo studies have focused on how MBP LLPS affects biological functions throughout neuronal development. Dysregulation of MBP LLPS can lead to formation of aggregates - an underlying feature in many neurodegenerative diseases - such as the tau neurofibrillary tangles present in Alzheimer's disease. In this Review, we highlight progress towards understanding the regulation of MT dynamics through the lens of phase separation of MBPs and associated cytoskeletal regulators, from both in vitro and in vivo studies. We also discuss how LLPS of MBPs regulates neuronal development and maintains homeostasis in mature neurons.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Petrovic A, Do TT, Fernández-Busnadiego R. New insights into the molecular architecture of neurons by cryo-electron tomography. Curr Opin Neurobiol 2024; 90:102939. [PMID: 39667254 DOI: 10.1016/j.conb.2024.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) visualizes natively preserved cellular ultrastructure at molecular resolution. Recent developments in sample preparation workflows and image processing tools enable growing applications of cryo-ET in cellular neurobiology. As such, cryo-ET is beginning to unravel the in situ macromolecular organization of neurons using samples of increasing complexity. Here, we highlight advances in cryo-ET technology and review its recent use to study neuronal architecture and its alterations under disease conditions.
Collapse
Affiliation(s)
- Arsen Petrovic
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany.
| | - Thanh Thao Do
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, 37077, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany; Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
3
|
Guo Z, Chiesa G, Yin J, Sanford A, Meier S, Khalil AS, Cheng JX. Structural Mapping of Protein Aggregates in Live Cells Modeling Huntington's Disease. Angew Chem Int Ed Engl 2024; 63:e202408163. [PMID: 38880765 DOI: 10.1002/anie.202408163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a β-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller β-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Adam Sanford
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Stefan Meier
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
4
|
Campbell KR, Hallada LP, Huang YS, Solecki DJ. From Blur to Brilliance: The Ascendance of Advanced Microscopy in Neuronal Cell Biology. Annu Rev Neurosci 2024; 47:235-253. [PMID: 38608643 DOI: 10.1146/annurev-neuro-111020-090208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The intricate network of the brain's neurons and synapses poses unparalleled challenges for research, distinct from other biological studies. This is particularly true when dissecting how neurons and their functional units work at a cell biological level. While traditional microscopy has been foundational, it was unable to reveal the deeper complexities of neural interactions. However, an imaging renaissance has transformed our capabilities. Advancements in light and electron microscopy, combined with correlative imaging, now achieve unprecedented resolutions, uncovering the most nuanced neural structures. Maximizing these tools requires more than just technical proficiency. It is crucial to align research aims, allocate resources wisely, and analyze data effectively. At the heart of this evolution is interdisciplinary collaboration, where various experts come together to translate detailed imagery into significant biological insights. This review navigates the latest developments in microscopy, underscoring both the promise of and prerequisites for bending this powerful tool set to understanding neuronal cell biology.
Collapse
Affiliation(s)
- Kirby R Campbell
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Liam P Hallada
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Yu-Shan Huang
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - David J Solecki
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
5
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
6
|
Zhao DY, Bäuerlein FJB, Saha I, Hartl FU, Baumeister W, Wilfling F. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol Cell 2024; 84:1980-1994.e8. [PMID: 38759629 DOI: 10.1016/j.molcel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.
Collapse
Affiliation(s)
- Dorothy Y Zhao
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; University Medical Center Göttingen, Institute of Neuropathology, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Itika Saha
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Ratz-Wirsching V, Habermeyer J, Moceri S, Harrer J, Schmitz C, von Hörsten S. Gene-dosage- and sex-dependent differences in the prodromal-Like phase of the F344tgHD rat model for Huntington disease. Front Neurosci 2024; 18:1354977. [PMID: 38384482 PMCID: PMC10879377 DOI: 10.3389/fnins.2024.1354977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1-8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease's temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.
Collapse
Affiliation(s)
- Veronika Ratz-Wirsching
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
- Preclinical Experimental Center, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Habermeyer
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
- Preclinical Experimental Center, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Moceri
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
| | - Julia Harrer
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen, Erlangen, Germany
- Preclinical Experimental Center, Friedrich-Alexander-University, Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Datki Z, Darula Z, Vedelek V, Hunyadi-Gulyas E, Dingmann BJ, Vedelek B, Kalman J, Urban P, Gyenesei A, Galik-Olah Z, Galik B, Sinka R. Biofilm formation initiating rotifer-specific biopolymer and its predicted components. Int J Biol Macromol 2023; 253:127157. [PMID: 37778576 DOI: 10.1016/j.ijbiomac.2023.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.
Collapse
Affiliation(s)
- Zsolt Datki
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary.
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary; Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Eva Hunyadi-Gulyas
- Proteomics Research Group, Core Facilities, Biological Research Centre, ELKH, Szeged, Hungary
| | - Brian J Dingmann
- Department of Math Science and Technology, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, United States of America
| | - Balazs Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| | - Janos Kalman
- Department of Psychiatry, Albert Szent-Gyorgyi Medical School, University of Szeged, Koranyi Fasor 8-10, H-6725 Szeged, Hungary
| | - Peter Urban
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Zita Galik-Olah
- Micro-In Vivo Biomolecule Research Laboratory, Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged. Dugonics ter 13. H-6720, Szeged, Hungary
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, Pecs, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726, Hungary
| |
Collapse
|
9
|
Liu Y, Zhai H, Alemayehu H, Boulanger J, Hopkins LJ, Borgeaud AC, Heroven C, Howe JD, Leigh KE, Bryant CE, Modis Y. Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization. Nat Commun 2023; 14:7246. [PMID: 37945612 PMCID: PMC10636019 DOI: 10.1038/s41467-023-43180-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
NLRP3 induces caspase-1-dependent pyroptotic cell death to drive inflammation. Aberrant activity of NLRP3 occurs in many human diseases. NLRP3 activation induces ASC polymerization into a single, micron-scale perinuclear punctum. Higher resolution imaging of this signaling platform is needed to understand how it induces pyroptosis. Here, we apply correlative cryo-light microscopy and cryo-electron tomography to visualize ASC/caspase-1 in NLRP3-activated cells. The puncta are composed of branched ASC filaments, with a tubular core formed by the pyrin domain. Ribosomes and Golgi-like or endosomal vesicles permeate the filament network, consistent with roles for these organelles in NLRP3 activation. Mitochondria are not associated with ASC but have outer-membrane discontinuities the same size as gasdermin D pores, consistent with our data showing gasdermin D associates with mitochondria and contributes to mitochondrial depolarization.
Collapse
Affiliation(s)
- Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Helen Alemayehu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lee J Hopkins
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Wren Therapeutics, Clarendon House, Clarendon Road, Cambridge, CB2 8FH, UK
| | - Alicia C Borgeaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| | - Christina Heroven
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Division of Structural Biology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonathan D Howe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Clare E Bryant
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK.
| |
Collapse
|
10
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
11
|
Functional amyloid in a lipid-like environment: a merry dance of many steps. Essays Biochem 2022; 66:1035-1046. [PMID: 36205438 DOI: 10.1042/ebc20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Functional amyloid, which unlike its pathological counterpart serves a biological purpose, is produced in a carefully orchestrated sequence of events. In bacteria, the major amyloid component is transported over the periplasm and through the outer membrane to assemble on the bacterial cell surface. During its life time, the amyloid protein may be exposed to both membrane lipids and extracellular surfactant, making it relevant to study its interactions with these components in vitro. Particularly for charged surfactants, the interaction is quite complex and highly dependent on the surfactant:protein molar ratio. Low ratios typically promote aggregation, likely by binding the proteins to micelles and thus increasing the local concentration of proteins, while higher concentrations see an inhibition of the same process as the protein is diluted out and immobilized on individual micelles. This is particularly pronounced for strongly anionic surfactants like SDS; the naturally occurring biosurfactant rhamnolipid interacts more weakly with the protein, which still not only allows aggregation but also leads to less detrimental effects at higher ratios. Similarly, anionic vesicle-forming lipids largely stimulate aggregation likely because of weaker interactions. Anionic lysolipids, thanks to their micelle-forming properties, resemble SDS in their impact on fibrillation. There are also examples of systems where membrane binding sequesters an otherwise amyloidogenic sequence and prevents fibrillation or-quite the opposite- liberates another part of the protein to engage in self-assembly. Thus, membranes and surfactants have very varied roles to play in the biogenesis and function of bacterial amyloid.
Collapse
|
12
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Varsano N, Wolf SG. Electron microscopy of cellular ultrastructure in three dimensions. Curr Opin Struct Biol 2022; 76:102444. [PMID: 36041268 DOI: 10.1016/j.sbi.2022.102444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
Electron microscopy in three dimensions (3D) of cells and tissues can be essential for understanding the ultrastructural aspects of biological processes. The quest for 3D information reveals challenges at many stages of the workflow, from sample preparation, to imaging, data analysis and segmentation. Here, we outline several available methods, including volume SEM imaging, cryo-TEM and cryo-STEM tomography, each one occupying a different domain in the basic tradeoff between field-of-view and resolution. We discuss the considerations for choosing a suitable method depending on research needs and highlight recent developments that are essential for making 3D volume imaging of cells and tissues a standard tool for cellular and structural biologists.
Collapse
Affiliation(s)
- Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., Rehovot 76100, Israel
| | - Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., Rehovot 76100, Israel.
| |
Collapse
|
14
|
Gorensek-Benitez AH, Kirk B, Myers JK. Protein Fibrillation under Crowded Conditions. Biomolecules 2022; 12:biom12070950. [PMID: 35883507 PMCID: PMC9312947 DOI: 10.3390/biom12070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022] Open
Abstract
Protein amyloid fibrils have widespread implications for human health. Over the last twenty years, fibrillation has been studied using a variety of crowding agents to mimic the packed interior of cells or to probe the mechanisms and pathways of the process. We tabulate and review these results by considering three classes of crowding agent: synthetic polymers, osmolytes and other small molecules, and globular proteins. While some patterns are observable for certain crowding agents, the results are highly variable and often depend on the specific pairing of crowder and fibrillating protein.
Collapse
Affiliation(s)
- Annelise H. Gorensek-Benitez
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, CO 80903, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| | - Bryan Kirk
- Department of Biology, Davidson College, Davidson, NC 28035, USA;
| | - Jeffrey K. Myers
- Department of Chemistry, Davidson College, Davidson, NC 28035, USA
- Correspondence: (A.H.G.-B.); (J.K.M.)
| |
Collapse
|
15
|
Riemenschneider H, Guo Q, Bader J, Frottin F, Farny D, Kleinberger G, Haass C, Mann M, Hartl FU, Baumeister W, Hipp MS, Meissner F, Fernández‐Busnadiego R, Edbauer D. Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons. EMBO Rep 2022; 23:e53890. [PMID: 35438230 PMCID: PMC9171420 DOI: 10.15252/embr.202153890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.
Collapse
Affiliation(s)
| | - Qiang Guo
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jakob Bader
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
| | - Frédéric Frottin
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐YvetteFrance
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Gernot Kleinberger
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Chair of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
| | - F. Ulrich Hartl
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mark S Hipp
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Felix Meissner
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
- Department of Systems Immunology and ProteomicsMedical FacultyInstitute of Innate ImmunityUniversity of BonnGermany
| | - Rubén Fernández‐Busnadiego
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Institute of NeuropathologyUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Graduate School of Systemic Neurosciences (GSN)Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
16
|
Li D, Liu C. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nat Rev Neurosci 2022; 23:523-534. [DOI: 10.1038/s41583-022-00603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
|
17
|
Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. FRONTIERS IN TOXICOLOGY 2022; 4:837579. [PMID: 35647576 PMCID: PMC9131020 DOI: 10.3389/ftox.2022.837579] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| |
Collapse
|
18
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Modulating the Ubiquitin–Proteasome System: A Therapeutic Strategy for Autoimmune Diseases. Cells 2022; 11:cells11071093. [PMID: 35406655 PMCID: PMC8997991 DOI: 10.3390/cells11071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease associated with the central nervous system (CNS). Autoimmunity is caused by an abnormal immune response to self-antigens, which results in chronic inflammation and tissue death. Ubiquitination is a post-translational modification in which ubiquitin molecules are attached to proteins by ubiquitinating enzymes, and then the modified proteins are degraded by the proteasome system. In addition to regulating proteasomal degradation of proteins, ubiquitination also regulates other cellular functions that are independent of proteasomal degradation. It plays a vital role in intracellular protein turnover and immune signaling and responses. The ubiquitin–proteasome system (UPS) is primarily responsible for the nonlysosomal proteolysis of intracellular proteins. The 26S proteasome is a multicatalytic adenosine-triphosphate-dependent protease that recognizes ubiquitin covalently attached to particular proteins and targets them for degradation. Damaged, oxidized, or misfolded proteins, as well as regulatory proteins that govern many essential cellular functions, are removed by this degradation pathway. When this system is affected, cellular homeostasis is altered, resulting in the induction of a range of diseases. This review discusses the biochemistry and molecular biology of the UPS, including its role in the development of MS and proteinopathies. Potential therapies and targets involving the UPS are also addressed.
Collapse
|
20
|
Mikami R, Tsukagoshi S, Arai K. Abnormal Enhancement of Protein Disulfide Isomerase-like Activity of a Cyclic Diselenide Conjugated with a Basic Amino Acid by Inserting a Glycine Spacer. BIOLOGY 2021; 10:biology10111090. [PMID: 34827083 PMCID: PMC8615077 DOI: 10.3390/biology10111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In a previous study, we reported that (S)-1,2-diselenane-4-amine (1) catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of 1 by increasing its diselenide (Se–Se) reduction potential (E′°). In this study, to modulate the Se–Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between 1 and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and E′° values among 1, 1-Xaa, and 1-Gly-Xaa showed that the insertion of a Gly spacer into 1-Xaa either did not change or slightly reduced the PDI-like activity and the E′° values. Importantly, however, only 1-Gly-Arg deviated from this generality and showed obviously increased E°′ value and PDI-like activity compared to the corresponding compound with no Gly spacer (1-Arg); on the contrary, its catalytic activity was the highest among the diselenide compounds employed in this study, while this abnormal enhancement of the catalytic activity of 1-Gly-Arg could not be fully explained by the thermodynamics of the Se–Se bond and its association ability with protein substrates.
Collapse
|
21
|
Xie Y, Zhi K, Meng X. Effects and Mechanisms of Synaptotagmin-7 in the Hippocampus on Cognitive Impairment in Aging Mice. Mol Neurobiol 2021; 58:5756-5771. [PMID: 34403042 DOI: 10.1007/s12035-021-02528-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/08/2021] [Indexed: 01/18/2023]
Abstract
Aging is an irreversible biological process that involves oxidative stress, neuroinflammation, and apoptosis, and eventually leads to cognitive dysfunction. However, the underlying mechanisms are not fully understood. In this study, we investigated the role and potential mechanisms of Synaptotagmin-7, a calcium membrane transporter in cognitive impairment in aging mice. Our results indicated that Synaptotagmin-7 expression significantly decreased in the hippocampus of D-galactose-induced or naturally aging mice when compared with healthy controls, as detected by western blot and quantitative reverse transcriptase-polymerase chain reaction analysis. Synaptotagmin-7 overexpression in the dorsal CA1 of the hippocampus reversed long-term potentiation and improved hippocampus-dependent spatial learning in D-galactose-induced aging mice. Synaptotagmin-7 overexpression also led to fully preserved learning and memory in 6-month-old mice. Mechanistically, we demonstrated that Synaptotagmin-7 improved learning and memory by elevating the level of fEPSP and downregulating the expression of aging-related genes such as p53 and p16. The results of our study provide new insights into the role of Synaptotagmin-7 in improving neuronal function and overcoming memory impairment caused by aging, suggesting that Synaptotagmin-7 overexpression may be an innovative therapeutic strategy for treating cognitive impairment.
Collapse
Affiliation(s)
- Yaru Xie
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaining Zhi
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Bäuerlein FJB, Baumeister W. Towards Visual Proteomics at High Resolution. J Mol Biol 2021; 433:167187. [PMID: 34384780 DOI: 10.1016/j.jmb.2021.167187] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, structural biologists approach the complexity of cellular proteomes in a reductionist manner. Proteomes are fractionated, their molecular components purified and studied one-by-one using the experimental methods for structure determination at their disposal. Visual proteomics aims at obtaining a holistic picture of cellular proteomes by studying them in situ, ideally in unperturbed cellular environments. The method that enables doing this at highest resolution is cryo-electron tomography. It allows to visualize cellular landscapes with molecular resolution generating maps or atlases revealing the interaction networks which underlie cellular functions in health and in disease states. Current implementations of cryo ET do not yet realize the full potential of the method in terms of resolution and interpretability. To this end, further improvements in technology and methodology are needed. This review describes the state of the art as well as measures which we expect will help overcoming current limitations.
Collapse
Affiliation(s)
- Felix J B Bäuerlein
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany; Georg-August-University, Institute for Neuropathology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Wolfgang Baumeister
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
23
|
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy 2021; 18:473-495. [PMID: 34241570 PMCID: PMC9037468 DOI: 10.1080/15548627.2021.1936359] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible. Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Muhammed Kocak
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | | | | | - Inés Maestro
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain
| | | | - Vladimir Kirkin
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | - Ana Martinez
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Neurodegenerativas (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| |
Collapse
|
24
|
Lin LE, Miao K, Qian C, Wei L. High spatial-resolution imaging of label-free in vivo protein aggregates by VISTA. Analyst 2021; 146:4135-4145. [PMID: 33949430 PMCID: PMC8238904 DOI: 10.1039/d1an00060h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Amyloid aggregation, formed by aberrant proteins, is a pathological hallmark for neurodegenerative diseases, including Alzheimer's disease and Huntington's disease. High-resolution holistic mapping of the fine structures from these aggregates should facilitate our understanding of their pathological roles. Here, we achieved label-free high-resolution imaging of the polyQ and the amyloid-beta (Aβ) aggregates in cells and tissues utilizing a sample-expansion stimulated Raman strategy. We further focused on characterizing the Aβ plaques in 5XFAD mouse brain tissues. 3D volumetric imaging enabled visualization of the whole plaques, resolving both the fine protein filaments and the surrounding components. Coupling our expanded label-free Raman imaging with machine learning, we obtained specific segmentation of aggregate cores, peripheral filaments together with cell nuclei and blood vessels by pre-trained convolutional neural network models. Combining with 2-channel fluorescence imaging, we achieved a 6-color holistic view of the same sample. This ability for precise and multiplex high-resolution imaging of the protein aggregates and their micro-environment without the requirement of labeling would open new biomedical applications.
Collapse
Affiliation(s)
- Li-En Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|