1
|
Neshati Z, Schalij MJ, de Vries AAF. The proarrhythmic features of pathological cardiac hypertrophy in neonatal rat ventricular cardiomyocyte cultures. J Appl Physiol (1985) 2020; 128:545-553. [PMID: 31999526 DOI: 10.1152/japplphysiol.00420.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Different factors may trigger arrhythmias in diseased hearts, including fibrosis, cardiomyocyte hypertrophy, hypoxia, and inflammation. This makes it difficult to establish the relative contribution of each of them to the occurrence of arrhythmias. Accordingly, in this study, we used an in vitro model of pathological cardiac hypertrophy (PCH) to investigate its proarrhythmic features and the underlying mechanisms independent of fibrosis or other PCH-related processes. Neonatal rat ventricular cardiomyocyte (nr-vCMC) monolayers were treated with phorbol 12-myristate 13-acetate (PMA) to create an in vitro model of PCH. The electrophysiological properties of PMA-treated and control monolayers were analyzed by optical mapping at day 9 of culture. PMA treatment led to a significant increase in cell size and total protein content. It also caused a reduction in sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 level (32%) and an increase in natriuretic peptide A (42%) and α1-skeletal muscle actin (34%) levels, indicating that the hypertrophic response induced by PMA was, indeed, pathological in nature. PMA-treated monolayers showed increases in action potential duration (APD) and APD dispersion, and a decrease in conduction velocity (CV; APD30 of 306 ± 39 vs. 148 ± 18 ms, APD30 dispersion of 85 ± 19 vs. 22 ± 7 and CV of 10 ± 4 vs. 21 ± 2 cm/s in controls). Upon local 1-Hz stimulation, 53.6% of the PMA-treated cultures showed focal tachyarrhythmias based on triggered activity (n = 82), while the control group showed 4.3% tachyarrhythmias (n = 70). PMA-treated nr-vCMC cultures may, thus, represent a well-controllable in vitro model for testing new therapeutic interventions targeting specific aspects of hypertrophy-associated arrhythmias.NEW & NOTEWORTHY Phorbol 12-myristate 13-acetate (PMA) treatment of neonatal rat ventricular cardiomyocytes (nr-vCMCs) led to induction of many significant features of pathological cardiac hypertrophy (PCH), including action potential duration prolongation and dispersion, which provided enough time and depolarizing force for formation of early afterdepolarization (EAD)-induced focal tachyarrhythmias. PMA-treated nr-vCMCs represent a well-controllable in vitro model, which mostly resembles to moderate left ventricular hypertrophy (LVH) rather than severe LVH, in which generation of a reentry is the putative mechanism of its arrhythmias.
Collapse
Affiliation(s)
- Zeinab Neshati
- Zeinab Neshati, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Mutikainen M, Tuomainen T, Naumenko N, Huusko J, Smirin B, Laidinen S, Kokki K, Hynynen H, Ylä-Herttuala S, Heinäniemi M, Ruas JL, Tavi P. Peroxisome proliferator-activated receptor-γ coactivator 1 α1 induces a cardiac excitation-contraction coupling phenotype without metabolic remodelling. J Physiol 2017; 594:7049-7071. [PMID: 27716916 DOI: 10.1113/jp272847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Transcriptional co-activator PGC-1α1 has been shown to regulate energy metabolism and to mediate metabolic adaptations in pathological and physiological cardiac hypertrophy but other functional implications of PGC-1α1 expression are not known. Transgenic PGC-1α1 overexpression within the physiological range in mouse heart induces purposive changes in contractile properties, electrophysiology and calcium signalling but does not induce substantial metabolic remodelling. The phenotype of the PGC-1α1 transgenic mouse heart recapitulates most of the functional modifications usually associated with the exercise-induced heart phenotype, but does not protect the heart against load-induced pathological hypertrophy. Transcriptional effects of PGC-1α1 show clear dose-dependence with diverse changes in genes in circadian clock, heat shock, excitability, calcium signalling and contraction pathways at low overexpression levels, while metabolic genes are recruited at much higher PGC-1α1 expression levels. These results imply that the physiological role of PGC-1α1 is to promote a beneficial excitation-contraction coupling phenotype in the heart. ABSTRACT The transcriptional coactivator PGC-1α1 has been identified as a central factor mediating metabolic adaptations of the heart. However, to what extent physiological changes in PGC-1α1 expression levels actually contribute to the functional adaptation of the heart is still mostly unresolved. The aim of this study was to characterize the transcriptional and functional effects of physiologically relevant, moderate PGC-1α1 expression in the heart. In vivo and ex vivo physiological analysis shows that expression of PGC-1α1 within a physiological range in mouse heart does not induce the expected metabolic alterations, but instead induces a unique excitation-contraction (EC) coupling phenotype recapitulating features typically seen in physiological hypertrophy. Transcriptional screening of PGC-1α1 overexpressing mouse heart and myocyte cultures with higher, acute adenovirus-induced PGC-1α1 expression, highlights PGC-1α1 as a transcriptional coactivator with a number of binding partners in various pathways (such as heat shock factors and the circadian clock) through which it acts as a pleiotropic transcriptional regulator in the heart, to both augment and repress the expression of its target genes in a dose-dependent fashion. At low levels of overexpression PGC-1α1 elicits a diverse transcriptional response altering the expression state of circadian clock, heat shock, excitability, calcium signalling and contraction pathways, while metabolic targets of PGC-1α1 are recruited at higher PGC-1α1 expression levels. Together these findings demonstrate that PGC-1α1 elicits a dual effect on cardiac transcription and phenotype. Further, our results imply that the physiological role of PGC-1α1 is to promote a beneficial EC coupling phenotype in the heart.
Collapse
Affiliation(s)
- Maija Mutikainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikolay Naumenko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Boris Smirin
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Krista Kokki
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hynynen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
4
|
Li J, Mkrtschjan MA, Lin YH, Russell B. Variation in stiffness regulates cardiac myocyte hypertrophy via signaling pathways. Can J Physiol Pharmacol 2016; 94:1178-1186. [PMID: 27486838 DOI: 10.1139/cjpp-2015-0578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Much diseased human myocardial tissue is fibrotic and stiff, which increases the work that the ventricular myocytes must perform to maintain cardiac output. The hypothesis tested is that the increased load due to greater stiffness of the substrata drives sarcomere assembly of cells, thus strengthening them. Neonatal rat ventricular myocytes (NRVM) were cultured on polyacrylamide or polydimethylsiloxane substrates with stiffness of 10 kPa, 100 kPa, or 400 kPa, or glass with stiffness of 61.9 GPa. Cell size increased with stiffness. Two signaling pathways were explored, phosphorylation of focal adhesion kinase (p-FAK) and lipids by phosphatidylinositol 4,5-bisphosphate (PIP2). Subcellular distributions of both were determined in the sarcomeric fraction by antibody localization, and total amounts were measured by Western or dot blotting, respectively. More p-FAK and PIP2 distributed to the sarcomeres of NRVM grown on stiffer substrates. Actin assembly involves the actin capping protein Z (CapZ). Both actin and CapZ dynamic exchange were significantly increased on stiffer substrates when assessed by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein tags. Blunting of actin FRAP by FAK inhibition implicates linkage from mechano-signalling pathways to cell growth. Thus, increased stiffness of cardiac disease can be modeled with polymeric materials to understand how the microenvironment regulates cardiac hypertrophy.
Collapse
Affiliation(s)
- Jieli Li
- a Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA
| | - Michael A Mkrtschjan
- b Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Ying-Hsi Lin
- a Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA
| | - Brenda Russell
- a Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL 60612, USA.,b Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Hassinen M, Haverinen J, Vornanen M. Molecular basis and drug sensitivity of the delayed rectifier (IKr) in the fish heart. Comp Biochem Physiol C Toxicol Pharmacol 2015. [PMID: 26215639 DOI: 10.1016/j.cbpc.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory β-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart.
Collapse
Affiliation(s)
- Minna Hassinen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland.
| | - Jaakko Haverinen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
6
|
Guo WT, Dong DL. Bone morphogenetic protein-4: a novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Fail Rev 2015; 19:781-8. [PMID: 24736806 DOI: 10.1007/s10741-014-9429-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein-4 (BMP4) is a member of the bone morphogenetic protein family which plays a key role in the bone formation and embryonic development. In addition to these predominate and well-studied effects, the growing evidences highlight BMP4 as an important factor in cardiovascular diseases, such as hypertension, pulmonary hypertension and valve disease. Our recent works demonstrated that BMP4 mediated cardiac hypertrophy, apoptosis, fibrosis and ion channel remodeling in pathological cardiac hypertrophy. In this review, we discussed the role of BMP4 in pathological cardiac hypertrophy, as well as the recent advances about BMP4 in cardiovascular diseases closely related to pathological cardiac hypertrophy/heart failure. We put forward that BMP4 is a novel therapeutic target for pathological cardiac hypertrophy/heart failure.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | | |
Collapse
|
7
|
Huo R, Sheng Y, Guo WT, Dong DL. The potential role of Kv4.3 K+ channel in heart hypertrophy. Channels (Austin) 2015; 8:203-9. [PMID: 24762397 DOI: 10.4161/chan.28972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient outward K+ current (I(to)) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K(+) channel is an important component of I(to). The function and expression of Kv4.3 K(+) channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. Int his review, we summarized the changes of cardiac Kv4.3 K(+) channel in heart diseases and discussed the potential role of Kv4.3 K(+) channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, down regulation of Kv4.3 K(+) channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca(2+)](I), activation of calcineurin and heart hypertrophy/heart failure.However, in canine and human, Kv4.3 K(+) channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K(+) channel/APD/[Ca(2+)](I) pathway, there exits another mechanism of Kv4.3 K(+) channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K(+) channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII , which induces heart hypertrophy/heart failure. Upregulation of Kv4.3K(+) channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K(+) channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K(+) channel might be potentially harmful or beneficial to hearts through CaMKII.
Collapse
|
8
|
Calcineurin: a poorly understood regulator of muscle mass. Int J Biochem Cell Biol 2013; 45:2173-8. [PMID: 23838168 DOI: 10.1016/j.biocel.2013.06.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 01/14/2023]
Abstract
This review will discuss the existing literature that has examined the role of calcineurin (CnA) in the regulation of skeletal muscle mass in conditions associated with hypertrophic growth or atrophy. Muscle mass is determined by the balance between protein synthesis and degradation which is controlled by a number of intracellular signaling pathways, most notably the insulin/IGF/phosphatidylinositol 3-kinase (PI3K)/Akt system. Despite being activated by IGF-1 and having well-described functions in the determination of muscle fiber phenotypes, calcineurin (CnA), a Ca(2+)-activated serine/threonine phosphatase, and its downstream signaling partners have garnered little attention as a regulator of muscle mass. Compared to other signaling pathways, the relatively few studies that have examined the role of CnA in the regulation of muscle size have produced discordant results. The reasons for these differences is not obvious but may be due to the selective nature of the genetic models studied, fluctuations in the endogenous level of CnA activity in various muscles, and the variable use of CnA inhibitors to inhibit CnA signaling. Despite the inconsistent nature of the outcomes, there is sufficient direct and indirect evidence to conclude that CnA plays a role in the regulation of skeletal muscle mass. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
|
9
|
Montano MM, Desjardins CL, Doughman YQ, Hsieh YH, Hu Y, Bensinger HM, Wang C, Stelzer JE, Dick TE, Hoit BD, Chandler MP, Yu X, Watanabe M. Inducible re-expression of HEXIM1 causes physiological cardiac hypertrophy in the adult mouse. Cardiovasc Res 2013; 99:74-82. [PMID: 23585471 PMCID: PMC3687752 DOI: 10.1093/cvr/cvt086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 01/06/2023] Open
Abstract
AIMS The transcription factor hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) regulates myocardial vascularization and growth during cardiogenesis. Our aim was to determine whether HEXIM1 also has a beneficial role in modulating vascularization, myocardial growth, and function within the adult heart. METHODS AND RESULTS To achieve our objective, we created and investigated a mouse line wherein HEXIM1 was re-expressed in adult cardiomyocytes to levels found in the foetal heart. Our findings support a beneficial role for HEXIM1 through increased vascularization, myocardial growth, and increased ejection fraction within the adult heart. HEXIM1 re-expression induces angiogenesis, that is, essential for physiological hypertrophy and maintenance of cardiac function. The ability of HEXIM1 to co-ordinate processes associated with physiological hypertrophy may be attributed to HEXIM1 regulation of other transcription factors (HIF-1-α, c-Myc, GATA4, and PPAR-α) that, in turn, control many genes involved in myocardial vascularization, growth, and metabolism. Moreover, the mechanism for HEXIM1-induced physiological hypertrophy appears to be distinct from that involving the PI3K/AKT pathway. CONCLUSION HEXIM1 re-expression results in the induction of angiogenesis that allows for the co-ordination of tissue growth and angiogenesis during physiological hypertrophy.
Collapse
Affiliation(s)
- Monica M. Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, H.G. Wood Bldg. W307, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Candida L. Desjardins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland, OH 44106, USA
| | - Yong Qui Doughman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Genetics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Anatomy, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yee-Hsee Hsieh
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yanduan Hu
- Department of Pharmacology, Case Western Reserve University School of Medicine, H.G. Wood Bldg. W307, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Heather M. Bensinger
- Department of Pharmacology, Case Western Reserve University School of Medicine, H.G. Wood Bldg. W307, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Connie Wang
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Genetics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Anatomy, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Julian E. Stelzer
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Thomas E. Dick
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian D. Hoit
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Margaret P. Chandler
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland, OH 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Genetics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Anatomy, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
McGahon MK, Yarham JM, Daly A, Guduric-Fuchs J, Ferguson LJ, Simpson DA, Collins A. Distinctive profile of IsomiR expression and novel microRNAs in rat heart left ventricle. PLoS One 2013; 8:e65809. [PMID: 23799049 PMCID: PMC3683050 DOI: 10.1371/journal.pone.0065809] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/03/2013] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.
Collapse
Affiliation(s)
- Mary K. McGahon
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| | - Janet M. Yarham
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| | - Aideen Daly
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| | - Lyndsey J. Ferguson
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| | - David A. Simpson
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| | - Anthony Collins
- Centre for Vision and Vascular Science, Queen’s University Belfast, Belfast, County Antrim, United Kingdom
| |
Collapse
|
11
|
Sun B, Sheng Y, Huo R, Hu CW, Lu J, Li SL, Liu X, Wang YC, Dong DL. Bone morphogenetic protein-4 contributes to the down-regulation of Kv4.3 K+ channels in pathological cardiac hypertrophy. Biochem Biophys Res Commun 2013; 436:591-4. [PMID: 23747723 DOI: 10.1016/j.bbrc.2013.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022]
Abstract
Kv4.3 K(+) channels contributing to Ito are involved in the repolarization of cardiac action potential. Kv4.3 K(+) channels decrease in pathological cardiac hypertrophy, but the mechanism remains unclear. Our previous study found that the expression of bone morphogenetic protein 4 (BMP4) increased in pressure-overload and Ang II constant infusion induced cardiac hypertrophy. Since the downregulation of Kv4.3 K(+) channels and the upregulation of BMP4 simultaneously occur in pathological cardiac hypertrophy, we hypothesize that the up-regulated BMP4 would contribute to the downregulation of Kv4.3 K(+) channels in cardiac hypertrophy. We found that BMP4 treatment reduced Kv4.3 but not Kv4.2 and Kv1.4 K(+) channel protein expression, and BMP4-induced decrease of Kv4.3 K(+) channel protein expression was reversed by BMP4 inhibitor noggin and DMH1 in cultured cardiomyocytes in vitro. BMP4-induced decrease of Kv4.3 K(+) channel protein expression was also reversed by the NADPH oxidase inhibitor apocynin and the radical scavenger tempol. In in vivo transverse aortic constriction (TAC)-induced cardiac hypertrophy, constant infusion of DMH1 completely rescued TAC-induced down-regulation of Kv4.3 K(+) channel protein expression. We conclude that BMP4 contributes to the downregulation of Kv4.3 K(+) channels in pathological cardiac hypertrophy and the underlying mechanism might be through increasing ROS production.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin 150086, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Large T-antigen up-regulates Kv4.3 K⁺ channels through Sp1, and Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activation of calcium/calmodulin-dependent protein kinase II. Biochem J 2012; 441:859-67. [PMID: 22023388 DOI: 10.1042/bj20111604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Down-regulation of Kv4.3 K⁺ channels commonly occurs in multiple diseases, but the understanding of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in pathological conditions are limited. HEK (human embryonic kidney)-293T cells are derived from HEK-293 cells which are transformed by expression of the large T-antigen. In the present study, by comparing HEK-293 and HEK-293T cells, we find that HEK-293T cells express more Kv4.3 K⁺ channels and more transcription factor Sp1 (specificity protein 1) than HEK-293 cells. Inhibition of Sp1 with Sp1 decoy oligonucleotide reduces Kv4.3 K⁺ channel expression in HEK-293T cells. Transfection of pN3-Sp1FL vector increases Sp1 protein expression and results in increased Kv4.3 K⁺ expression in HEK-293 cells. Since the ultimate determinant of the phenotype difference between HEK-293 and HEK-293T cells is the large T-antigen, we conclude that the large T-antigen up-regulates Kv4.3 K⁺ channel expression through an increase in Sp1. In both HEK-293 and HEK-293T cells, inhibition of Kv4.3 K⁺ channels with 4-AP (4-aminopyridine) or Kv4.3 small interfering RNA induces cell apoptosis and necrosis, which are completely rescued by the specific CaMKII (calcium/calmodulin-dependent protein kinase II) inhibitor KN-93, suggesting that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through CaMKII activation. In summary, we establish: (i) the HEK-293 and HEK-293T cell model for Kv4.3 K⁺ channel study; (ii) that large T-antigen up-regulates Kv4.3 K⁺ channels through increasing Sp1 levels; and (iii) that Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activating CaMKII. The present study provides deep insights into the mechanism of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in cell death.
Collapse
|
13
|
Su F, Shi M, Yan Z, Ou D, Li J, Lu Z, Zheng Q. Simvastatin modulates remodeling of Kv4.3 expression in rat hypertrophied cardiomyocytes. Int J Biol Sci 2012; 8:236-48. [PMID: 22253567 PMCID: PMC3258563 DOI: 10.7150/ijbs.8.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022] Open
Abstract
Objectives: Hypertrophy has been shown to be associated with arrhythmias which can be caused by abnormal remodeling of the Kv4-family of transient potassium channels. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have recently been shown to exert pleiotropic protective effects in cardiovascular diseases, including anti-arrhythmias. It is hypothesized that remodeling of Kv4.3 occurs in rat hypertrophied cardiomyocytes and is regulated by simvastatin. Methods: Male Sprague-Dawley rats and neonatal rat ventricular myocytes (NRVMs) underwent abdominal aortic banding (AAB) for 7 weeks and angiotensin II (AngII) treatment, respectively, to induce cardiac hypertrophy. Kv4.3 expression by NRVMs and myocardium (subepicardial and subendocardial) in the left ventricle was measured. The transient outward potassium current (Ito) of NRVMs was recorded using a whole-cell patch-clamp method. Results: Expression of the Kv4.3 transcript and protein was significantly reduced in myocardium (subepicardial and subendocardial) in the left ventricle and in NRVMs. Simvastatin partially prevented the reduction of Kv4.3 expression in NRVMs and subepicardial myocardium but not in the subendocardial myocardium. Hypertrophied NRVMs exhibited a significant reduction in the Ito current and this effect was partially reversed by simvastatin. Conclusions: Simvastatin alleviated the reduction of Kv4.3 expression, Ito currents in hypertrophied NRVMs and alleviated the reduced Kv4.3 expression in subepicardial myocardium from the hypertrophied left ventricle. It can be speculated that among the pleiotropic effects of simvastatin, the anti-arrhythmia effect is partly mediated by its effect on Kv4.3.
Collapse
Affiliation(s)
- Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen C, Huo R, Tong Y, Sheng Y, Liu HB, Gao X, Nakajima O, Yang BF, Dong DL. Systemic heme oxygenase-1 transgenic overexpression aggravates pressure overload-induced cardiac hypertrophy in mice. Cell Physiol Biochem 2011; 28:25-32. [PMID: 21865845 DOI: 10.1159/000331710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Heme oxygenase-1(HO-1) has been reported to protect against cardiac hypertrophy in cultured neonatal cardiomyocytes treated with HO-1 inducer, cardiac specific HO-1 transgenic mice, or animals treated with HO-1 inducer. The aim of the present study is to examine the effects of systemic HO-1 transgenic overexpression on pressure overload-induced cardiac hypertrophy in mice. METHODS Pressure-overload cardiac hypertrophy was induced by transverse aortic constriction (TAC) in WT (wild type) and systemic HO-1 transgenic overexpression (TG) mice. RESULTS We found that systemic HO-1 transgenic overexpression aggravated pressure overload-induced cardiac hypertrophy. Pressure-overload induced the more increases of heart weight/ body weigh index, left ventricular weight/ body weight index, β-MHC protein expression, cardiac interstitial fibrosis in TG mice than in WT mice. Pressure-overload increased cardiac HO-1 protein expression in WT but not TG mice, but the cardiac HO-1 protein level was still higher in TAC-treated TG mice than in TAC-treated WT mice. The basal cardiac calcineurin protein level in TG mice was lower than that in WT mice. Pressure-overload increased calcineurin protein expression in both WT and TG mice; however, pressure-overload induced more calcineurin protein expression in TG mice than in WT mice. CONCLUSION This study shows for the first time that systemic HO-1 transgenic overexpression aggravates pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Chang Chen
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|