1
|
Boulgakoff L, D'Amato G, Miquerol L. Molecular Regulation of Cardiac Conduction System Development. Curr Cardiol Rep 2024; 26:943-952. [PMID: 38990492 DOI: 10.1007/s11886-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Collapse
Affiliation(s)
| | - Gaetano D'Amato
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
| |
Collapse
|
2
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
3
|
Edwards W, Greco TM, Miner GE, Barker NK, Herring L, Cohen S, Cristea IM, Conlon FL. Quantitative proteomic profiling identifies global protein network dynamics in murine embryonic heart development. Dev Cell 2023; 58:1087-1105.e4. [PMID: 37148880 PMCID: PMC10330608 DOI: 10.1016/j.devcel.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Defining the mechanisms that govern heart development is essential for identifying the etiology of congenital heart disease. Here, quantitative proteomics was used to measure temporal changes in the proteome at critical stages of murine embryonic heart development. Global temporal profiles of the over 7,300 proteins uncovered signature cardiac protein interaction networks that linked protein dynamics with molecular pathways. Using this integrated dataset, we identified and demonstrated a functional role for the mevalonate pathway in regulating the cell cycle of embryonic cardiomyocytes. Overall, our proteomic datasets are a resource for studying events that regulate embryonic heart development and contribute to congenital heart disease.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregory E Miner
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K Barker
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA.
| |
Collapse
|
4
|
Ezzeddine FM, Ward RC, Jiang Z, Tri JA, Agboola K, Hu T, Lodhi F, Tan NY, Ladas TP, Christopoulos G, Sugrue AM, Tolkacheva EG, Munoz FDC, McLeod CJ, Asirvatham SJ, DeSimone CV. Novel insights into the substrate involved in maintenance of ventricular fibrillation: results from continuous multipolar mapping in a canine model. J Interv Card Electrophysiol 2022:10.1007/s10840-022-01333-7. [PMID: 35948726 DOI: 10.1007/s10840-022-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND While the triggers for ventricular fibrillation (VF) are well-known, the substrate required for its maintenance remains elusive. We have previously demonstrated dynamic spatiotemporal changes across VF from electrical induction of VF to asystole. Those data suggested that VF drivers seemed to reside in the distal RV and LV. However, signals from these areas were not recorded continuously. The aim of this study was to map these regions of significance with stationary basket electrodes from induction to asystole to provide further insights into the critical substrate for VF rhythm sustenance in canines. METHODS In six healthy canines, three multipolar basket catheters were positioned in the distal right ventricle (RV), RV outflow tract, and distal left ventricle (LV), and remained in place throughout the study. VF was induced via direct current application from an electrophysiologic catheter. Surface and intracardiac electrograms were recorded simultaneously and continuously from baseline, throughout VF, and until asystole, in order to get a complete electrophysiologic analysis of VF. Focused data analysis was also performed via two defined stages of VF: early VF (immediately after induction of VF to 10 min) and late VF (after 10 min up to VF termination and asystole). RESULTS VF was continuously mapped for a mean duration of 54 ± 9 min (range 42-70 min). Immediately after initiation of VF in the early phase, the distal LV region appeared to drive the maintenance of VF. Towards the terminal stage of VF, the distal RV region appeared to be responsible for VF persistence. In all canines, we noted local termination of VF in the LV, while VF on surface ECG continued; conversely, subsequent spontaneous termination of VF in the RV was associated with termination of VF on surface ECG into a ventricular escape rhythm. Continuous mapping of VF showed trends towards an increase in peak-to-peak ventricular electrogram cycle length (p = 0.06) and a decrease in the ventricular electrogram amplitude (p = 0.06) after 40 min. Once we could no longer discern surface QRS activity, we demonstrated local ventricular myocardial capture in both the RV and LV but could not reinitiate sustained VF despite aggressive ventricular burst pacing. CONCLUSIONS This study describes the evolution of VF from electrical initiation to spontaneous VF termination without hemodynamic support in healthy canines. These data are hypothesis-generating and suggest that critical substrate for VF maintenance may reside in both the distal RV and LV depending on stage of VF. Further studies are needed to replicate these findings with hemodynamic support and to translate such findings into clinical practice. Ventricular fibrillation maintenance may be dependent on critical structures in the distal RV. ECG: electrocardiogram; LV: left ventricle; RV: right ventricle; RVOT: right ventricular outflow tract; VF: ventricular fibrillation.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert C Ward
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Zhi Jiang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jason A Tri
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kolade Agboola
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tiffany Hu
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Fahad Lodhi
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas P Ladas
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Georgios Christopoulos
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alan M Sugrue
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Freddy Del-Carpio Munoz
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Mantri S, Wu SM, Goodyer WR. Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Curr Cardiol Rep 2021; 23:103. [PMID: 34196831 DOI: 10.1007/s11886-021-01536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Sruthi Mantri
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Electrophysiology, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University School of Medicine, Room G1105 Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
7
|
Inflammation of Conduction Tissue in Patients with Arrhythmic Phenotype of Myocarditis. J Clin Med 2020; 9:jcm9113470. [PMID: 33137883 PMCID: PMC7693374 DOI: 10.3390/jcm9113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Myocarditis can manifest with lone ventricular tachyarrhythmias (LVT). Elective inflammation of conduction tissue (CT) is supposed but unproved. Methods: Forty-two of 420 patients with biopsy proven myocarditis presented with LVT. Twelve of them included CT sections in endomyocardial biopsies. Real-time polymerase chain reaction (PCR) for viral genomes, immunohistochemistry for viral antigens and Toll like receptor 4 (TLR4) were performed. Twelve myocarditis patients with infarct-like or cardiomyopathic phenotype and CT included in tissue section were used as controls. Results: Four of the 12 patients presented non-sustained ventricular tachycardia (nsVT), six with sustained ventricular tachycardia (sVT), two with ventricular fibrillation. CT was inflamed in all LVT patients and not in controls (p < 0.001). PCR was positive for influenza-A virus in two, herpes simplex virus type 2 (HSV2) in one and adenovirus in one with positive CT immunostaining for viral antigens. In eight patients, negative PCR and TLR4 overexpression suggested an immune-mediated pathway. Patients with influenza-A myocarditis and CT infection responded to oseltamivir, those with HSV2 (Herpes Virus 2) and adenovirus infection died. The eight patients with immune-mediated myocarditis were treated with steroids and azathioprine. Seven of them had no more VT(ventricular tachyarrhythmias)during six-month follow-up. Conclusions: Arrhythmic phenotype of myocarditis is associated with CT inflammation/infection. Molecular characterization of CT damage may lead to pharmacologic control of arrhythmias in 75% of cases.
Collapse
|
8
|
Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118509. [DOI: 10.1016/j.bbamcr.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
|
9
|
Chen S, Ma Q, Xue Y, Zhang J, Yang G, Wang T, Ma A, Bai L. Comprehensive Analysis and Co-Expression Network of mRNAs and lncRNAs in Pressure Overload-Induced Heart Failure. Front Genet 2019; 10:1271. [PMID: 31921308 PMCID: PMC6920101 DOI: 10.3389/fgene.2019.01271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Aim: Heart failure (HF) is the end stage of various cardiovascular diseases. However, the precise regulation of gene expression profiles and functional mechanisms of long non-coding RNAs (lncRNAs) in HF remain to be elucidated. The present study aimed to identify the differentially expressed profiles and interaction of messenger RNAs (mRNAs) and lncRNAs in pressure overload-induced HF. Methods: Male Sprague-Dawley rats were randomly divided into the HF group and the sham-operated group. HF was induced by the transverse aortic constriction (TAC) surgery. The cardiac expression profiles of mRNAs and lncRNAs in HF were investigated using the microarray. Bioinformatics analyses and co-expression network construction were performed from the RNA sequencing data. Results: The expression profiles of mRNAs and lncRNAs showed significant differences between HF and controls. A total of 147 mRNAs and 162 lncRNAs were identified to be differentially expressed with a fold change of >2 in HF. The relative expression levels of several selected mRNAs and lncRNAs were validated by quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that diverse pathways were involved in the molecular mechanisms of cardiac hypertrophy and HF including immune response, smooth muscle contraction, ion transmembrane transport. The mRNA-lncRNA and transcription factors (TFs)-lncRNA co-expression networks were constructed and several genes and TFs were identified as key regulators in the pathogenesis of HF. Further functional prediction showed that the lncRNA NONRATT013999 was predicted to cis-regulate mRNA CDH11, and NONRATT027756 was predicted to trans-regulate HCN4. Conclusion: This study revealed specific expression regulation and potential functions of mRNAs and lncRNAs in pressure overload-induced HF. These results will provide new insights into the underlying mechanisms and potential therapeutic targets for HF.
Collapse
Affiliation(s)
- Shuping Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanbo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingwen Zhang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guodong Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Aiqun Ma, ; Ling Bai,
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Aiqun Ma, ; Ling Bai,
| |
Collapse
|
10
|
van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 2019; 146:dev.173161. [PMID: 30936179 DOI: 10.1242/dev.173161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 02/03/2023]
Abstract
The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3 +/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3 +/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.
Collapse
Affiliation(s)
- Vincent W W van Eif
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Sonia Stefanovic
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Karel van Duijvenboden
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Bakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Stéphane Zaffran
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Arie O Verkerk
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
11
|
Development of a Rat Model of Sick Sinus Syndrome Using Pinpoint Press Permeation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7487324. [PMID: 30581867 PMCID: PMC6276488 DOI: 10.1155/2018/7487324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Objective Sick sinus syndrome (SSS) is one of the most common causes of cardiac impairment necessitating pacemaker implantation. However, studies of SSS pathogenesis are neither comprehensive nor conclusive due to limited success in achieving a stable rat SSS model. Here, we modified pinpoint press permeation to establish a stable rat SSS model. Methods We randomly assigned 138 male Sprague-Dawley rats into three groups: normal control (n = 8), sham (n = 10), and SSS (n = 120). Postoperatively, the SSS group was further divided into SSSA (n = 40), SSSB (n = 40), and SSSC (n = 40), based on reduction in heart rates by 20–30%, 31–40%, and 41–50%, respectively. We also assessed histomorphological characteristics and hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) expression in the sinoatrial node (SAN) at 1, 2, 3, and 4 weeks after surgery. Results Mortality was statistically higher in SSSC compared to SSSA and SSSB (7.5% versus 90.0% and 87.5%; P < 0.05). Heart rate in SSSA was gradually restored to preoperative levels by week 4 after surgery. In contrast, heart rate in SSSB was stable at 2–3 weeks after surgery. However, we observed that the tissues and cells in SAN were severely injured and also found a time-dependent increase in collagen content and atrium myocardium in SSSB. HCN4 expression was significantly reduced at all 4 time points in SSSB, with statistically significant differences among the groups (P < 0.01). Conclusion We successfully developed a rat SSS model that was sustainable for up to 4 weeks.
Collapse
|
12
|
Shekhar A, Lin X, Lin B, Liu FY, Zhang J, Khodadadi-Jamayran A, Tsirigos A, Bu L, Fishman GI, Park DS. ETV1 activates a rapid conduction transcriptional program in rodent and human cardiomyocytes. Sci Rep 2018; 8:9944. [PMID: 29967479 PMCID: PMC6028599 DOI: 10.1038/s41598-018-28239-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
Rapid impulse propagation is a defining attribute of the pectinated atrial myocardium and His-Purkinje system (HPS) that safeguards against atrial and ventricular arrhythmias, conduction block, and myocardial dyssynchrony. The complex transcriptional circuitry that dictates rapid conduction remains incompletely understood. Here, we demonstrate that ETV1 (ER81)-dependent gene networks dictate the unique electrophysiological characteristics of atrial and His-Purkinje myocytes. Cardiomyocyte-specific deletion of ETV1 results in cardiac conduction abnormalities, decreased expression of rapid conduction genes (Nkx2-5, Gja5, and Scn5a), HPS hypoplasia, and ventricularization of the unique sodium channel properties that define Purkinje and atrial myocytes in the adult heart. Forced expression of ETV1 in postnatal ventricular myocytes (VMs) reveals that ETV1 promotes a HPS gene signature while diminishing ventricular and nodal gene networks. Remarkably, ETV1 induction in human induced pluripotent stem cell-derived cardiomyocytes increases rapid conduction gene expression and inward sodium currents, converting them towards a HPS phenotype. Our data identify a cardiomyocyte-autonomous, ETV1-dependent pathway that is responsible for specification of rapid conduction zones in the heart and demonstrate that ETV1 is sufficient to promote a HPS transcriptional and functional program upon VMs.
Collapse
Affiliation(s)
- Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Bin Lin
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Alireza Khodadadi-Jamayran
- Center for Health Informatics and Bioinformatics, New York University Langone Health, New York, New York, 10016, USA
| | - Aristotelis Tsirigos
- Center for Health Informatics and Bioinformatics, New York University Langone Health, New York, New York, 10016, USA
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA.
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA.
| |
Collapse
|
13
|
Yokoyama R, Kinoshita K, Hata Y, Abe M, Matsuoka K, Hirono K, Kano M, Nakazawa M, Ichida F, Nishida N, Tabata T. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessels 2018; 33:802-819. [DOI: 10.1007/s00380-018-1116-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023]
|
14
|
Pitcairn E, Harris H, Epiney J, Pai VP, Lemire JM, Ye B, Shi NQ, Levin M, McLaughlin KA. Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. Commun Integr Biol 2017; 10:e1309488. [PMID: 28702127 PMCID: PMC5501196 DOI: 10.1080/19420889.2017.1309488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide gated channel (HCN) proteins are important regulators of both neuronal and cardiac excitability. Among the 4 HCN isoforms, HCN4 is known as a pacemaker channel, because it helps control the periodicity of contractions in vertebrate hearts. Although the physiological role of HCN4 channel has been studied in adult mammalian hearts, an earlier role during embryogenesis has not been clearly established. Here, we probe the embryonic roles of HCN4 channels, providing the first characterization of the expression profile of any of the HCN isoforms during Xenopus laevis development and investigate the consequences of altering HCN4 function on embryonic pattern formation. We demonstrate that both overexpression of HCN4 and injection of dominant-negative HCN4 mRNA during early embryogenesis results in improper expression of key patterning genes and severely malformed hearts. Our results suggest that HCN4 serves to coordinate morphogenetic control factors that provide positional information during heart morphogenesis in Xenopus.
Collapse
Affiliation(s)
- Emily Pitcairn
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah Harris
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Justine Epiney
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Vaibhav P Pai
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Joan M Lemire
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Bin Ye
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nian-Qing Shi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelly A McLaughlin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| |
Collapse
|
15
|
Wen Y, Li B. The conduction system and expressions of hyperpolarization-activated cyclic nucleotide-gated cation channel 4 and connexin43 expressions in the hearts of fetal day 13 mice. Biotech Histochem 2017; 92:86-91. [PMID: 28296544 DOI: 10.1080/10520295.2016.1255994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We investigated the development of the sinus node of the heart conduction system by localizing hyperpolarization-activated cyclic nucleotide-gated cation channel 4 (HCN4) and connexin43 (Cx43) in the hearts of fetal day 13 mice. Horizontal serial sections of day 13 whole fetuses were stained by hematoxylin and eosin and immunofluorescence to identify myocardial cells that express HCN4, hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) and Cx43. Expression levels of HCN4 and Cx43 were determined by quantitative RT-PCR in both fetal day 13 and adult mice. We found that both Cx43 and HCN4 expressions were located on the cell membranes in the hearts of fetal day 13 mice, but Cx43 was distributed throughout the myocardial cells. HCN4 expression was concentrated mainly in the left dorsal epicardium of the right atrium where Cx43 expression was low or absent. Quantitative RT-PCR demonstrated that HCN4 expression was significantly higher and HCN2 expression was significantly lower in fetal day 13 mice than in adults. We found no statistically significant difference in Cx43 expression between fetal day 13 mice and adults. HCN4 stained myocardial cells in the left dorsal epicardium of the right atrium are the origin of the sinus node and the remainder of the heart conduction system.
Collapse
Affiliation(s)
- Y Wen
- a Department of Histology and Embryology , College of Basic Medical Sciences
| | - B Li
- b Department of Sports Medicine, Shengjing Hospital , China Medical University , Shenyang , China
| |
Collapse
|
16
|
Stefanovic S, Zaffran S. Mechanisms of retinoic acid signaling during cardiogenesis. Mech Dev 2016; 143:9-19. [PMID: 28007475 DOI: 10.1016/j.mod.2016.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Substantial experimental and epidemiological data have highlighted the interplay between nutritional and genetic factors in the development of congenital heart defects. Retinoic acid (RA), a derivative of vitamin A, plays a key role during vertebrate development including the formation of the heart. Retinoids bind to RA and retinoid X receptors (RARs and RXRs) which then regulate tissue-specific genes. Here, we will focus on the roles of RA signaling and receptors in gene regulation during cardiogenesis, and the consequence of deregulated retinoid signaling on heart formation and congenital heart defects.
Collapse
|
17
|
Development of the cardiac pacemaker. Cell Mol Life Sci 2016; 74:1247-1259. [PMID: 27770149 DOI: 10.1007/s00018-016-2400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023]
Abstract
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.
Collapse
|
18
|
Kaymak A, Richly H. Zrf1 controls mesoderm lineage genes and cardiomyocyte differentiation. Cell Cycle 2016; 15:3306-3317. [PMID: 27754813 DOI: 10.1080/15384101.2016.1245246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present study we addressed the function of the transcriptional activator Zrf1 in the generation of the 3 germ layers during in vitro development. Currently, Zrf1 is rather regarded as a factor that drives the expression of neuronal genes. Here, we have employed mouse embryonic stem cells and P19 cells to understand the role of Zrf1 in the generation of mesoderm-derived tissues like adipocytes, cartilage and heart. Our data shows that Zrf1 is essential for the transcriptional activation of genes that give rise to mesoderm and in particular heart development. In both, the mESC and P19 systems, we provide evidence that Zrf1 contributes to the generation of functional cardiomyocytes. We further demonstrate that Zrf1 binds to the transcription start sites (TSSs) of heart tissue-specific genes from the first and second heart field where it drives their temporal expression during differentiation. Taken together, we have identified Zrf1 as a novel regulator of the mesodermal lineage that might facilitate spatiotemporal expression of genes.
Collapse
Affiliation(s)
- Aysegül Kaymak
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany.,b Faculty of Biology, Johannes Gutenberg University , Mainz , Germany
| | - Holger Richly
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
19
|
Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the Electrophysiology of the Developing Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3010010. [PMID: 29367561 PMCID: PMC5715694 DOI: 10.3390/jcdd3010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes.
Collapse
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65201, USA.
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Segregation of Central Ventricular Conduction System Lineages in Early SMA+ Cardiomyocytes Occurs Prior to Heart Tube Formation. J Cardiovasc Dev Dis 2016; 3:jcdd3010002. [PMID: 29367554 PMCID: PMC5715695 DOI: 10.3390/jcdd3010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 01/21/2023] Open
Abstract
The cardiac conduction system (CCS) transmits electrical activity from the atria to the ventricles to coordinate heartbeats. Atrioventricular conduction diseases are often associated with defects in the central ventricular conduction system comprising the atrioventricular bundle (AVB) and right and left branches (BBs). Conducting and contractile working myocytes share common cardiomyogenic progenitors, however the time at which the CCS lineage becomes specified is unclear. In order to study the fate and the contribution to the CCS of cardiomyocytes during early heart tube formation, we performed a genetic lineage analysis using a Sma-CreERT2 mouse line. Lineage tracing experiments reveal a sequential contribution of early Sma expressing cardiomyocytes to different cardiac compartments, labeling at embryonic day (E) 7.5 giving rise to the interventricular septum and apical left ventricular myocardium. Early Sma expressing cardiomyocytes contribute to the AVB, BBs and left ventricular Purkinje fibers. Clonal analysis using the R26-confetti reporter mouse crossed with Sma-CreERT2 demonstrates that early Sma expressing cardiomyocytes include cells exclusively fated to give rise to the AVB. In contrast, lineage segregation is still ongoing for the BBs at E7.5. Overall this study highlights the early segregation of the central ventricular conduction system lineage within cardiomyocytes at the onset of heart tube formation.
Collapse
|
21
|
Frustaci A, Morgante E, Russo MA, Scopelliti F, Grande C, Verardo R, Franciosa P, Chimenti C. Pathology and Function of Conduction Tissue in Fabry Disease Cardiomyopathy. Circ Arrhythm Electrophysiol 2015; 8:799-805. [DOI: 10.1161/circep.114.002569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
Background—
Cardiac arrhythmias are common in Fabry disease (FD) and may occur in prehypertrophic cardiomyopathy suggesting an early compromise of conduction tissue (CT). Therefore, FD X-linked and CT may be variously involved in male and female patients with FD cardiomyopathy, affecting CT function.
Methods and Results—
Among 74 patients with endomyocardial biopsy diagnosis of FD cardiomyopathy, 13 (6 men; 7 women; mean age, 50.1±13.5 years; maximal wall thickness, 16.7±3.7 mm) had CT included in histological specimens and 6 also at electron microscopy. CT glycolipid infiltration was defined as focal, moderate, extensive, or massive, if involved ≤30%, ≤50%, >50%, or 100% of cells; identified as loosely arranged small myocytes positive to HCN4 immunostaining, supplied by a centrally placed thick-walled arteriole. CT involvement was correlated with age, sex, and α-
Gal
gene mutation. CT function was evaluated by electrophysiological study and arrhythmias at Holter registration. CT infiltration was focal/moderate in 4 women with no arrhythmias and normal electrophysiological study, extensive in 3 women with atrial or ventricular arrhythmias and short HV interval, and massive in 6 men with atrial fibrillation or ventricular arrhythmias and short HV. Short PR/AH with increased refractoriness was additionally found in 3 patients with extensive/massive CT infiltration. A male patient with the shortest HV presented infra-Hissian block during decremental atrial stimulation. There was no correlation with age, maximal wall thickness, and type of gene mutation.
Conclusions—
CT infiltration in FD cardiomyopathy is constant in men and variable in women because of skewed X-chromosome inactivation; its extensive/massive involvement causes accelerated conduction with prolonged refractoriness and electric instability.
Collapse
Affiliation(s)
- Andrea Frustaci
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Emanuela Morgante
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Matteo A. Russo
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Fernanda Scopelliti
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Claudia Grande
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Romina Verardo
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Pasquale Franciosa
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| | - Cristina Chimenti
- From the University of Rome Sapienza (A.F., E.M., P.F, C.C.), IRCCS L. Spallanzani (E.M., F.S., C.G., R.V., C.C.), and IRCCS S. Raffaele Pisana, Rome, Italy (M.A.R.)
| |
Collapse
|