1
|
Hao RH, Zhang TP, Jiang F, Liu JH, Dong SS, Li M, Guo Y, Yang TL. Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expression. Nat Commun 2024; 15:4890. [PMID: 38849352 PMCID: PMC11161590 DOI: 10.1038/s41467-024-49263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
The human brain has been implicated in the pathogenesis of several complex diseases. Taking advantage of single-cell techniques, genome-wide association studies (GWAS) have taken it a step further and revealed brain cell-type-specific functions for disease loci. However, genetic causal associations inferred by Mendelian randomization (MR) studies usually include all instrumental variables from GWAS, which hampers the understanding of cell-specific causality. Here, we developed an analytical framework, Cell-Stratified MR (csMR), to investigate cell-stratified causality through colocalizing GWAS signals with single-cell eQTL from different brain cells. By applying to obesity-related traits, our results demonstrate the cell-type-specific effects of GWAS variants on gene expression, and indicate the benefits of csMR to identify cell-type-specific causal effect that is often hidden from bulk analyses. We also found csMR valuable to reveal distinct causal pathways between different obesity indicators. These findings suggest the value of our approach to prioritize target cells for extending genetic causation studies.
Collapse
Affiliation(s)
- Ruo-Han Hao
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tian-Pei Zhang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Feng Jiang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jun-Hui Liu
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Yan Guo
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| | - Tie-Lin Yang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
| |
Collapse
|
2
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
3
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
4
|
Wang Y, Gao Y, Wang Y, Zhang H, Qin Q, Xu Z, Liu S, Wang X, Qu Y, Liu Y, Jiang X, He H. GDNF promotes the proliferation and osteogenic differentiation of jaw bone marrow mesenchymal stem cells via the Nr4a1/PI3K/Akt pathway. Cell Signal 2023:110721. [PMID: 37230200 DOI: 10.1016/j.cellsig.2023.110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
How to efficiently regenerate jawbone defects caused by trauma, jaw osteomyelitis, tumors, or intrinsic genetic diseases is still challenging. Ectoderm-derived jawbone defect has been reported to be regenerated by selectively recruiting cells from its embryonic origin. Therefore, it is important to explore the strategy for promoting ectoderm-derived jaw bone marrow mesenchymal stem cells (JBMMSCs) on the repair of homoblastic jaw bone. Glial cell-derived neurotrophic factor (GDNF) is an important growth factor and is essential in the process of proliferation, migration and differentiation of nerve cells. However, whether GDNF promoting the function of JBMMSCs and the relative mechanism are not clear. Our results showed that activated astrocytes and GDNF were induced in the hippocampus after mandibular jaw defect. In addition, the expression of GDNF in the bone tissue around the injured area was also significantly increased after injury. Data from in vitro experiments demonstrated that GDNF could effectively promote the proliferation and osteogenic differentiation of JBMMSCs. Furthermore, when implanted in the defected jaw bone, JBMMSCs pretreated with GDNF exhibited enhanced repair effect compared with JBMMSCs without treatment. Mechanical studies found that GDNF induced the expression of Nr4a1 in JBMMSCs, activated PI3K/Akt signaling pathway and then enhanced the proliferation and osteogenic differentiation capacities of JBMMSCs. Our studies reveal that JBMMSCs are good candidates for repairing jawbone injury and pretreated with GDNF is an efficient strategy for enhancing bone regeneration.
Collapse
Affiliation(s)
- Yadi Wang
- Medical School of Chinese PLA, Beijing 100853, China; Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Gao
- Department of orthopaedics, The Fourth Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xinyuan Wang
- Medical School of Chinese PLA, Beijing 100853, China; Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yannv Qu
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihan Liu
- Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Huixia He
- Department of periodontology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Yu H, Wang Y, Gao J, Gao Y, Zhong C, Chen Y. Application of the neuropeptide NPVF to enhance angiogenesis and osteogenesis in bone regeneration. Commun Biol 2023; 6:197. [PMID: 36804475 PMCID: PMC9941492 DOI: 10.1038/s42003-023-04567-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
The brain-bone regulatory system regulates skeletal homeostasis via bioactive neuropeptides, yet the underlying mechanism remains elusive. Here, we report the role of the neuropeptide VF (NPVF, VPNLPQRF-NH2) in enhancing both angiogenesis and osteogenesis in a rat skeletal system and the potential pathways involved. An in vitro study revealed that NPVF not only promotes migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) by activating NPFFR1, which leads to upregulation of miR-181c-3p and downregulation of Argonaute1 (AGO1), but also mediates osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signaling pathway. To improve the stability and bioavailability and thus efficacy of NPVF as a promoter of in vivo bone regeneration, we genetically engineered amyloid-NPVF-fusion proteins and utilized them as self-assembling nanofiber coatings to treat bone defects in a rat calvarial defect model. We found that a porous hydroxyapatite scaffold loaded with the NPVF peptide-fused amyloid coating substantially enhanced angiogenesis and site-specific fresh bone in-growth when implanted in calvarial defects. Taken together, our work uncovered a previously undefined crosstalk between the brain and bone by unveiling the role of NPVF in bone tissue and demonstrated a viable method for promoting bone tissue repairs based upon self-assembling NPVF-containing protein coatings.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
6
|
Liu S, Liu S, Li S, Liang B, Han X, Liang Y, Wei X. Nerves within bone and their application in tissue engineering of bone regeneration. Front Neurol 2023; 13:1085560. [PMID: 36818724 PMCID: PMC9933508 DOI: 10.3389/fneur.2022.1085560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 02/05/2023] Open
Abstract
Nerves within bone play an irreplaceable role in promoting bone regeneration. Crosstalk between the nerve system and bone has arisen to the attention of researchers in the field of basic medicine, clinical medicine, and biomaterials science. Successful bone regeneration relies on the appropriate participation of neural system components including nerve fibers, signaling molecules, and neural-related cells. Furthermore, more about the mechanisms through which nerves took part in bone regeneration and how these mechanisms could be integrated into tissue engineering scaffolds were under exploration. In the present review, we aimed to systematically elaborate on the structural and functional interrelationship between the nerve system and bone. In particular, peripheral nerves interact with the bone through innervated axons, multiple neurotrophins, and bone resident cells. Also, we aimed to summarize research that took advantage of the neuro-osteogenic network to design tissue engineering scaffolds for bone repair.
Collapse
|
7
|
Hu J, Zhao M, Lin C, Sun Z, Chen GC, Mei Z, Zheng Y. Associations of visceral adipose tissue with bone mineral density and fracture: observational and Mendelian randomization studies. Nutr Metab (Lond) 2022; 19:45. [PMID: 35821143 PMCID: PMC9277855 DOI: 10.1186/s12986-022-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The associations between visceral adipose tissue (VAT) and bone mineral density (BMD) or fracture have been controversial and the causality of the associations remains to be assessed. This study aimed to explore the associations of VAT^ (predicted value of VAT mass) with BMD and fracture risk in men and women, and to examine their potential causation by two-sample Mendelian randomization (MR) analyses. METHODS UK Biobank is a large, population-based prospective cohort study that recruited more than 500,000 participants aged 40-69 in the United Kingdom from 2006 to 2010. In this study, we used a validated and reliable prediction model to estimate the VAT amount of the participants. On this basis, linear and nonlinear multivariable statistical models were used to explore the association of VAT^ with BMD and fracture risk in different groups of sex and BMI. In observational analyses, the multivariable linear regression model and Cox proportional-hazards model were used to assess VAT^ association with BMD and fracture risk, respectively. Inverse variance weighting was used as the main result of MR analysis. RESULTS In 190,836 men, an inverted U-shaped association was observed between VAT^ and heel BMD (P for nonlinearity < 0.001), with a turning point of VAT^ = 1.25 kg. Per kg increase in VAT^ was associated with a 0.13 standard deviation (SD) increase in heel BMD (P = 1.5 × 10-16) among men with lower amounts of VAT^, and associated with a 0.05 SD decrease in heel BMD (P = 1.3 × 10-15) among men with higher amounts of VAT^. In 193,592 women, per kg increase in VAT^ was monotonically associated with a 0.16 SD increase in heel BMD (P = 1.2 × 10-136, P for VAT^-sex interaction = 8.4 × 10-51). During a median follow-up of 8.2 years, VAT^ was associated with lower risks of hip fractures in the overall men and women (P for VAT^-sex interaction = 1.9 × 10-4 for total fractures; 1.5 × 10-4 for other fractures). There were significant interactions of VAT^ and BMI on heel BMD and fracture risks in men only (P for VAT^-BMI interaction = 5.9 × 10-31 for heel BMD; 2.7 × 10-4 for total fractures; 5.7 × 10-3 for hip fractures; 6.8 × 10-3 for other fractures). In two-sample MR analyses, evidence of causality was not observed between VAT^ and DXA-derived BMD or fractures. CONCLUSIONS These novel findings demonstrated gender-dependent associations of VAT^ with BMD and fracture risk, with the association in men being modified by adiposity. Evidence of causality was not observed, suggesting that the observational association of VAT^ with BMD and fracture risk could be the result of confounding.
Collapse
Affiliation(s)
- Jianying Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Manying Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China. .,Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China. .,Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China. .,Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine - Review. Stem Cell Rev Rep 2021; 18:56-76. [PMID: 34677817 DOI: 10.1007/s12015-021-10285-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071, Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
9
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
10
|
Feng Y, Liu S, Zha R, Sun X, Li K, Robling A, Li B, Yokota H. Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers (Basel) 2021; 13:cancers13020267. [PMID: 33450808 PMCID: PMC7828232 DOI: 10.3390/cancers13020267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Advanced breast cancer and prostate cancer metastasize to varying organs including the bone. We show here that mechanical loading to the knee suppresses tumor growth in the loaded bone and the non-loaded mammary pad. Although lipoprotein receptor-related protein 5 (Lrp5) in osteocytes is necessary to induce loading-driven bone formation, loading-driven tumor suppression is regulated by Lrp5-dependent and independent mechanisms. Lrp5 overexpression in osteocytes enhances tumor suppression, but without Lrp5 in osteocytes, mechanical loading elevates dopamine, chemerin, p53, and TNF-related apoptosis-inducing ligand (TRAIL) and reduces cholesterol and nexin. Their systemic changes contribute to inhibiting tumors without Lrp5. Osteoclast development is also inhibited by the load-driven regulation of chemerin and nexin. Abstract Bone is mechanosensitive and lipoprotein receptor-related protein 5 (Lrp5)-mediated Wnt signaling promotes loading-driven bone formation. While mechanical loading can suppress tumor growth, the question is whether Lrp5 mediates loading-driven tumor suppression. Herein, we examined the effect of Lrp5 using osteocyte-specific Lrp5 conditional knockout mice. All mice presented noticeable loading-driven tumor suppression in the loaded tibia and non-loaded mammary pad. The degree of suppression was more significant in wild-type than knockout mice. In all male and female mice, knee loading reduced cholesterol and elevated dopamine. It reduced tumor-promoting nexin, which was elevated by cholesterol and reduced by dopamine. By contrast, it elevated p53, TNF-related apoptosis-inducing ligand (TRAIL), and chemerin, and they were regulated reversely by dopamine and cholesterol. Notably, Lrp5 overexpression in osteocytes enhanced tumor suppression, and osteoclast development was inhibited by chemerin. Collectively, this study identified Lrp5-dependent and independent mechanisms for tumor suppression. Lrp5 in osteocytes contributed to the loaded bone, while the Lrp5-independent regulation of dopamine- and cholesterol-induced systemic suppression.
Collapse
Affiliation(s)
- Yan Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Alexander Robling
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baiyan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Correspondence: (B.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.L.); +317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.L.); +317-278-2455 (H.Y.)
| | - Hiroki Yokota
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Y.F.); (R.Z.); (X.S.); (K.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Department of Anatomy Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (B.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.L.); +317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.L.); +317-278-2455 (H.Y.)
| |
Collapse
|
11
|
Wang L, Han L, Xue P, Hu X, Wong SW, Deng M, Tseng HC, Huang BW, Ko CC. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell Signal 2020; 78:109847. [PMID: 33242564 DOI: 10.1016/j.cellsig.2020.109847] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023]
Abstract
How the nervous system regulates bone remodeling is an exciting area of emerging research in bone biology. Accumulating evidence suggest that neurotransmitter-mediated inputs from neurons may act directly on osteoclasts. Dopamine is a neurotransmitter that can be released by hypothalamic neurons to regulate bone metabolism through the hypothalamic-pituitary-gonadal axis. Dopamine is also present in sympathetic nerves that penetrate skeletal structures throughout the body. It has been shown that dopamine suppresses osteoclast differentiation via a D2-like receptors (D2R)-dependent manner, but the intracellular secondary signaling pathway has not been elucidated. In this study, we found that cAMP-response element binding protein (CREB) activity responds to dopamine treatment during osteoclastogenesis. Considering the critical role of CREB in osteoclastogenesis, we hypothesize that CREB may be a critical target in dopamine's regulation of osteoclast differentiation. We confirmed that D2R is also present in RAW cells and activated by dopamine. Binding of dopamine to D2R inhibits the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway which ultimately decreases CREB phosphorylation during osteoclastogenesis. This was also associated with diminished expression of osteoclast markers that are downstream of CREB. Pharmacological activation of adenylate cyclase (to increase cAMP production) and PKA reverses the effect of dopamine on CREB activity and osteoclastogenesis. Therefore, we have identified D2R/cAMP/PKA/CREB as a candidate pathway that mediates dopamine's inhibition of osteoclast differentiation. These findings will contribute to our understanding of how the nervous and skeletal systems interact to regulate bone remodeling. This will enable future work toward elucidating the role of the nervous system in bone development, repair, aging, and degenerative disease.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lichi Han
- Department of Oral Medicine, Medical College, Dalian University, Dalian, China
| | - Peng Xue
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Sing-Wai Wong
- Division of Comprehensive Oral Health, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Meng Deng
- Division of Craniofacial and Surgical Care, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Bo-Wen Huang
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States.
| |
Collapse
|
12
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
13
|
Sousa DM, Martins PS, Leitão L, Alves CJ, Gomez-Lazaro M, Neto E, Conceição F, Herzog H, Lamghari M. The lack of neuropeptide Y-Y 1 receptor signaling modulates the chemical and mechanical properties of bone matrix. FASEB J 2020; 34:4163-4177. [PMID: 31960508 DOI: 10.1096/fj.201902796r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 01/07/2023]
Abstract
Genetic and pharmacological functional studies have provided evidence that the lack of Neuropeptide Y-Y1 receptor (Y1 R) signaling pathway induces a high bone mass phenotype in mice. However, clinical observations have shown that drug or genetic mediated improvement of bone mass might be associated to alterations to bone extracellular matrix (ECM) properties, leading to bone fragility. Hence, in this study we propose to characterize the physical, chemical and biomechanical properties of mature bone ECM of germline NPY-Y1 R knockout (Y1 R-/- ) mice, and compare to their wild-type (WT) littermates. Our results demonstrated that the high bone mass phenotype observed in Y1 R-/- mice involves alterations in Y1 R-/- bone ECM ultrastructure, as a result of accelerated deposition of organic and mineral fractions. In addition, Y1 R-/- bone ECM displays enhanced matrix maturation characterized by greater number of mature/highly packed collagen fibers without pathological accumulation of immature/mature collagen crosslinks nor compromise of mineral crystallinity. These unique features of Y1 R-/- bone ECM improved the biochemical properties of Y1 R-/- bones, reflected by mechanically robust bones with diminished propensity to fracture, contributing to greater bone strength. These findings support the future usage of drugs targeting Y1 R signaling as a promising therapeutic strategy to treat bone loss-related pathologies.
Collapse
Affiliation(s)
- Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Pedro S Martins
- INEGI - Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Luís Leitão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cecília J Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Francisco Conceição
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Cardiovascular Autonomic Dysfunction: Link Between Multiple Sclerosis Osteoporosis and Neurodegeneration. Neuromolecular Med 2018; 20:37-53. [DOI: 10.1007/s12017-018-8481-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
|
15
|
Nguyen AD, Lee NJ, Wee NKY, Zhang L, Enriquez RF, Khor EC, Nie T, Wu D, Sainsbury A, Baldock PA, Herzog H. Uncoupling protein-1 is protective of bone mass under mild cold stress conditions. Bone 2018; 106:167-178. [PMID: 26055106 DOI: 10.1016/j.bone.2015.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
Brown adipose tissue (BAT), largely controlled by the sympathetic nervous system (SNS), has the ability to dissipate energy in the form of heat through the actions of uncoupling protein-1 (UCP-1), thereby critically influencing energy expenditure. Besides BAT, the SNS also strongly influences bone, and recent studies have demonstrated a positive correlation between BAT activity and bone mass, albeit the interactions between BAT and bone remain unclear. Here we show that UCP-1 is critical for protecting bone mass in mice under conditions of permanent mild cold stress for this species (22°C). UCP-1-/- mice housed at 22°C showed significantly lower cancellous bone mass, with lower trabecular number and thickness, a lower bone formation rate and mineralising surface, but unaltered osteoclast number, compared to wild type mice housed at the same temperature. UCP-1-/- mice also displayed shorter femurs than wild types, with smaller cortical periosteal and endocortical perimeters. Importantly, these altered bone phenotypes were not observed when UCP-1-/- and wild type mice were housed in thermo-neutral conditions (29°C), indicating a UCP-1 dependent support of bone mass and bone formation at the lower temperature. Furthermore, at 22°C UCP-1-/- mice showed elevated hypothalamic expression of neuropeptide Y (NPY) relative to wild type, which is consistent with the lower bone formation and mass of UCP-1-/- mice at 22°C caused by the catabolic effects of hypothalamic NPY-induced SNS modulation. The results from this study suggest that during mild cold stress, when BAT-dependent thermogenesis is required, UCP-1 activity exerts a protective effect on bone mass possibly through alterations in central NPY pathways known to regulate SNS activity.
Collapse
Affiliation(s)
- Amy D Nguyen
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natalie K Y Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ronaldo F Enriquez
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ee Cheng Khor
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Amanda Sainsbury
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Gu XC, Zhang XB, Hu B, Zi Y, Li M. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 2016; 60:61-66. [PMID: 27720230 DOI: 10.1016/j.npep.2016.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
Fracture repair is a complex yet well orchestrated regenerative process involving numerous signaling and cell types including osteoblasts. Here we showed that NPY, a neurotransmitter with regulatory functions in bone homeostasis, may contribute to the post-fracture bone healing in patients with traumatic brain injury-fracture combined injuries. Our results suggested NPY levels were increased in patients with the combined injuries, accomplished by arising of bone healing markers, such as ALP, OC, PICP and ICTP, than in those with simple fractures, and NPY have direct actions on MSCs to promote their osteogenic differentiation. Our results provided clinical evidences for NPY participating in the bone healing process in a nonhypothalamic manner, most probably by directly promoting osteogenesis of mesenchymal stem cells.
Collapse
Affiliation(s)
- Xiao-Chuan Gu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Bin Zhang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Hu
- Department of Medical Oncology, Shanghai Minhang District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zi
- Department of Emergency, 463rd Hospital of PLA, Shenyang 110042, China.
| | - Ming Li
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Abstract
Bone metabolism is regulated by the action of two skeletal cells: osteoblasts and osteoclasts. This process is controlled by many genetic, hormonal and lifestyle factors, but today more and more studies have allowed us to identify a neuronal regulation system termed 'bone-brain crosstalk', which highlights a direct relationship between bone tissue and the nervous system. The first documentation of an anatomic relationship between nerves and bone was made via a wood cut by Charles Estienne in Paris in 1545. His diagram demonstrated nerves entering and leaving the bones of a skeleton. Later, several studies were conducted on bone innervation and, as of today, many observations on the regulation of bone remodeling by neurons and neuropeptides that reside in the CNS have created a new research field, that is, neuroskeletal research.
Collapse
Affiliation(s)
- Alessia Metozzi
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Lorenzo Bonamassa
- a 1 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| | - Gemma Brandi
- b 2 Public Mental Health system 1-4 of Florence, Florence, Italy
| | - Maria Luisa Brandi
- c 3 Department of Surgery and Translational Medicine, Metabolic Bone Diseases Unit, AOUC Careggi, University of Florence, Largo Palagi 1, 50138 Florence, Italy
| |
Collapse
|
18
|
Anderson D, Holt BJ, Pennell CE, Holt PG, Hart PH, Blackwell JM. Genome-wide association study of vitamin D levels in children: replication in the Western Australian Pregnancy Cohort (Raine) study. Genes Immun 2014; 15:578-83. [PMID: 25208829 DOI: 10.1038/gene.2014.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
This genome-wide association study (GWAS) utilises data from the Western Australian Pregnancy Cohort (Raine) Study for 25-hydroxyvitamin D (25(OH)D) levels measured in blood collected at age 6 years (n=673) and at age 14 years (n=1140). Replication of significantly associated genes from previous GWASs was found for both ages. Genome-wide significant associations were found both at age 6 and 14 with single nucleotide polymorphisms (SNPs) on chromosome 11p15 in PDE3B/CYP2R1 (age 6: rs1007392, P=3.9 × 10(-8); age14: rs11023332, P=2.2 × 10(-10)) and on chromosome 4q13 in GC (age 6: rs17467825, P=4.2 × 10(-9); age14: rs1155563; P=3.9 × 10(-9)). In addition, a novel association was observed at age 6 with SNPs on chromosome 7p15 near NPY (age 6: rs156299, P=1.3 × 10(-6)) that could be of functional interest in highlighting alternative pathways for vitamin D metabolism in this age group and merits further analysis in other cohort studies.
Collapse
Affiliation(s)
- D Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - B J Holt
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - C E Pennell
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - P G Holt
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - P H Hart
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - J M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
19
|
Ma Y, Li X, Fu J, Li Y, Gao L, Yang L, Zhang P, Shen J, Wang H. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors. Mol Cell Endocrinol 2014; 384:155-64. [PMID: 24508663 DOI: 10.1016/j.mce.2014.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 02/06/2023]
Abstract
The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianxian Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 400016, China; The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400016, China
| | - Li Gao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ling Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Imbernon M, Whyte L, Diaz-Arteaga A, Russell WR, Moreno NR, Vazquez MJ, Gonzalez CR, Díaz-Ruiz A, Lopez M, Malagón MM, Ross RA, Dieguez C, Nogueiras R. Regulation of GPR55 in rat white adipose tissue and serum LPI by nutritional status, gestation, gender and pituitary factors. Mol Cell Endocrinol 2014; 383:159-69. [PMID: 24378736 DOI: 10.1016/j.mce.2013.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/23/2022]
Abstract
The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with obesity in humans. We have investigated the regulation of GPR55 in rat white adipose tissue (WAT) in different physiological and pathophysiological settings involved in energy balance. We compared GPR55 expression with Cannabinoid Receptor type 1 (CB1), which mediates the metabolic actions of endocannabinoids, by real time PCR and western blotting. Circulating levels of lysophosphatidylinositol (LPI), the endogenous ligand of GPR55, were measured by liquid chromatography-mass spectrometry. Both WAT CB1 and GPR55 levels were increased after fasting and recovered after leptin treatment. Their expression was decreased during gestation and increased throughout lifespan. Orchidectomy diminished WAT CB1 and GPR55 expression whereas ovariectomized rats showed increased GPR55 but decreased CB1 levels. Alterations in pituitary functions also modified WAT CB1 and GPR55 levels. Serum LPI levels were inversely regulated by fasting and gonadectomy in comparison to WAT GPR55. Our findings indicate that GPR55 and LPI are regulated by different physiological and pathophysiological settings known to be associated with marked alterations in energy status.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Age Factors
- Animals
- Energy Metabolism
- Fasting
- Female
- Gene Expression Regulation
- Gestational Age
- Leptin/pharmacology
- Lysophospholipids/blood
- Male
- Nutritional Status/genetics
- Orchiectomy
- Ovariectomy
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Rats
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sex Factors
Collapse
Affiliation(s)
- Monica Imbernon
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Lauren Whyte
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Adenis Diaz-Arteaga
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Wendy R Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
| | - Natalia R Moreno
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia/University of Cordoba, 14004 Córdoba, Spain
| | - María J Vazquez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Carmen R Gonzalez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Alberto Díaz-Ruiz
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia/University of Cordoba, 14004 Córdoba, Spain
| | - Miguel Lopez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Maria M Malagón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia/University of Cordoba, 14004 Córdoba, Spain
| | - Ruth A Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
21
|
Doherty AH, Florant GL, Donahue SW. Endocrine regulation of bone and energy metabolism in hibernating mammals. Integr Comp Biol 2014; 54:463-83. [PMID: 24556365 DOI: 10.1093/icb/icu001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases.
Collapse
Affiliation(s)
- Alison H Doherty
- *Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA*Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA
| | - Gregory L Florant
- *Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA
| | - Seth W Donahue
- *Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA
| |
Collapse
|
22
|
Ma Y, Wu X, Li X, Fu J, Shen J, Li X, Wang H. Corticosterone regulates the expression of neuropeptide Y and reelin in MLO-Y4 cells. Mol Cells 2012; 33:611-6. [PMID: 22610366 PMCID: PMC3887760 DOI: 10.1007/s10059-012-0053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/13/2022] Open
Abstract
Osteocytes that have a dendritic appearance are widely believed to form a complex cellular network system and play crucial roles in mechanotransduction as a principal bone mechanosensor, which is the basis of their neuronallike biology, as previously reported. Neuropeptide Y (NPY) and reelin mRNA, which are brain-specific neurogenic markers, have been identified in osteocytes. However, changes in the production of NPY and reelin in response to specific biochemical stimulation are unknown. In this study, we investigated the in vitro effect of corticosterone, one of the endogenous glucocorticoids, on the expression of NPY and reelin in the MLO-Y4 osteocyte cell line. Cells were treated with corticosterone at different concentrations (10(-9) M-10(-5) M) for 1, 3, 6, 12 and 24 h. As revealed, corticosterone reduced the MLO-Y4 cell viability and proliferation in a dose- and time-dependent manner based on an MTT assay and a Vi-CELL analyzer. The cells were then incubated with corticosterone (10(-6) μM), and the NPY and reelin expression levels were detected at 1, 3, 6, 12 and 24 h using real-time PCR and Western blot analysis. These results demonstrated that at the gene and the protein levels, corticosterone significantly upregulated the NPY and reelin expression in a time-dependent manner. The application of a glucocorticoid receptor antagonist, RU486, reversed the reduced cell viability and the increased expression of NPY and reelin that were caused by corticosterone. To the best of our knowledge, this is the first report to verify that corticosterone regulates the NPY and reelin expression in osteocytes.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Xiangnan Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Xianxian Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Jing Fu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041,
China
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu 610041,
China
| |
Collapse
|
23
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
24
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
25
|
Abstract
With an increase in the average life span especially in the Western hemisphere, there is renewed interest in treating maladies of old age including osteoporosis. Age-related bone loss and resultant osteoporosis substantially increase risk of fractures and morbidity in the geriatric population leading to both a decline in the quality of life for the elderly as well as a substantial burden on the health care system. Herein, we review recent research in murine and rodent models looking at how both extrinsic and intrinsic factors such as hormones, biochemicals, neuromodulators, inflammatory cytokines, oxidative stress, nutrition, and exercise influence the skeleton with age. Recent studies on the relationship between bone and fat in the marrow, and the fate of the marrow mesenchymal stromal cell population, which can give rise to either bone-forming osteoblasts or fat-forming adipocytic cells as a function of age, have also been highlighted. An appreciable range of studies using aging murine as well as cellular models are discussed, as these studies have broadened our understanding of the pathways and players in the aging bone. Impactful information regarding aging and the bone may then allow the application of better pharmacologic as well as nonpharmacologic regimens to alleviate bone loss due to aging.
Collapse
Affiliation(s)
- Farhan A Syed
- Abbott Bioresearch Center, Worcester, MA 01545, USA.
| | | |
Collapse
|
26
|
Pjetri E, Adan RA, Herzog H, de Haas R, Oppelaar H, Spierenburg HA, Olivier B, Kas MJ. NPY receptor subtype specification for behavioral adaptive strategies during limited food access. GENES BRAIN AND BEHAVIOR 2011; 11:105-12. [PMID: 21923762 DOI: 10.1111/j.1601-183x.2011.00732.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neuropeptide Y (NPY) system in the brain regulates a wide variety of behavioral, metabolic and hormonal homeostatic processes required for energy balance control. During times of limited food availability, NPY promotes behavioral hyperactivity necessary to explore and prepare for novel food resources. As NPY can act via 5 different receptor subtypes, we investigated the path through which NPY affects different behavioral components relevant for adaptation to such conditions. We tested NPY Y1 and Y2 receptor knockout mice and their wild-type littermate controls in a daily scheduled limited food access paradigm with unlimited access to running wheel. Here we show that NPY Y1 receptor deficient mice lack the expression of appetitive behavior and that NPY Y2 receptors control the level of hyperactive behavior under these conditions. Thus, receptor specificity determines the differential expression of NPY-mediated behavioral adaptations to overcome a negative energy status.
Collapse
Affiliation(s)
- E Pjetri
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Neuropeptide Y (NPY) is widely distributed in the human body and contributes to a vast number of physiological processes. Since its discovery, NPY has been implicated in metabolic regulation and, although interest in its role in central mechanisms related to food intake and obesity has somewhat diminished, the topic remains a strong focus of research concerning NPY signalling. In addition, a number of other uses for modulators of NPY receptors have been implied in a range of diseases, although the development of NPY receptor ligands has been slow, with no clinically approved receptor therapeutics currently available. Nevertheless, several interesting small molecule compounds, notably Y2 receptor antagonists, have been published recently, fueling optimism in the field. Herein we review the role of NPY in the pathophysiology of a number of diseases and highlight instances where NPY receptor signalling systems are attractive therapeutic targets.
Collapse
Affiliation(s)
- Shaun P Brothers
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
28
|
Ardeshirpour L, Brian S, Dann P, VanHouten J, Wysolmerski J. Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton. Endocrinology 2010; 151:5591-601. [PMID: 21047946 PMCID: PMC2999486 DOI: 10.1210/en.2010-0566] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During lactation, calcium is mobilized from the maternal skeleton to supply the breast for milk production. This results in rapid but fully reversible bone loss. Prior studies have suggested that PTHrP, secreted from the breast, and estrogen deficiency, due to suckling-induced central hypogonadism, combine to trigger bone resorption. To determine whether this combination was sufficient to explain bone loss during lactation, we raised PTHrP levels and decreased levels of estrogens in nulliparous mice. PTHrP was infused via osmotic minipumps and estrogens were decreased either by using leuprolide, a long-acting GnRH agonist, or by surgical ovariectomy (OVX). Bone mineral density declined by 23.2 ± 1.3% in the spine and 16.8 ± 1.9% in the femur over 10 d of lactation. This was accompanied by changes in trabecular architecture and an increase in both osteoblast and osteoclast numbers. OVX and PTHrP infusion both induced a modest decline in bone mineral density over 10 d, but leuprolide treatment did not. The combination of OVX and PTHrP was more effective than either treatment alone, but there was no interaction between PTHrP and leuprolide. None of the treatments reproduced the same degree of bone loss caused by lactation. However, both forms of estrogen deficiency led to an increase in osteoclasts, whereas infusion of PTHrP increased both osteoblasts and osteoclasts. Therefore, although the combination of PTHrP and estrogen deficiency contributes to bone loss, it is insufficient to reproduce the full response of the skeleton to lactation, suggesting that other factors also regulate bone metabolism during this period.
Collapse
Affiliation(s)
- Laleh Ardeshirpour
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Convincing evidence has accumulated of regulation of bone by the central nervous system. The neural connection between brain and bone is mediated centrally by classic neurotransmitters and several neuropeptides, and peripherally by many of the same neurotransmitters and neuropeptides, albeit with actions opposite to their central effects. Pharmacologic blockade of ß2-adrenergic receptors or disruption of the gene encoding them increases bone mass, whereas increased activity of the sympathetic nervous system (SNS) contributes to bone loss. Brainstem serotonergic neurons regulate SNS activity and its modulation by leptin. Physiologic stimulation of osteoblastic nicotinic receptors results in proliferation and deposition of bone, whereas higher levels inhibit osteoblast function. Activation of sensory nerves has a centrally mediated action on bone, albeit poorly understood. The relative importance of, and interactions between autonomic, sensory, and peripheral nervous system actions on bone mass are also not clear in healthy individuals, and less so in pathologic states.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
30
|
Franquinho F, Liz MA, Nunes AF, Neto E, Lamghari M, Sousa MM. Neuropeptide Y and osteoblast differentiation - the balance between the neuro-osteogenic network and local control. FEBS J 2010; 277:3664-74. [DOI: 10.1111/j.1742-4658.2010.07774.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|