1
|
Cigler M, Imrichova H, Frommelt F, Caramelle L, Depta L, Rukavina A, Kagiou C, Hannich JT, Mayor-Ruiz C, Superti-Furga G, Sievers S, Forrester A, Laraia L, Waldmann H, Winter GE. Orpinolide disrupts a leukemic dependency on cholesterol transport by inhibiting OSBP. Nat Chem Biol 2025; 21:193-202. [PMID: 38907113 PMCID: PMC11782089 DOI: 10.1038/s41589-024-01614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 06/23/2024]
Abstract
Metabolic alterations in cancer precipitate in associated dependencies that can be therapeutically exploited. To meet this goal, natural product-inspired small molecules can provide a resource of invaluable chemotypes. Here, we identify orpinolide, a synthetic withanolide analog with pronounced antileukemic properties, via orthogonal chemical screening. Through multiomics profiling and genome-scale CRISPR-Cas9 screens, we identify that orpinolide disrupts Golgi homeostasis via a mechanism that requires active phosphatidylinositol 4-phosphate signaling at the endoplasmic reticulum-Golgi membrane interface. Thermal proteome profiling and genetic validation studies reveal the oxysterol-binding protein OSBP as the direct and phenotypically relevant target of orpinolide. Collectively, these data reaffirm sterol transport as a therapeutically actionable dependency in leukemia and motivate ensuing translational investigation via the probe-like compound orpinolide.
Collapse
Affiliation(s)
- Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lucie Caramelle
- Unit of Research of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Chrysanthi Kagiou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- IRB Barcelona-Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sievers
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alison Forrester
- Unit of Research of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Taskinen JH, Holopainen M, Ruhanen H, van der Stoel M, Käkelä R, Ikonen E, Keskitalo S, Varjosalo M, Olkkonen VM. Functional omics of ORP7 in primary endothelial cells. BMC Biol 2024; 22:292. [PMID: 39695567 DOI: 10.1186/s12915-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Many members of the oxysterol-binding protein-related protein (ORP) family have been characterized in detail over the past decades, but the lipid transport and other functions of ORP7 still remain elusive. What is known about ORP7 points toward an endoplasmic reticulum and plasma membrane-localized protein, which also interacts with GABA type A receptor-associated protein like 2 (GABARAPL2) and unlipidated Microtubule-associated proteins 1A/1B light chain 3B (LC3B), suggesting a further autophagosomal/lysosomal association. Functional roles of ORP7 have been suggested in cholesterol efflux, hypercholesterolemia, and macroautophagy. We performed a hypothesis-free multi-omics analysis of chemical ORP7 inhibition utilizing transcriptomics and lipidomics as well as proximity biotinylation interactomics to characterize ORP7 functions in a primary cell type, human umbilical vein endothelial cells (HUVECs). Moreover, assays on angiogenesis, cholesterol efflux, and lipid droplet quantification were conducted. RESULTS Pharmacological inhibition of ORP7 leads to an increase in gene expression related to lipid metabolism and inflammation, while genes associated with cell cycle and cell division were downregulated. Lipidomic analysis revealed increases in ceramides and lysophosphatidylcholines as well as saturated and monounsaturated triacylglycerols. Significant decreases were seen in all cholesteryl ester and in some unsaturated triacylglycerol species, compatible with the detected decrease of mean lipid droplet area. Along with the reduced lipid stores, ATP-binding cassette subfamily G member 1 (ABCG1)-mediated cholesterol efflux and angiogenesis decreased. Interactomics revealed an interaction of ORP7 with AKT1, a central metabolic regulator. CONCLUSIONS The transcriptomics results suggest an increase in prostanoid as well as oxysterol synthesis, which could be related to the observed upregulation of proinflammatory genes. We envision that the defective angiogenesis in HUVECs subjected to ORP7 inhibition could be the result of an unfavorable plasma membrane lipid composition and/or reduced potential for cell division. To conclude, the present study suggests multifaceted functions of ORP7 in lipid homeostasis, angiogenic tube formation, and gene expression of lipid metabolism, inflammation, and cell cycle in primary endothelial cells.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Miesje van der Stoel
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Salla Keskitalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
| | - Markku Varjosalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
3
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
4
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Xie D, Song C, Qin T, Zhai Z, Cai J, Dai J, Sun T, Xu Y. Moschus ameliorates glutamate-induced cellular damage by regulating autophagy and apoptosis pathway. Sci Rep 2023; 13:18586. [PMID: 37903904 PMCID: PMC10616123 DOI: 10.1038/s41598-023-45878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, causes short-term memory and cognition declines. It is estimated that one in three elderly people die from AD or other dementias. Chinese herbal medicine as a potential drug for treating AD has gained growing interest from many researchers. Moschus, a rare and valuable traditional Chinese animal medicine, was originally documented in Shennong Ben Cao Jing and recognized for its properties of reviving consciousness/resuscitation. Additionally, Moschus has the efficacy of "regulation of menstruation with blood activation, relief of swelling and pain" and is used for treating unconsciousness, stroke, coma, and cerebrovascular diseases. However, it is uncertain whether Moschus has any protective effect on AD patients. We explored whether Moschus could protect glutamate (Glu)-induced PC12 cells from cellular injury and preliminarily explored their related action mechanisms. The chemical compounds of Moschus were analyzed and identified by GC-MS. The Glu-induced differentiated PC12 cell model was thought to be the common AD cellular model. The study aims to preliminarily investigate the intervention effect of Moschus on Glu-induced PC12 cell damage as well as their related action mechanisms. Cell viability, lactate dehydrogenase (LDH), mitochondrial reactive oxygen species, mitochondrial membrane potential (MMP), cell apoptosis, autophagic vacuoles, autolysosomes or autophagosomes, proteins related to apoptosis, and the proteins related to autophagy were examined and analyzed. Seventeen active compounds of the Moschus sample were identified based on GC-MS analysis. In comparison to the control group, Glu stimulation increased cell viability loss, LDH release, mitochondrial damage, loss of MMP, apoptosis rate, and the number of cells containing autophagic vacuoles, and autolysosomes or autophagosomes, while these results were decreased after the pretreatment with Moschus and 3-methyladenine (3-MA). Furthermore, Glu stimulation significantly increased cleaved caspase-3, Beclin1, and LC3II protein expression, and reduced B-cell lymphoma 2/BAX ratio and p62 protein expression, but these results were reversed after pretreatment of Moschus and 3-MA. Moschus has protective activity in Glu-induced PC12 cell injury, and the potential mechanism might involve the regulation of autophagy and apoptosis. Our study may promote research on Moschus in the field of neurodegenerative diseases, and Moschus may be considered as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Cai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyi Dai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
6
|
Zhan N, Wang B, Martens N, Liu Y, Zhao S, Voortman G, van Rooij J, Leijten F, Vanmierlo T, Kuipers F, Jonker JW, Bloks VW, Lütjohann D, Palumbo M, Zimetti F, Adorni MP, Liu H, Mulder MT. Identification of Side Chain Oxidized Sterols as Novel Liver X Receptor Agonists with Therapeutic Potential in the Treatment of Cardiovascular and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021290. [PMID: 36674804 PMCID: PMC9863018 DOI: 10.3390/ijms24021290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The nuclear receptors-liver X receptors (LXR α and β) are potential therapeutic targets in cardiovascular and neurodegenerative diseases because of their key role in the regulation of lipid homeostasis and inflammatory processes. Specific oxy(phyto)sterols differentially modulate the transcriptional activity of LXRs providing opportunities to develop compounds with improved therapeutic characteristics. We isolated oxyphytosterols from Sargassum fusiforme and synthesized sidechain oxidized sterol derivatives. Five 24-oxidized sterols demonstrated a high potency for LXRα/β activation in luciferase reporter assays and induction of LXR-target genes APOE, ABCA1 and ABCG1 involved in cellular cholesterol turnover in cultured cells: methyl 3β-hydroxychol-5-en-24-oate (S1), methyl (3β)-3-aldehydeoxychol-5-en-24-oate (S2), 24-ketocholesterol (S6), (3β,22E)-3-hydroxycholesta-5,22-dien-24-one (N10) and fucosterol-24,28 epoxide (N12). These compounds induced SREBF1 but not SREBP1c-mediated lipogenic genes such as SCD1, ACACA and FASN in HepG2 cells or astrocytoma cells. Moreover, S2 and S6 enhanced cholesterol efflux from HepG2 cells. All five oxysterols induced production of the endogenous LXR agonists 24(S)-hydroxycholesterol by upregulating the CYP46A1, encoding the enzyme converting cholesterol into 24(S)-hydroxycholesterol; S1 and S6 may also act via the upregulation of desmosterol production. Thus, we identified five novel LXR-activating 24-oxidized sterols with a potential for therapeutic applications in neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Na Zhan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Boyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Nikita Martens
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Yankai Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shangge Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank Leijten
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
| | - Marcella Palumbo
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Correspondence: (H.L.); (M.T.M.)
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
- Correspondence: (H.L.); (M.T.M.)
| |
Collapse
|
7
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
8
|
Al-Hassan JM, Afzal M, Oommen S, Liu YF, Pace-Asciak C. Oxysterols in catfish skin secretions (Arius bilineatus, Val.) exhibit anti-cancer properties. Front Pharmacol 2022; 13:1001067. [PMID: 36313377 PMCID: PMC9614162 DOI: 10.3389/fphar.2022.1001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
The edible catfish Arius bilineatus, (Valenciennes) elaborates a proteinaceous gel-like material through its epidermis when threatened or injured. Our on-going studies on this gel have shown it to be a complex mixture of several biologically active molecules. Anti-cancer studies on lipid fractions isolated from the gel-like materials showed them to be active against several cancer cell lines. This prompted us to investigate further the lipid composition of the catfish epidermal gel secretions (EGS). Analysis of the lipid fraction of EGS resulted in identification of 12 oxysterols including cholesterol and 2 deoxygenated steroids i.e., 7α-hydroxy cholesterol, 7β-hydroxycholesterol, 5,6 epoxycholesterol, 3β-hydroxycholest-5-ene-7-one and cholesta-3,5-dien-7-one. Progesterone, cholest-3,5-diene, cholesta-2,4-diene, cholest-3,5,6-triol and 4-cholesten-3-one were found as minor components, and were identified through their MS, 1HNMR and FTIR spectral data and were compared with those of the standards. Cholest-3,6-dione, cholesta-4,6-diene-3-one, cholesta-2,4-diene, and cholesta-5,20(22)-dien-3-ol were found only in trace amounts and were identified by GC/MS/MS spectral data. Since cholesterol is the major component of EGS, the identified oxysterols (OS) are presumably cholesterol oxidation products. Many of the identified OS are known important biological molecules that play vital physiological role in the producer and recipient organisms. We report herein the effects of these sterols on three human cancer cell lines in vitro, i.e., K-562 (CML cell line), MDA MB-231 (estrogen positive breast cancer cell line) and MCF-7 (estrogen negative breast cancer cell line). Interestingly significant (p < 0.05) dose differences were observed between tested OS on cell types used. The presence of these sterols in EGS may help explain some aspects of the physiological activities of fraction B (FB) prepared from EGS, such as enhanced wound and diabetic ulcer healing, anti-inflammatory action and cytotoxic activities reported in our previous studies. The anti-proliferative actions of some of these oxysterols especially the cholesterol 3,5,6-triol (#5) as established on selected cancer cell lines in this study support our previous studies and make them candidates for research for human application.
Collapse
Affiliation(s)
- Jassim M. Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
- *Correspondence: Jassim M. Al-Hassan,
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Sosamma Oommen
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait, Kuwait
| | - Yuan Fang Liu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
| | - Cecil Pace-Asciak
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lee JH, Han JH, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med 2022; 179:252-265. [PMID: 34808332 DOI: 10.1016/j.freeradbiomed.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
Acute microglial activation plays an important role in neuroprotection. However, dysregulated, prolonged microgliosis exacerbates neurodegeneration through excessive release of pro-inflammatory cytokines and cytotoxic factors. Interferon-gamma (IFN-γ), an inflammatory cytokine, exacerbates the detrimental microglial response. Although various anti-inflammatory drugs have been evaluated as interventions for microglia-mediated neuroinflammation, no anti-inflammatories are in clinical use for microgliosis. The present study evaluated the anti-inflammatory mechanisms of oxysterols, blood brain barrier (BBB) penetrable bioactive lipids, revealing that this intervention suppresses neuroinflammation by disrupting membrane lipid raft formation and caveolae-mediated endosomal IFN-γ signaling. We find that 25-hydroxycholesterol (25-HC) rapidly repressed IFN-γ receptor trafficking to lipid rafts in microglia by disrupting raft formation, thereby suppressing microglial inflammatory response. IFN-γ treatment upregulated expression of Cav-1, a major component of caveolae, and IFN-γ signaling was sustained through Cav-1+ signaling endosomes. 25-HC repressed IFN-γ induction of Cav-1 expression in microglia, and subsequently suppressed the chronic inflammatory response. Taken together, these findings demonstrated that 25-HC effectively regulate the inflammatory status of microglia by mediating the formation of rafts and caveolae-dependent signaling endosomes. Given the important roles of IFN-γ and microglia in the pathology of neurodegenerative brain diseases, a novel anti-inflammatory mechanism of 25-HC that is not receptor-dependent, but rather is related to the regulation of membrane rafts and caveolae, suggests a new therapeutic target for inflammatory neurodegenerations.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| | - Ji-Hye Han
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Joo Hong Woo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
10
|
Oxysterols in the Immune Response to Bacterial and Viral Infections. Cells 2022; 11:cells11020201. [PMID: 35053318 PMCID: PMC8773517 DOI: 10.3390/cells11020201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
Abstract
Oxidized cholesterols, the so-called oxysterols, are widely known to regulate cholesterol homeostasis. However, more recently oxysterols have emerged as important lipid mediators in the response to both bacterial and viral infections. This review summarizes our current knowledge of selected oxysterols and their receptors in the control of intracellular bacterial growth as well as viral entry into the host cell and viral replication. Lastly, we briefly discuss the potential of oxysterols and their receptors as drug targets for infectious and inflammatory diseases.
Collapse
|
11
|
King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 2022; 43:78-92. [PMID: 34942082 PMCID: PMC8812650 DOI: 10.1016/j.it.2021.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Cholesterol is a multifaceted metabolite that is known to modulate processes in cancer, atherosclerosis, and autoimmunity. A common denominator between these diseases appears to be the immune system, in which many cholesterol-associated metabolites impact both adaptive and innate immunity. Many cancers display altered cholesterol metabolism, and recent studies demonstrate that manipulating systemic cholesterol metabolism may be useful in improving immunotherapy responses. However, cholesterol can have both proinflammatory and anti-inflammatory roles in mammals, acting via multiple immune cell types, and depending on context. Gaining mechanistic insights into various cholesterol-related metabolites can improve our understanding of their functions and extensive effects on the immune system, and ideally will inform the design of future therapeutic strategies against cancer and/or other pathologies.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| |
Collapse
|
12
|
Cheng YS, Zhang T, Ma X, Pratuangtham S, Zhang GC, Ondrus AA, Mafi A, Lomenick B, Jones JJ, Ondrus AE. A proteome-wide map of 20(S)-hydroxycholesterol interactors in cell membranes. Nat Chem Biol 2021; 17:1271-1280. [PMID: 34799735 PMCID: PMC8607797 DOI: 10.1038/s41589-021-00907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Oxysterols (OHCs) are hydroxylated cholesterol metabolites that play ubiquitous roles in health and disease. Due to the non-covalent nature of their interactions and their unique partitioning in membranes, the analysis of live-cell, proteome-wide interactions of OHCs remains an unmet challenge. Here, we present a structurally precise chemoproteomics probe for the biologically active molecule 20(S)-hydroxycholesterol (20(S)-OHC) and provide a map of its proteome-wide targets in the membranes of living cells. Our target catalog consolidates diverse OHC ontologies and demonstrates that OHC-interacting proteins cluster with specific processes in immune response and cancer. Competition experiments reveal that 20(S)-OHC is a chemo-, regio- and stereoselective ligand for the protein transmembrane protein 97 (Tmem97/the σ2 receptor), enabling us to reconstruct the 20(S)-OHC-Tmem97 binding site. Our results demonstrate that multiplexed, quantitative analysis of cellular target engagement can expose new dimensions of metabolite activity and identify actionable targets for molecular therapy.
Collapse
Affiliation(s)
- Yu-Shiuan Cheng
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tianyi Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiang Ma
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sarida Pratuangtham
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grace C Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexander A Ondrus
- Mathematics Department, Northern Alberta Institute of Technology, Edmonton, Alberta, Canada
| | - Amirhossein Mafi
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Jeffrey J Jones
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Alison E Ondrus
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050740. [PMID: 34067119 PMCID: PMC8151638 DOI: 10.3390/antiox10050740] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Collapse
|
14
|
Ruthirakuhan M, Herrmann N, Andreazza AC, Verhoeff NPLG, Gallagher D, Black SE, Kiss A, Lanctôt KL. 24S-Hydroxycholesterol Is Associated with Agitation Severity in Patients with Moderate-to-Severe Alzheimer's Disease: Analyses from a Clinical Trial with Nabilone. J Alzheimers Dis 2020; 71:21-31. [PMID: 31322567 PMCID: PMC6839471 DOI: 10.3233/jad-190202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Agitation is a prevalent and difficult-to-treat symptom of Alzheimer’s disease (AD). The endocannabinoid system (ECS) has been a target of interest for the treatment of agitation. However, ECS signaling may interact with AD-related changes in brain cholesterol metabolism. Elevated brain cholesterol, reflected by reduced serum 24-S-hydroxycholesterol (24S-OHC), is associated with reduced membrane fluidity, preventing ligand binding to cannabinoid receptor 1. Objective: To assess whether 24S-OHC was associated with agitation severity and response to nabilone. Methods: 24S-OHC was collected from AD patients enrolled in a clinical trial on nabilone at the start and end of each phase. This allowed for the cross-sectional and longitudinal investigation between 24S-OHC and agitation (Cohen Mansfield Agitation Inventory, CMAI). Post-hoc analyses included adjustments for baseline standardized Mini-Mental Status Exam (sMMSE), and analyses with CMAI subtotals consistent with the International Psychogeriatric Association (IPA) definition for agitation (physical aggression and nonaggression, and verbal aggression). Results: 24S-OHC was not associated with CMAI scores cross-sectionally or longitudinally, before and after adjusting for baseline sMMSE. However, 24S-OHC was associated with greater CMAI IPA scores at baseline (F(1,36) = 4.95, p = 0.03). In the placebo phase only, lower 24S-OHC at baseline was associated with increases in CMAI IPA scores (b = –35.2, 95% CI –65.6 to –5.0, p = 0.02), and decreases in 24S-OHC were associated with increases in CMAI IPA scores (b = –20.94, 95% CI –57.9 to –4.01, p = 0.03). Conclusion: 24S-OHC was associated with agitation severity cross-sectionally, and longitudinally in patients with AD. However, 24S-OHC did not predict treatment response, and does not change over time with nabilone.
Collapse
Affiliation(s)
- Myuri Ruthirakuhan
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Damien Gallagher
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), University of Toronto and Sunnybrook HSC, Toronto, ON, Canada
| | - Alex Kiss
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Association between lifestyle, dietary, reproductive, and anthropometric factors and circulating 27-hydroxycholesterol in EPIC-Heidelberg. Cancer Causes Control 2020; 31:181-192. [PMID: 31938951 DOI: 10.1007/s10552-019-01259-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Given that 27-hydroxycholesterol (27HC) is the first identified endogenous selective estrogen receptor modulator, the aim of this study was to investigate the extent to which dietary or lifestyle factors impact circulating 27HC concentrations in a large-scale setting. METHODS This cross-sectional analysis included 1,036 women aged 35-65 years who served as controls in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg breast cancer case-control study. Circulating 27HC was quantified in serum using liquid chromatography/tandem mass spectrometry. Generalized linear models were used to investigate the association between 27HC concentrations and dietary habits, and lifestyle, reproductive, and anthropometric factors. RESULTS Higher concentrations of 27HC were observed among postmenopausal relative to premenopausal women (geometric mean 200.5 vs. 188.4 nM, p = 0.03), whereas women reporting ever full-term pregnancy had lower concentrations of 27HC relative to never (191.4 vs. 198.6; p = 0.03). Significant trends were observed showing higher concentrations with relatively high levels of physical activity (ptrend = 0.03) and alcohol consumption (ptrend = 0.01), and women currently smoking at blood collection (ptrend < 0.01). Of the investigated dietary factors, starch (ptrend < 0.01) and thiamine (ptrend < 0.01) intakes were inversely associated with 27HC. Circulating lipid concentrations were positively associated with 27HC concentrations (all ptrend < 0.01). No significant associations were found between 27HC and factors including age at blood collection, body mass index, or use of hormone therapy or cholesterol-lowering medications. CONCLUSION 27HC is of increasing interest for multiple chronic disease pathways. Despite significant associations found between circulating 27HC and dietary habits, reproductive factors, and modifiable lifestyle factors, circulating cholesterol, mostly low-density lipoprotein cholesterol, accounted for the majority of the variability in circulating 27HC.
Collapse
|
16
|
Dias IH, Borah K, Amin B, Griffiths HR, Sassi K, Lizard G, Iriondo A, Martinez-Lage P. Localisation of oxysterols at the sub-cellular level and in biological fluids. J Steroid Biochem Mol Biol 2019; 193:105426. [PMID: 31301352 DOI: 10.1016/j.jsbmb.2019.105426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Oxysterols are oxidized derivatives of cholesterol that are formed enzymatically or via reactive oxygen species or both. Cholesterol or oxysterols ingested as food are absorbed and packed into lipoproteins that are taken up by hepatic cells. Within hepatic cells, excess cholesterol is metabolised to form bile acids. The endoplasmic reticulum acts as the main organelle in the bile acid synthesis pathway. Metabolised sterols originating from this pathway are distributed within other organelles and in the cell membrane. The alterations to membrane oxysterol:sterol ratio affects the integrity of the cell membrane. The presence of oxysterols changes membrane fluidity and receptor orientation. It is well documented that hydroxylase enzymes located in mitochondria facilitate oxysterol production via an acidic pathway. More recently, the presence of oxysterols was also reported in lysosomes. Peroxisomal deficiencies favour intracellular oxysterols accumulation. Despite the low abundance of oxysterols compared to cholesterol, the biological actions of oxysterols are numerous and important. Oxysterol levels are implicated in the pathogenesis of multiple diseases ranging from chronic inflammatory diseases (atherosclerosis, Alzheimer's disease and bowel disease), cancer and numerous neurodegenerative diseases. In this article, we review the distribution of oxysterols in sub-cellular organelles and in biological fluids.
Collapse
Affiliation(s)
- Irundika Hk Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| | - Khushboo Borah
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK
| | - Berivan Amin
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK
| | - Khouloud Sassi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté/Inserm, 21000 Dijon, France; Univ. Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, Tunis, Tunisia
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté/Inserm, 21000 Dijon, France
| | - Ane Iriondo
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Pablo Martinez-Lage
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, San Sebastian, Spain
| |
Collapse
|
17
|
24S-hydroxycholesterol alters activity of large-conductance Ca 2+-dependent K + (slo1 BK) channel through intercalation into plasma membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1525-1535. [PMID: 31136842 DOI: 10.1016/j.bbalip.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022]
Abstract
Oxysterols, oxidization products of cholesterol, are regarded as bioactive lipids affecting various physiological functions. However, little is known of their effects on ion channels. Using inside-out patch clamp recording, we found that naturally occurring side-chain oxidized oxysterols, 20S‑hydroxycholesterol, 22R‑hydroxycholesterol, 24S‑hydroxycholestero, 25‑hydroxycholesterol, and 27‑hydroxycholesterol, induced current reduction of large-conductance Ca2+- and voltage-activated K+ (slo1 BK) channels heterologously expressed in HEK293T cells. In contrast with side-chain oxidized oxysterols, naturally occurring ring oxidized ones, 7α‑hydroxycholesterol and 7‑ketocholesterol were without effect. By using 24S‑hydroxycholesterol (24S‑HC), the major brain oxysterol, we explored the inhibition mechanism. 24S‑HC inhibited Slo1 BK channels with an IC50 of ~2 μM, and decreased macroscopic current by ~60%. This marked current decrease was accompanied by a rightward shift in the conductance-voltage relationship and a slowed activation kinetics, with the deactivation kinetics unaltered. Furthermore, the membrane sterol scavenger γ‑cyclodextrin was found to rescue slo1 BK channels from the inhibition, implicating that 24S-HC may be intercalated into the plasma membrane to affect the channel. These findings unveil a novel physiological importance of oxysterols from a new angle that involves ion channel regulation.
Collapse
|
18
|
Silva LMR, Lütjohann D, Hamid P, Velasquez ZD, Kerner K, Larrazabal C, Failing K, Hermosilla C, Taubert A. Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells. Sci Rep 2019; 9:6650. [PMID: 31040348 PMCID: PMC6491585 DOI: 10.1038/s41598-019-43153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Besnoitia besnoiti, an apicomplexan parasite of cattle being considered as emergent in Europe, replicates fast in host endothelial cells during acute infection and is in considerable need for energy, lipids and other building blocks for offspring formation. Apicomplexa are generally considered as defective in cholesterol synthesis and have to scavenge cholesterol from their host cells for successful replication. Therefore, we here analysed the influence of B. besnoiti on host cellular endogenous cholesterol synthesis and on sterol uptake from exogenous sources. GC-MS-based profiling of cholesterol-related sterols revealed enhanced cholesterol synthesis rates in B. besnoiti-infected cells. Accordingly, lovastatin and zaragozic acid treatments diminished tachyzoite production. Moreover, increased lipid droplet contents and enhanced cholesterol esterification was detected and inhibition of the latter significantly blocked parasite proliferation. Furthermore, artificial increase of host cellular lipid droplet disposability boosted parasite proliferation. Interestingly, lectin-like oxidized low density lipoprotein receptor 1 expression was upregulated in infected endothelial hostcells, whilst low density lipoproteins (LDL) receptor was not affected by parasite infection. However, exogenous supplementations with non-modified and acetylated LDL both boosted B. besnoiti proliferation. Overall, current data show that B. besnoiti simultaneously exploits both, endogenous cholesterol biosynthesis and cholesterol uptake from exogenous sources, during asexual replication.
Collapse
Affiliation(s)
- Liliana M R Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Laboratory for Special Lipid Diagnostics/Center Internal Medicine/Building 26/UG 68, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Penny Hamid
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, 55281, Yogyakarta, Indonesia
| | - Zahady D Velasquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Frankfurter Str. 85-89, D-35392, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Frankfurter Str. 95, D-35392, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| |
Collapse
|
19
|
Wei X, Nishi T, Kondou S, Kimura H, Mody I. Preferential enhancement of GluN2B-containing native NMDA receptors by the endogenous modulator 24S-hydroxycholesterol in hippocampal neurons. Neuropharmacology 2018; 148:11-20. [PMID: 30594698 DOI: 10.1016/j.neuropharm.2018.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022]
Abstract
24S-hydroxycholesterol (24HC) is the major metabolic breakdown product of cholesterol in the brain. Among its other effects on neurons, 24HC modulates N-methyl-d-aspartate (NMDA or GluN) receptors, but our understanding of this mechanism is poor. We used whole-cell patch clamp recordings and various pharmacological approaches in mouse brain slices to record isolated NMDAR-mediated (INMDA) tonic and evoked synaptic currents. 24HC (1 μΜ) significantly enhanced tonic, but not evoked, INMDA of dentate gyrus granule cells. The INMDA had both GluN2A and GluN2B-mediated components. Preincubation of the slices with PEAQX (a GluN2A antagonist) or Ro25-6981 (a GluN2B antagonist) dramatically changed the INMDA modulatory potential of 24HC. Ro25-6981 blocked the enhancing effect of 24HC on tonic INMDA, while preincubation with PEAQX had no effect. In cholesterol 24-hydroxylase (CYP46A1) knockout mice, in sharp contrast to WT, 24HC slightly decreased the tonic INMDA of granule cells. Furthermore, 24HC had no effect on tonic INMDA of dentate gyrus parvalbumin interneurons (PV-INs), known to express different GluN subunits than granule cells. Taken together, our results revealed a specific enhancement of GluN2B-containing NMDARs by 24HC, indicating a novel endogenous pathway to influence a subclass of NMDARs critically involved in cortical plasticity and in numerous neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Toshiya Nishi
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shinichi Kondou
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Haruhide Kimura
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
20
|
Saadane A, Mast N, Trichonas G, Chakraborty D, Hammer S, Busik JV, Grant MB, Pikuleva IA. Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1-Mediated Cholesterol Removal. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:405-425. [PMID: 30448403 DOI: 10.1016/j.ajpath.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
CYP46A1 is the cytochrome P450 enzyme that converts cholesterol to 24-hydroxycholesterol, a cholesterol elimination product and a potent liver X receptor (LXR) ligand. We conducted retinal characterizations of Cyp46a1-/- mice that had normal fasting blood glucose levels but up to a 1.8-fold increase in retinal cholesterol. The retina of Cyp46a1-/- mice exhibited venous beading and tortuosity, microglia/macrophage activation, and increased vascular permeability, features commonly associated with diabetic retinopathy. The expression of Lxrα and Lxrβ was increased in both the whole Cyp46a1-/- retina and retinal macroglia/macrophages. The LXR-target genes were affected as well, primarily in activated microglial cells and macrophages. In the latter, the LXR-transactivated genes (Abca1, Abcg1, Apod, Apoe, Mylip, and Arg2) were up-regulated; similarly, there was an up-regulation of the LXR-transrepressed genes (Ccl2, Ptgs2, Cxcl1, Il1b, Il6, Nos2, and Tnfa). For comparison, gene expression was investigated in bone marrow-derived macrophages from Cyp46a1-/- mice as well as retinal and bone marrow-derived macrophages from Cyp27a1-/- and Cyp27a1-/-Cyp46a1-/- mice. CYP46A1 expression was detected in retinal endothelial cells, and this expression was increased in the proinflammatory environment. Retinal Cyp46a1-/- phosphoproteome revealed altered phosphorylation of 30 different proteins, including tight junction protein zonula occludens 1 and aquaporin 4. Collectively, the data obtained establish metabolic and regulatory significance of CYP46A1 for the retina and suggest pharmacologic activation of CYP46A1 as a potential therapeutic approach to dyslipidemia-induced retinal damage.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - George Trichonas
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | | | - Sandra Hammer
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
21
|
Taubert A, Silva LMR, Velásquez ZD, Larrazabal C, Lütjohann D, Hermosilla C. Modulation of cholesterol-related sterols during Eimeria bovis macromeront formation and impact of selected oxysterols on parasite development. Mol Biochem Parasitol 2018; 223:1-12. [PMID: 29909067 DOI: 10.1016/j.molbiopara.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Obligate intracellular apicomplexan parasites are considered as deficient in cholesterol biosynthesis and scavenge cholesterol from their host cell in a parasite-specific manner. Compared to fast proliferating apicomplexan species producing low numbers of merozoites per host cell, (e. g. Toxoplasma gondii), the macromeront-forming protozoa Eimeria bovis is in extraordinary need for cholesterol for offspring production (≥ 170,000 merozoites I/macromeront). Interestingly, optimized in vitro E. bovis merozoite I production occurs under low foetal calf serum (FCS, 1.2%) supplementation. To analyze the impact of extensive E. bovis proliferation on host cellular sterol metabolism we here compared the sterol profiles of E. bovis-infected primary endothelial host cells grown under optimized (1.2% FCS) and non-optimized (10% FCS) cell culture conditions. Therefore, several sterols indicating endogenous de novo cholesterol synthesis, cholesterol conversion and sterol uptake (phytosterols) were analyzed via GC-MS-based approaches. Overall, significantly enhanced levels of phytosterols were detected in both FCS conditions indicating infection-triggered sterol uptake from extracellular sources as a major pathway of sterol acquisition. Interestingly, a simultaneous induction of endogenous cholesterol synthesis based on increased levels of distinct cholesterol precursors was only observed in case of optimized parasite proliferation indicating a parasite proliferation-dependent effect. Considering side-chain oxysterols, 25 hydroxycholesterol levels were selectively found increased in E. bovis-infected host cells, while 24 hydroxycholesterol and 27 hydroxycholesterol contents were not significantly altered by infection. Exogenous treatments with 25 hydroxycholesterol, 27 hydroxycholesterol, and 7 ketocholesterol revealed significant adverse effects on E. bovis intracellular development. Thus, the number and size of developing macromeronts and merozoite I production was significantly reduced indicating that these oxysterols bear direct or indirect antiparasitic properties. Overall, the current data indicate parasite-driven changes in the host cellular sterol profile reflecting the huge demand of E. bovis for cholesterol during macromeront formation and its versatility in the acquisition of cholesterol sources.
Collapse
Affiliation(s)
- A Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - L M R Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - Z D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - C Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - D Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - C Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| |
Collapse
|
22
|
Metabolic liver inflammation in obesity does not robustly decrease hepatic and circulating CETP. Atherosclerosis 2018; 275:149-155. [PMID: 29902703 DOI: 10.1016/j.atherosclerosis.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS We recently showed that plasma cholesteryl ester transfer protein (CETP) is mainly derived from VSIG4-positive Kupffer cells. Activation of these cells by the bacterial endotoxin lipopolysaccharide (LPS) strongly decreases CETP expression. As Kupffer cell activation plays a detrimental role in the progression of non-alcoholic fatty liver disease (NAFLD), we aimed to study if metabolic liver inflammation is also associated with a decrease in hepatic and circulating CETP. METHODS We collected plasma and liver biopsy samples at various stages of NAFLD from 93 obese individuals who underwent bariatric surgery. Liver lobular inflammation was histologically determined, and liver CETP expression, CETP positive cells, circulating CETP concentrations, and liver VSIG4 expression were quantified. RESULTS Mean (SD) plasma CETP concentration was 2.68 (0.89) μg/mL. In the presence of liver inflammation, compared to the absence of pathology, the difference in hepatic CETP expression was -0.03 arbitrary units (95% CI -0.26, 0.20), the difference in number of hepatic CETP positive cells (range 11-140 per mm2) was -20.0 per mm2 (95% CI -41.6, 1.9), and the difference in plasma CETP was -0.35 μg/mL (95% CI -0.80, 0.10). Hepatic VSIG4 expression was not associated with liver inflammation (0.00; 95% CI -0.15, 0.15). CONCLUSIONS We found no strong evidence for a strong negative association between metabolic liver inflammation and CETP-related outcomes in obese individuals, although we observed consistent trends. These data indicate that metabolic liver inflammation does not mimic the strong effects of LPS on the hepatic expression and production of CETP by Kupffer cells.
Collapse
|
23
|
Yamauchi Y, Rogers MA. Sterol Metabolism and Transport in Atherosclerosis and Cancer. Front Endocrinol (Lausanne) 2018; 9:509. [PMID: 30283400 PMCID: PMC6157400 DOI: 10.3389/fendo.2018.00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological membranes, and serving as an essential constituent of lipid rafts. Mammalian cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis. Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid hormones. Cholesterol intermediates and metabolites have diverse and important cellular functions. A network of molecular machineries including transcription factors, protein modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol, sterol intermediates, and oxysterols occurs in various pathophysiological settings such as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular transport machineries, and discuss the roles of sterols and sterol metabolism in human diseases.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- *Correspondence: Yoshio Yamauchi
| | - Maximillian A. Rogers
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Brownholland DP, Covey DF. Synthesis of side-chain oxysterols and their enantiomers through cross-metathesis reactions of Δ 22 steroids. Steroids 2017; 121:22-31. [PMID: 28300584 PMCID: PMC5398201 DOI: 10.1016/j.steroids.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
A synthetic route that utilizes a cross-metathesis reaction with Δ22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies.
Collapse
Affiliation(s)
- David P Brownholland
- Department of Chemistry, Carthage College, 2001 Alford Park, Kenosha, WI 53140, USA.
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Moon JY, Choi MH, Kim J. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases. Endocr Relat Cancer 2016; 23:R455-67. [PMID: 27580660 PMCID: PMC5064754 DOI: 10.1530/erc-16-0285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022]
Abstract
Cholesterol and sex steroid hormones including androgens and estrogens play a critical role in the development and progression of urological diseases such as prostate cancer. This disease remains the most commonly diagnosed malignant tumor in men and is the leading cause of death from different cancers. Attempts to understand the role of cholesterol and steroid metabolism in urological diseases have been ongoing for many years, but despite this, our mechanistic and translational understanding remains elusive. In order to further evaluate the problem, we have taken an interest in metabolomics; a discipline dedicated to the systematic study of biologically active metabolites in cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative measurement of cholesterol and sex steroid metabolites can be successfully achieved using hair of human and mouse models. The overall goal of this short review article is to introduce current metabolomic technologies for the quantitative biomarker assay development and also to provide new insight into understanding the underlying mechanisms that trigger the pathological condition. Furthermore, this review will place a particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular profiles and assess their clinical significance in various urological diseases.
Collapse
Affiliation(s)
- Ju-Yeun Moon
- Molecular Recognition Research CenterKorea Institute of Science and Technology, Seoul, Korea
| | - Man Ho Choi
- Molecular Recognition Research CenterKorea Institute of Science and Technology, Seoul, Korea
| | - Jayoung Kim
- Departments of Surgery and Biomedical SciencesCedars-Sinai Medical Center, Los Angeles, California, USA Department of MedicineUniversity of California, Los Angeles, California, USA
| |
Collapse
|
26
|
Sun MY, Linsenbardt AJ, Emnett CM, Eisenman LN, Izumi Y, Zorumski CF, Mennerick S. 24(S)-Hydroxycholesterol as a Modulator of Neuronal Signaling and Survival. Neuroscientist 2016; 22:132-44. [PMID: 25628343 PMCID: PMC4821654 DOI: 10.1177/1073858414568122] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The major cholesterol metabolite in brain, 24(S)-hydroxycholesterol (24S-HC), serves as a vehicle for cholesterol removal. Its effects on neuronal function, however, have only recently begun to be investigated. Here, we review that nascent work. Our own studies have demonstrated that 24S-HC has potent positive modulatory effects on N-methyl-d-aspartate (NMDA) receptor (NMDAR) function. This could have implications not only for brain plasticity but also for pathological NMDAR overuse. Other work has demonstrated effects of 24S-HC on neuronal survival and as a possible biomarker of neurodegenerative disease. Depending on circumstances, both upregulation/mimicry of 24S-HC signaling and down-regulation/antagonism may have therapeutic potential. We are interested in the possibility that synthetic analogues of 24S-HC with positive effects at NMDARs may hold neurotherapeutic promise, given the role of NMDA receptor hypofunction in certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steve Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Leahy T, Gadella BM. New insights into the regulation of cholesterol efflux from the sperm membrane. Asian J Androl 2016; 17:561-7. [PMID: 25926609 PMCID: PMC4492045 DOI: 10.4103/1008-682x.153309] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholesterol is an essential component of the mammalian plasma membrane because it promotes membrane stability without comprising membrane fluidity. Given this important cellular role, cholesterol levels are tightly controlled at multiple levels. It has been clearly shown that cholesterol redistribution and depletion from the sperm membrane is a key part of the spermatozoon's preparation for fertilization. Some factors that regulate these events are described (e.g., bicarbonate, calcium) but the mechanisms underlying cholesterol export are poorly understood. How does a hydrophobic cholesterol molecule inserted in the sperm plasma membrane enter the energetically unfavorable aqueous surroundings? This review will provide an overview of knowledge in this area and highlight our gaps in understanding. The overall aim is to better understand cholesterol redistribution in the sperm plasma membrane, its relation to the possible activation of a cholesterol transporter and the role of cholesterol acceptors. Armed with such knowledge, sperm handling techniques can be adapted to better prepare spermatozoa for in vitro and in vivo fertilization.
Collapse
Affiliation(s)
| | - Bart M Gadella
- Department of Farm Animal Health and of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
28
|
Georgiou CA, Constantinou MS, Andreou R, Hapeshi E, Fatta-Kassinos D, Kapnissi-Christodoulou CP. Novel approach to fast determination of cholesterol oxidation products in Cypriot foodstuffs using ultra-performance liquid chromatography-tandem mass spectrometry. Electrophoresis 2015; 37:1101-8. [DOI: 10.1002/elps.201500196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - Evroula Hapeshi
- Department of Civil and Environmental Engineering; University of Cyprus; Nicosia Cyprus
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering; University of Cyprus; Nicosia Cyprus
| | | |
Collapse
|
29
|
Gadella BM, Boerke A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization. Theriogenology 2015; 85:113-24. [PMID: 26320574 DOI: 10.1016/j.theriogenology.2015.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 11/17/2022]
Abstract
The fusion of a sperm with an oocyte to form new life is a highly regulated event. The activation-also termed capacitation-of the sperm cell is one of the key preparative steps required for this process. Ejaculated sperm has to make a journey through the female uterus and oviduct before it can approach the oocyte. The oocyte at that moment also has become prepared to facilitate monospermic fertilization and block immediately thereafter the chance for polyspermic fertilization. Interestingly, ejaculated sperm is not properly capacitated and consequently is not yet able to fertilize the oocyte. During the capacitation process, the formation of competent lipid-protein domains on the sperm head enables sperm-cumulus and zona pellucida interactions. This sperm binding allows the onset for a cascade reaction ultimately resulting in oocyte-sperm fusion. Many different lipids and proteins from the sperm surface are involved in this process. Sperm surface processing already starts when sperm are liberated from the seminiferous tubules and is followed by epididymal maturation where the sperm cell surface is modified and loaded with proteins to ensure it is prepared for its fertilization task. Although cauda epididymal sperm can fertilize the oocyte IVF, they are coated with so-called decapacitation factors during ejaculation. The seminal plasma-induced stabilization of the sperm surface permits the sperm transit through the cervix and uterus but prevents sperm capacitation and thus inhibits fertilization. For IVF purposes, sperm are washed out of seminal plasma and activated to get rid of decapacitation factors. Only after capacitation, the sperm can fertilize the oocyte. In recent years, IVF has become a widely used tool to achieve successful fertilization in both the veterinary field and human medicine. Although IVF procedures are very successful, scientific knowledge is still far from complete when identifying all the molecular players and processes during the first stages the fusion of two gametes into a new life. A concise overview in the current understanding of the process of capacitation and the sperm surface changes is provided. The gaps in knowledge of these prefertilization processes are critically discussed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - A Boerke
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
30
|
Bissegger S, Martyniuk CJ, Langlois VS. Transcriptomic profiling in Silurana tropicalis testes exposed to finasteride. Gen Comp Endocrinol 2014; 203:137-45. [PMID: 24530632 DOI: 10.1016/j.ygcen.2014.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/14/2023]
Abstract
Investigations of endocrine disrupting chemicals found in aquatic ecosystems with estrogenic and androgenic modes of action have increased over the past two decades due to a surge of evidence of adverse effects in wildlife. Chemicals that disrupt androgen signalling and steroidogenesis can result in an imbalanced conversion of testosterone (T) into 17β-estradiol (E2) and other androgens such as 5α-dihydrotestosterone (5α-DHT). Therefore, a better understanding of how chemicals perturb these pathways is warranted. In this study, the brain, liver, and testes of Silurana tropicalis were exposed ex vivo to the human drug finasteride, a potent steroid 5α-reductase inhibitor and a model compound to study the inhibition of the conversion of T into 5α-DHT. These experiments were conducted (1) to determine organ specific changes in sex steroid production after treatment, and (2) to elucidate the transcriptomic response to finasteride in testicular tissue. Enzyme-linked immunosorbent assays were used to measure hormone levels in media following finasteride incubation for 6 h. Finasteride significantly increased T levels in the media of liver and testis tissue, but did not induce any changes in E2 and 5α-DHT production. Gene expression analysis was performed in frog testes and data revealed that finasteride treatment significantly altered 1,434 gene probes. Gene networks associated with male reproduction such as meiosis, hormone biosynthesis, sperm entry, gonadotropin releasing hormone were affected by finasteride exposure as well as other pathways such as oxysterol synthesis, apoptosis, and epigenetic regulation. For example, this study suggests that the mode of action by which finasteride induces cellular damage in testicular tissue as reported by others, is via oxidative stress in testes. This data also suggests that 5-reductase inhibition disrupts the expression of genes related to reproduction. It is proposed that androgen-disrupting chemicals may mediate their action via 5-reductases and that the effects of environmental pollutants are not limited to the androgen receptor signalling.
Collapse
Affiliation(s)
- Sonja Bissegger
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada.
| | - Christopher J Martyniuk
- Department of Biology and the Canadian River Institute, University of New Brunswick, NB, Canada.
| | - Valérie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
31
|
Linsenbardt AJ, Taylor A, Emnett CM, Doherty JJ, Krishnan K, Covey DF, Paul SM, Zorumski CF, Mennerick S. Different oxysterols have opposing actions at N-methyl-D-aspartate receptors. Neuropharmacology 2014; 85:232-42. [PMID: 24878244 DOI: 10.1016/j.neuropharm.2014.05.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Oxysterols have emerged as important biomarkers in disease and as signaling molecules. We recently showed that the oxysterol 24(S)-hydroxycholesterol, the major brain cholesterol metabolite, potently and selectively enhances NMDA receptor function at a site distinct from other modulators. Here we further characterize the pharmacological mechanisms of 24(S)-hydroxycholesterol and its synthetic analog SGE201. We describe an oxysterol antagonist of this positive allosteric modulation, 25-hydroxycholesterol. We found that 24(S)-hydroxycholesterol and SGE201 primarily increased the efficacy of NMDAR agonists but did not directly gate the channel or increase functional receptor number. Rather than binding to a direct aqueous-accessible site, oxysterols may partition into the plasma membrane to access the NMDAR, likely explaining slow onset and offset kinetics of modulation. Interestingly, oxysterols were ineffective when applied to the cytosolic face of inside-out membrane patches or through a whole-cell pipette solution, suggesting a non-intracellular site. We also found that another natural oxysterol, 25-hydroxycholesterol, although exhibiting slight potentiation on its own, non-competitively and enantioselectively antagonized the effects of 24(S)-hydroxycholesterol analogs. In summary, we suggest two novel allosteric sites on NMDARs that separately modulate channel gating, but together oppose each other.
Collapse
Affiliation(s)
- Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Taylor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine M Emnett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas F Covey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Paul
- Sage Therapeutics, Cambridge, MA 02142, USA; Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Olsen BN, Bielska AA, Lee T, Daily MD, Covey DF, Schlesinger PH, Baker NA, Ory DS. The structural basis of cholesterol accessibility in membranes. Biophys J 2014; 105:1838-47. [PMID: 24138860 DOI: 10.1016/j.bpj.2013.08.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 02/02/2023] Open
Abstract
Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.
Collapse
Affiliation(s)
- Brett N Olsen
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
33
|
La Marca V, Spagnuolo MS, Cigliano L, Marasco D, Abrescia P. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells. J Neurochem 2014; 130:97-108. [DOI: 10.1111/jnc.12713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Valeria La Marca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
| | - Maria Stefania Spagnuolo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo; Consiglio Nazionale delle Ricerche; Napoli Italia
| | - Luisa Cigliano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| | - Daniela Marasco
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
- Dipartimento di Farmacia; Università di Napoli Federico II; Napoli Italia
| | - Paolo Abrescia
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| |
Collapse
|
34
|
Peyrot SM, Nachtergaele S, Luchetti G, Mydock-McGrane LK, Fujiwara H, Scherrer D, Jallouk A, Schlesinger PH, Ory DS, Covey DF, Rohatgi R. Tracking the subcellular fate of 20(s)-hydroxycholesterol with click chemistry reveals a transport pathway to the Golgi. J Biol Chem 2014; 289:11095-11110. [PMID: 24596093 DOI: 10.1074/jbc.m113.540351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxysterols, oxidized metabolites of cholesterol, are endogenous small molecules that regulate lipid metabolism, immune function, and developmental signaling. Although the cell biology of cholesterol has been intensively studied, fundamental questions about oxysterols, such as their subcellular distribution and trafficking pathways, remain unanswered. We have therefore developed a useful method to image intracellular 20(S)-hydroxycholesterol with both high sensitivity and spatial resolution using click chemistry and fluorescence microscopy. The metabolic labeling of cells with an alkynyl derivative of 20(S)-hydroxycholesterol has allowed us to directly visualize this oxysterol by attaching an azide fluorophore through cyclo-addition. Unexpectedly, we found that this oxysterol selectively accumulates in the Golgi membrane using a pathway that is sensitive to ATP levels, temperature, and lysosome function. Although previous models have proposed nonvesicular pathways for the rapid equilibration of oxysterols between membranes, direct imaging of oxysterols suggests that a vesicular pathway is responsible for differential accumulation of oxysterols in organelle membranes. More broadly, clickable alkynyl sterols may represent useful tools for sterol cell biology, both to investigate the functions of these important lipids and to decipher the pathways that determine their cellular itineraries.
Collapse
Affiliation(s)
- Sara M Peyrot
- Departments of Medicine and Stanford University School of Medicine, Stanford, California 94305
| | - Sigrid Nachtergaele
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Giovanni Luchetti
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Laurel K Mydock-McGrane
- Departments of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Hideji Fujiwara
- The Diabetic Cardiovascular Research Center, and Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - David Scherrer
- The Diabetic Cardiovascular Research Center, and Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Andrew Jallouk
- Departments of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Paul H Schlesinger
- Departments of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Daniel S Ory
- The Diabetic Cardiovascular Research Center, and Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Douglas F Covey
- Departments of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110; Departments ofAnesthesiology, and Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110; Departments of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110; The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Rajat Rohatgi
- Departments of Medicine and Stanford University School of Medicine, Stanford, California 94305; Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and.
| |
Collapse
|
35
|
Sample preparation: A critical step in the analysis of cholesterol oxidation products. Food Chem 2014; 145:918-26. [DOI: 10.1016/j.foodchem.2013.08.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/28/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
|
36
|
Son HH, Moon JY, Seo HS, Kim HH, Chung BC, Choi MH. High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina. J Lipid Res 2013; 55:155-62. [PMID: 24220886 PMCID: PMC3927468 DOI: 10.1194/jlr.d040790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations of cholesterol metabolism are responsible for vasospastic angina and atherosclerosis. To comprehensively evaluate cholesterol metabolism, 18 sterols, including cholesterol, 6 cholesteryl esters (CEs), 3 cholesterol precursors, and 8 hydroxycholesterols (OHCs), were simultaneously analyzed using hybrid solid-phase extraction (SPE) purification coupled to high-temperature gas chromatography-mass spectrometry (HTGC-MS). Methanol-based hybrid SPE increased the selective extraction, and HTGC resulted in a good chromatographic resolution for the separation of lipophilic compounds. The limits of quantification of cholesterol and CEs ranged from 0.2 to 10.0 μg/ml, while OHCs and cholesterol precursors ranged from 0.01 to 0.10 μg/ml. Linearity as the correlation coefficient was higher than 0.99 with the exception of cholesteryl laurate, myristate, oleate, and linoleate (r² > 0.98). The precision (% coefficient of variation) and accuracy (% bias) ranged from 1.1 to 9.8% and from 75.9 to 125.1%, respectively. The overall recoveries of CEs ranged from 26.1 to 64.0%, and the recoveries of other sterols ranged from 83.8 to 129.3%. The cholesterol signatures showed sex differences in patients with vasospastic angina and may associate with 24-reductases. This technique can be useful for making clinical diagnoses and for an increased understanding of the pathophysiology of vasospastic angina.
Collapse
Affiliation(s)
- Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Hawkins-Salsbury JA, Parameswar AR, Jiang X, Schlesinger PH, Bongarzone E, Ory DS, Demchenko AV, Sands MS. Psychosine, the cytotoxic sphingolipid that accumulates in globoid cell leukodystrophy, alters membrane architecture. J Lipid Res 2013; 54:3303-11. [PMID: 24006512 DOI: 10.1194/jlr.m039610] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Globoid cell leukodystrophy (GLD) is a neurological disease caused by deficiency of the lysosomal enzyme galactosylceramidase (GALC). In the absence of GALC, the cytotoxic glycosphingolipid, psychosine (psy), accumulates in the nervous system. Psychosine accumulation preferentially affects oligodendrocytes, leading to progressive demyelination and infiltration of activated monocytes/macrophages into the CNS. GLD is characterized by motor defects, cognitive deficits, seizures, and death by 2-5 years of age. It has been hypothesized that psychosine accumulation, primarily within lipid rafts, results in the pathogenic cascade in GLD. However, the mechanism of psychosine toxicity has yet to be elucidated. Therefore, we synthesized the enantiomer of psychosine (ent-psy) to use as a probe to distinguish between protein-psy (stereo-specific enantioselective) or membrane-psy (stereo-insensitive nonenantioselective) interactions. The enantiomer of psychosine has equal or greater toxicity compared with psy, suggesting that psy exerts its toxicity through a nonenantioselective mechanism. Finally, in this study we demonstrate that psy and ent-psy localize to lipid rafts, perturb natural and artificial membrane integrity, and inhibit protein Kinase C translocation to the plasma membrane. Although other mechanisms may play a role in disease, these data strongly suggest that psy exerts its effects primarily through membrane perturbation rather than through specific protein-psy interactions.
Collapse
|
38
|
Karaki F, Ohgane K, Dodo K, Hashimoto Y. Structure–activity relationship studies of Niemann-Pick type C1-like 1 (NPC1L1) ligands identified by screening assay monitoring pharmacological chaperone effect. Bioorg Med Chem 2013; 21:5297-309. [DOI: 10.1016/j.bmc.2013.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022]
|
39
|
Stulov SV, Mankevich OV, Dugin NO, Novikov RA, Timofeev VP, Misharin AY. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells. Bioorg Med Chem Lett 2013; 23:2014-8. [PMID: 23466231 DOI: 10.1016/j.bmcl.2013.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive.
Collapse
Affiliation(s)
- Sergey V Stulov
- Orekhovich Institute of Biomedical Chemistry, RAMS, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
40
|
Kristiana I, Luu W, Stevenson J, Cartland S, Jessup W, Belani JD, Rychnovsky SD, Brown AJ. Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses. J Biol Chem 2012; 287:33897-904. [PMID: 22869373 DOI: 10.1074/jbc.m112.360537] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
How cholesterol is sensed to maintain homeostasis has been explained by direct binding to a specific protein, Scap, or through altering the physical properties of the membrane. The enantiomer of cholesterol (ent-cholesterol) is a valuable tool in distinguishing between these two models because it shares nonspecific membrane effects with native cholesterol (nat-cholesterol), but not specific binding interactions. This is the first study to compare ent- and nat-cholesterol directly on major molecular parameters of cholesterol homeostasis. We found that ent-cholesterol suppressed activation of the master transcriptional regulator of cholesterol metabolism, SREBP-2, almost as effectively as nat-cholesterol. Importantly, ent-cholesterol induced a conformational change in the cholesterol-sensing protein Scap in isolated membranes in vitro, even when steps were taken to eliminate potential confounding effects from endogenous cholesterol. Ent-cholesterol also accelerated proteasomal degradation of the key cholesterol biosynthetic enzyme, squalene monooxygenase. Together, these findings provide compelling evidence that cholesterol maintains its own homeostasis not only via direct protein interactions, but also by altering membrane properties.
Collapse
Affiliation(s)
- Ika Kristiana
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|