1
|
Lopez Dacal J, Castro S, Suco S, Correa Brito L, Grinspon RP, Rey RA. Assessment of testicular function in boys and adolescents. Clin Endocrinol (Oxf) 2024; 101:455-465. [PMID: 37814597 DOI: 10.1111/cen.14979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The hypothalamic-pituitary-testicular axis is characterised by the existence of major functional changes from its establishment in fetal life until the end of puberty. The assessment of serum testosterone and gonadotrophins and semen analysis, typically used in the adult male, is not applicable during most of infancy and childhood. On the other hand, the disorders of gonadal axis have different clinical consequences depending on the developmental stage at which the dysfunction is established. This review addresses the approaches to evaluate the hypothalamic-pituitary-testicular axis in the newborn, during childhood and at pubertal age. DESIGN We focused on the hormonal laboratory and genetic studies as well as on the clinical signs and imaging studies that guide the aetiological diagnosis and the functional status of the gonads. RESULTS Serum gonadotrophin and testosterone determination is useful in the first 3-6 months after birth and at pubertal age, whereas AMH and inhibin B are useful biomarkers of testis function from birth until the end of puberty. Clinical and imaging signs are helpful to appraise testicular hormone actions during fetal and postnatal life. CONCLUSIONS The interpretation of results derived from the assessment of hypothalamic-pituitary-testicular in paediatric patients requires a comprehensive knowledge of the developmental physiology of the axis to understand its pathophysiology and reach an accurate diagnosis of its disorders.
Collapse
Affiliation(s)
- Jimena Lopez Dacal
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sofía Suco
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Rey RA, Bergadá I, Ballerini MG, Braslavsky D, Chiesa A, Freire A, Grinspon RP, Keselman A, Arcari A. Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients. Rev Endocr Metab Disord 2024; 25:555-573. [PMID: 38112850 DOI: 10.1007/s11154-023-09868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Hypopituitarism, or the failure to secrete hormones produced by the anterior pituitary (adenohypophysis) and/or to release hormones from the posterior pituitary (neurohypophysis), can be congenital or acquired. When more than one pituitary hormone axis is impaired, the condition is known as combined pituitary hormone deficiency (CPHD). The deficiency may be primarily due to a hypothalamic or to a pituitary disorder, or concomitantly both, and has a negative impact on target organ function. This review focuses on the pathophysiology, diagnosis and management of anterior pituitary hormone deficiency in the pediatric age. Congenital hypopituitarism is generally due to genetic disorders and requires early medical attention. Exposure to toxicants or intrauterine infections should also be considered as potential etiologies. The molecular mechanisms underlying the fetal development of the hypothalamus and the pituitary are well characterized, and variants in the genes involved therein may explain the pathophysiology of congenital hypopituitarism: mutations in the genes expressed in the earliest stages are usually associated with syndromic forms whereas variants in genes involved in later stages of pituitary development result in non-syndromic forms with more specific hormone deficiencies. Tumors or lesions of the (peri)sellar region, cranial radiation therapy, traumatic brain injury and, more rarely, other inflammatory or infectious lesions represent the etiologies of acquired hypopituitarism. Hormone replacement is the general strategy, with critical periods of postnatal life requiring specific attention.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Analía Freire
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| | - Andrea Arcari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, C1425EFD, Argentina
| |
Collapse
|
3
|
Rodprasert W, Virtanen HE, Toppari J. Cryptorchidism and puberty. Front Endocrinol (Lausanne) 2024; 15:1347435. [PMID: 38532895 PMCID: PMC10963523 DOI: 10.3389/fendo.2024.1347435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
Cryptorchidism is the condition in which one or both testes have not descended adequately into the scrotum. The congenital form of cryptorchidism is one of the most prevalent urogenital anomalies in male newborns. In the acquired form of cryptorchidism, the testis that was previously descended normally is no longer located in the scrotum. Cryptorchidism is associated with an increased risk of infertility and testicular germ cell tumors. However, data on pubertal progression are less well-established because of the limited number of studies. Here, we aim to review the currently available data on pubertal development in boys with a history of non-syndromic cryptorchidism-both congenital and acquired cryptorchidism. The review is focused on the timing of puberty, physical changes, testicular growth, and endocrine development during puberty. The available evidence demonstrated that the timing of the onset of puberty in boys with a history of congenital cryptorchidism does not differ from that of non-cryptorchid boys. Hypothalamic-pituitary-gonadal hormone measurements showed an impaired function or fewer Sertoli cells and/or germ cells among boys with a history of cryptorchidism, particularly with a history of bilateral cryptorchidism treated with orchiopexy. Leydig cell function is generally not affected in boys with a history of cryptorchidism. Data on pubertal development among boys with acquired cryptorchidism are lacking; therefore, more research is needed to investigate pubertal progression among such boys.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Matsuyama S, DeFalco T. Steroid hormone signaling: multifaceted support of testicular function. Front Cell Dev Biol 2024; 11:1339385. [PMID: 38250327 PMCID: PMC10796553 DOI: 10.3389/fcell.2023.1339385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Embryonic development and adult physiology are dependent on the action of steroid hormones. In particular, the reproductive system is reliant on hormonal signaling to promote gonadal function and to ensure fertility. Here we will describe hormone receptor functions and their impacts on testicular function, focusing on a specific group of essential hormones: androgens, estrogens, progesterone, cortisol, and aldosterone. In addition to focusing on hormone receptor function and localization within the testis, we will highlight the effects of altered receptor signaling, including the consequences of reduced and excess signaling activity. These hormones act through various cellular pathways and receptor types, emphasizing the need for a multifaceted research approach to understand their critical roles in testicular function. Hormones exhibit intricate interactions with each other, as evidenced, for example, by the antagonistic effects of progesterone on mineralocorticoid receptors and cortisol's impact on androgens. In light of research findings in the field demonstrating an intricate interplay between hormones, a systems biology approach is crucial for a nuanced understanding of this complex hormonal network. This review can serve as a resource for further investigation into hormonal support of male reproductive health.
Collapse
Affiliation(s)
- Satoko Matsuyama
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Smith BK, Ward M. The Role of Testosterone Therapy in Men's Health. Nurs Clin North Am 2023; 58:525-539. [PMID: 37832997 DOI: 10.1016/j.cnur.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last 3 decades, there has been an increased interest in testosterone replacement therapy. This trend is a result of an aging population, endocrine disruptors in our foods and environment and rising obesity rates. In addition, there has been a surge in Men's Health clinics and online direct-to-consumer Web sites, making testosterone replacement therapy much more readily accessible. As more men seek to increase their testosterone levels, more long-term random control studies are needed to gain better insight into testosterone optimization to support the anecdotal observation commonly experienced in the practice setting.
Collapse
Affiliation(s)
- Blake K Smith
- American Association for Men in Nursing, Wisconsin Rapids, WI, USA; Clinical Documentation Sr. Analyst, Enterprise Applications, Nebraska Medicine, Omaha, NE, USA; Accelerated Program Student Success Coach, School of Nursing, Nebraska Methodist College, Omaha, NE, USA
| | - Michael Ward
- Critical Care Nurse Practitioner, Cardiovascular ICU, Medical ICU, Texas Health Huguley Hospital, 11801 South Freeway, Burleson, TX 76028, USA.
| |
Collapse
|
6
|
Lopez Dacal J, Prada S, Correa Brito L, Ropelato MG, Ballerini MG, Rodriguez ME, Gutiérrez ME, Soria M, Morán L, Ferraro C, Bedecarrás P, Drelichman G, Aversa L, Bergadá I, Rey R, Grinspon RP. Testicular dysfunction at diagnosis in children and teenagers with haematopoietic malignancies improves after initial chemotherapy. Front Endocrinol (Lausanne) 2023; 14:1135467. [PMID: 37260445 PMCID: PMC10228689 DOI: 10.3389/fendo.2023.1135467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/06/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Hematopoietic malignancies are the most frequent type of cancer in childhood. Recent advances in cancer treatment have significantly improved survival until adulthood. There is an extensive literature on the effects of cancer treatment on the gonadal axis in adult survivors of childhood cancer mainly focused on sperm production, but scarce information exists on the immediate impact of cancer and its treatment in boys. Objectives In this work, we determined the status of the hypothalamic-pituitary-testicular (HPT) axis function at diagnosis and the immediate impact of chemotherapy at the start of treatment in children and adolescents with hematopoietic malignancies. Subjects and methods In a prospective study of 94 boys and adolescents with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) or non-Hodgkin lymphoma (NHL), we determined serum AMH, inhibin B and FSH to assess the gonadotrophin-Sertoli cell component of the HPT axis, and testosterone and LH to evaluate the gonadotrophin-Leydig cell component, at diagnosis and after 3 months of chemotherapy. Secondarily, the general health state was evaluated. Results In prepubertal boys, at diagnosis, AMH, inhibin B and FSH were lower compared to the reference population, reflecting an FSH-Sertoli cell axis dysfunction. After 3 months of chemotherapy, all hormone concentrations increased. At pubertal age, at diagnosis, AMH and inhibin B were lower compared to the reference population for Tanner stage, with inappropriately normal FSH, suggesting a primary Sertoli cell dysfunction with insufficient gonadotrophin compensation. The LH-Leydig cell axis was mildly disrupted. After 3 months of chemotherapy, inhibin B and AMH were unchanged while median FSH levels rose to values that exceeded the reference range, indicating a significant impairment of Sertoli cell function. Testosterone normalized concomitantly with an abnormal LH elevation reflecting a compensated Leydig cell impairment. General health biomarkers were impaired at diagnosis and improved after 3 months. Conclusion The HPT axis function is impaired in boys with hematopoietic malignancies before the initiation of chemotherapy. There is a primary testicular dysfunction and a concomitant functional central hypogonadism that could be due to an impaired overall health. The HPT axis function improves during the initial 3 months of chemotherapy concomitantly with the general health state. However, in pubertal boys the dysfunction persists as shown by elevated gonadotropin levels after 3 months.
Collapse
Affiliation(s)
- Jimena Lopez Dacal
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvina Prada
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Maria Eugenia Rodriguez
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marcela E. Gutiérrez
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marcela Soria
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Lorena Morán
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cristina Ferraro
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia Bedecarrás
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Guillermo Drelichman
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Luis Aversa
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
7
|
Dacal JL, Grinspon RP, Rey RA. Review of the Function of the Hypothalamic-Pituitary-Gonadal Axis in Children and Adolescents with Cancer. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:122-132. [PMID: 36694892 PMCID: PMC9835818 DOI: 10.17925/ee.2022.18.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
The most common malignancies in childhood are leukaemias, brain tumours, lymphomas, neuroblastomas, soft tissue sarcomas and kidney tumours. At present, about 80% of childhood cancers can be treated successfully, which has significantly increased long-term survival. Concomitantly, adult gonadal function in childhood cancer survivors has become a concern. However, the immediate effect of cancer and its management on the reproductive axis function has received less attention. We conducted a review of the effects of malignancies and their treatments on the gonadal axis during childhood and adolescence. Some results are controversial, probably because the analyses do not distinguish between the malignancy types, their treatments and/or the age at treatment. However, there is agreement that cancer can partially affect gonadal function before treatment, as revealed by low circulating levels of inhibin B and anti-Müllerian hormone. Subsequently, chemotherapy transiently impairs the somatic component of the gonads (i.e. testicular Sertoli cells and ovarian granulosa cells) with normalization after treatment ends. The impact of chemotherapy may persist through adulthood after more intensive chemotherapy regimens, radiotherapy and conditioning for haematopoietic stem cell transplantation, when there is a severe impairment of the somatic component of the gonads or of the stem germ cells.
Collapse
Affiliation(s)
- Jimena Lopez Dacal
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina,Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Abstract
INTRODUCTION Delayed puberty, defined as the appearance of pubertal signs after the age of 14 years in males, usually affects psychosocial well-being. Patients and their parents show concern about genital development and stature. The condition is transient in most of the patients; nonetheless, the opportunity should not be missed to diagnose an underlying illness. AREAS COVERED The aetiologies of pubertal delay in males and their specific pharmacological therapies are discussed in this review. EXPERT OPINION High-quality evidence addressing the best pharmacological therapy approach for each aetiology of delayed puberty in males is scarce, and most of the current practice is based on small case series or unpublished experience. Male teenagers seeking attention for pubertal delay most probably benefit from medical treatment to avoid psychosocial distress. While watchful waiting is appropriate in 12- to 14-year-old boys when constitutional delay of growth and puberty (CGDP) is suspected, hormone replacement should not be delayed beyond the age of 14 years in order to avoid impairing height potential and peak bone mass. When primary or central hypogonadism is diagnosed, hormone replacement should be proposed by the age of 12 years provided that a functional central hypogonadism has been ruled out. Testosterone replacement regimens have been used for decades and are fairly standardised. Aromatase inhibitors have arisen as an interesting alternative for boy with CDGP and short stature. Gonadotrophin therapy seems more physiological in patients with central hypogonadism, but its relative efficacy and most adequate timing still need to be established.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
9
|
Suarez A MC, Israeli JM, Kresch E, Telis L, Nassau DE. Testosterone therapy in children and adolescents: to whom, how, when? Int J Impot Res 2022; 34:652-662. [PMID: 34997199 DOI: 10.1038/s41443-021-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Male production of testosterone is crucial for the development of a wide range of functions. External and internal genitalia formation, secondary sexual characteristics, spermatogenesis, growth velocity, bone mass density, psychosocial maturation, and metabolic and cardiovascular profiles are closely dependent on testosterone exposure. Disorders in androgen production can present during all life-stages, including childhood and adolescence, and testosterone therapy (TT) is in many cases the only treatment that can correct the underlying deficit. TT is controversial in the pediatric population as hypoandrogenism is difficult to classify and diagnose in these age groups, and standardized protocols of treatment and monitorization are still lacking. In pediatric patients, hypogonadism can be central, primary, or a combination of both. Testosterone preparations are typically designed for adults' TT, and providers need to be aware of the advantages and disadvantages of these formulations, especially cognizant of supratherapeutic dosing. Monitoring of testosterone levels in boys on TT should be tailored to the individual patient and based on the anticipated duration of therapy. Although clinical consensus is lacking, an approximation of the current challenges and common practices in pediatric hypoandrogenism could help elucidate the broad spectrum of pathologies that lie behind this single hormone deficiency with wide-ranging implications.
Collapse
Affiliation(s)
- Maria Camila Suarez A
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | - Leon Telis
- Department of Urology, Lenox Hill Hospital, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Daniel E Nassau
- Department of Pediatric Urology, Nicklaus Children's Hospital, Miami, FL, USA.
| |
Collapse
|
10
|
Rey RA. Recent advancement in the treatment of boys and adolescents with hypogonadism. Ther Adv Endocrinol Metab 2022; 13:20420188211065660. [PMID: 35035874 PMCID: PMC8753232 DOI: 10.1177/20420188211065660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Clinical manifestations and the need for treatment varies according to age in males with hypogonadism. Early foetal-onset hypogonadism results in disorders of sex development (DSD) presenting with undervirilised genitalia whereas hypogonadism established later in foetal life presents with micropenis, cryptorchidism and/or micro-orchidism. After the period of neonatal activation of the gonadal axis has waned, the diagnosis of hypogonadism is challenging because androgen deficiency is not apparent until the age of puberty. Then, the differential diagnosis between constitutional delay of puberty and central hypogonadism may be difficult. During infancy and childhood, treatment is usually sought because of micropenis and/or cryptorchidism, whereas lack of pubertal development and relative short stature are the main complaints in teenagers. Testosterone therapy has been the standard, although off-label, in the vast majority of cases. However, more recently alternative therapies have been tested: aromatase inhibitors to induce the hypothalamic-pituitary-testicular axis in boys with constitutional delay of puberty and replacement with GnRH or gonadotrophins in those with central hypogonadism. Furthermore, follicle-stimulating hormone (FSH) priming prior to hCG or luteinizing hormone (LH) treatment seems effective to induce an enhanced testicular enlargement. Although the rationale for gonadotrophin or GnRH treatment is based on mimicking normal physiology, long-term results are still needed to assess their impact on adult fertility.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Rodolfo A. Rey Centro de Investigaciones
Endocrinológicas ‘Dr. César Bergadá’ (CEDIE), CONICET – FEI – División de
Endocrinología, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, C1425EFD
Buenos Aires, Argentina
| |
Collapse
|
11
|
Ahmed SF, Achermann J, Alderson J, Crouch NS, Elford S, Hughes IA, Krone N, McGowan R, Mushtaq T, O'Toole S, Perry L, Rodie ME, Skae M, Turner HE. Society for Endocrinology UK Guidance on the initial evaluation of a suspected difference or disorder of sex development (Revised 2021). Clin Endocrinol (Oxf) 2021; 95:818-840. [PMID: 34031907 DOI: 10.1111/cen.14528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022]
Abstract
It is paramount that any child or adolescent with a suspected difference or disorder of sex development (DSD) is assessed by an experienced clinician with adequate knowledge about the range of conditions associated with DSD and is discussed with the regional DSD service. In most cases, the paediatric endocrinologist within this service acts as the first point of contact but involvement of the regional multidisciplinary service will also ensure prompt access to specialist psychology and nursing care. The underlying pathophysiology of DSD and the process of delineating this should be discussed with the parents and affected young person with all diagnostic tests undertaken in a timely fashion. Finally, for rare conditions such as these, it is imperative that clinical experience is shared through national and international clinical and research collaborations.
Collapse
Affiliation(s)
- S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
- Office for Rare Conditions, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - John Achermann
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Julie Alderson
- Psychological Health Services, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK
| | - Naomi S Crouch
- Department of Women's Health, St Michael's Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK
| | | | - Ieuan A Hughes
- DSDFamilies, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Nils Krone
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Ruth McGowan
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- West of Scotland Centre for Genomic Medicine, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Talat Mushtaq
- Department of Paediatric Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Stuart O'Toole
- Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
- Department of Paediatric Urology, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Leslie Perry
- Department of Clinical Biochemistry, Croydon University Hospital, London, UK
| | - Martina E Rodie
- Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
- Office for Rare Conditions, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Department of Neonatology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Mars Skae
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Helen E Turner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
12
|
Grinspon RP, Castro S, Brunello FG, Sansó G, Ropelato MG, Rey RA. Diagnosis of Male Central Hypogonadism During Childhood. J Endocr Soc 2021; 5:bvab145. [PMID: 34589657 PMCID: PMC8475809 DOI: 10.1210/jendso/bvab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The diagnosis of male central (or hypogonadotropic) hypogonadism, typically based on low luteinizing hormone (LH) and testosterone levels, is challenging during childhood since both hormones are physiologically low from the sixth month until the onset of puberty. Conversely, follicle-stimulating hormone (FSH) and anti-Müllerian hormone (AMH), which show higher circulating levels during infancy and childhood, are not used as biomarkers for the condition. We report the case of a 7-year-old boy with a history of bilateral cryptorchidism who showed repeatedly low FSH and AMH serum levels during prepuberty. Unfortunately, the diagnosis could not be ascertained until he presented with delayed puberty at the age of 14 years. A gonadotropin-releasing hormone (GnRH) test showed impaired LH and FSH response. By then, his growth and bone mineralization were partially impaired. Gene panel sequencing identified a variant in exon 15 of FGFR1, affecting the tyrosine kinase domain of the receptor, involved in GnRH neuron migration and olfactory bulb morphogenesis. Testosterone replacement was started, which resulted in the development of secondary sexual characteristics and partial improvement of bone mineral density. This case illustrates the difficulty in making the diagnosis of central hypogonadism in boys during childhood based on classical criteria, and how serum FSH and AMH assessment may be helpful if it is suspected before the age of puberty, and confirm it using next-generation sequencing. The possibility of making an early diagnosis of central hypogonadism may be useful for a timely start of hormone replacement therapy, and to avoid delays that could affect growth and bone health as well as psychosocial adjustment.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Franco G Brunello
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Gabriela Sansó
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
13
|
Maione L, Bouvattier C, Kaiser UB. Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clin Endocrinol (Oxf) 2021; 95:542-555. [PMID: 33797780 PMCID: PMC8586890 DOI: 10.1111/cen.14475] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Central precocious puberty (CPP) results from early activation of the hypothalamic-pituitary-gonadal (HPG) axis. The current state of knowledge of the complex neural network acting at the level of the hypothalamus and the GnRH neuron to control puberty onset has expanded, particularly in the context of molecular interactions. Along with these advances, the knowledge of pubertal physiology and pathophysiology has also increased. This review focuses on regulatory abnormalities occurring at the hypothalamic level of the HPG axis to cause CPP. The clinical approach to diagnosis of puberty and pubertal disorders is also reviewed, with a particular focus on aetiologies of CPP. The recent identification of mutations in MKRN3 and DLK1 in familial as well sporadic forms of CPP has changed the state of the art of the approach to patients with CPP. Genetic advances have also had important repercussions beyond consideration of puberty alone. Syndromic disorders and central nervous system lesions associated with CPP are also discussed. If untreated, these conditions may lead to adverse physical, psychosocial and medical outcomes.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Abstract
During adolescence, androgens are responsible for the development of secondary
sexual characteristics, pubertal growth, and the anabolic effects on bone and
muscle mass. Testosterone is the most abundant testicular androgen, but some
effects are mediated by its conversion to the more potent androgen
dihydrotestosterone (DHT) or to estradiol. Androgen deficiency, requiring
replacement therapy, may occur due to a primary testicular failure or secondary
to a hypothalamic–pituitary disorder. A very frequent condition characterized by
a late activation of the gonadal axis that may also need androgen treatment is
constitutional delay of puberty. Of the several testosterone or DHT formulations
commercially available, very few are employed, and none is marketed for its use
in adolescents. The most frequently used androgen therapy is based on the
intramuscular administration of testosterone enanthate or cypionate every 3 to 4
weeks, with initially low doses. These are progressively increased during
several months or years, in order to mimic the physiology of puberty, until
adult doses are attained. Scarce experience exists with oral or transdermal
formulations. Preparations containing DHT, which are not widely available, are
preferred in specific conditions. Oxandrolone, a non-aromatizable drug with
higher anabolic than androgenic effects, has been used in adolescents with
preserved testosterone production, like Klinefelter syndrome, with positive
effects on cardiometabolic health and visual, motor, and psychosocial functions.
The usual protocols applied for androgen therapy in boys and adolescents are
discussed.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
15
|
Abstract
Puberty is characterized by major changes in the anatomy and function of reproductive organs. Androgen activity is low before puberty, but during pubertal development, the testes resume the production of androgens. Major physiological changes occur in the testicular cell compartments in response to the increase in intratesticular testosterone concentrations and androgen receptor expression. Androgen activity also impacts on the internal and external genitalia. In target cells, androgens signal through a classical and a nonclassical pathway. This review addresses the most recent advances in the knowledge of the role of androgen signaling in postnatal male sexual development, with a special emphasis on human puberty.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
16
|
Stancampiano MR, Lucas-Herald AK, Bryce J, Russo G, Barera G, Balsamo A, Baronio F, Bertelloni S, Valiani M, Cools M, Tack LJW, Darendeliler F, Poyrazoglu S, Globa E, Grinspon R, Hannema SE, Hughes IA, Tadokoro-Cuccaro R, Thankamony A, Iotova V, Mladenov V, Konrad D, Mazen I, Niedziela M, Kolesinska Z, Nordenström A, Ahmed SF. Testosterone Therapy and Its Monitoring in Adolescent Boys with Hypogonadism: Results of an International Survey from the I-DSD Registry. Sex Dev 2021; 15:236-243. [PMID: 34350903 DOI: 10.1159/000516784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
It is unclear whether testosterone replacement therapy (TRT) in adolescent boys, affected by a range of endocrine diseases that may be associated with hypogonadism, is particularly common. The aim of this study was to assess the contemporary practice of TRT in boys included in the I-DSD Registry. All participating centres in the I-DSD Registry that had boys between 10 and 18 years of age and with a condition that could be associated with hypogonadism were invited to provide further information in 2019. Information on 162 boys was collected from 15 centres that had a median (range) number of 6 boys per centre (1.35). Of these, 30 (19%) from 9 centres were receiving TRT and the median (range) age at the start was 12.6 years (10.8-16.2), with 6 boys (20%) starting at <12 years. Median (range) age of boys not on TRT was 11.7 years (10.7-17.7), and 69 out of 132 (52%) were <12 years. TRT had been initiated in 20 of 71 (28%) boys with a disorder of gonadal development, 3 of 14 (21%) with a disorder of androgen synthesis, and all 7 (100%) boys with hypogonadotropic hypogonadism. The remainder who did not have TRT included 15 boys with partial androgen insensitivity, 52 with non-specific XY DSD, and 3 with persistent Müllerian duct syndrome. Before starting TRT, liver function and blood count were checked in 19 (68%) and 18 boys (64%), respectively, a bone age assessment was performed in 23 (82%) and bone mineral density assessment in 12 boys (43%). This snapshot of contemporary practice reveals that TRT in boys included in the I-DSD Registry is not very common, whilst the variation in starting and monitoring therapy is quite marked. Standardisation of practice may lead to more effective assessment of treatment outcomes.
Collapse
Affiliation(s)
- Marianna R Stancampiano
- Department of Paediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan, Italy,
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom,
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Jillian Bryce
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Gianni Russo
- Department of Paediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan, Italy
| | - Graziano Barera
- Department of Paediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan, Italy
| | - Antonio Balsamo
- Department of Medical and Surgical Sciences, Paediatric Unit, Endo-ERN Center IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Federico Baronio
- Department of Medical and Surgical Sciences, Paediatric Unit, Endo-ERN Center IT11, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Silvano Bertelloni
- Paediatric and Adolescent Endocrinology, Department of Obstetrics, Gynecology and Paediatrics, Azienda Ospedaliero, Universitaria Pisana, Pisa, Italy
| | - Margherita Valiani
- Paediatric and Adolescent Endocrinology, Department of Obstetrics, Gynecology and Paediatrics, Azienda Ospedaliero, Universitaria Pisana, Pisa, Italy
| | - Martine Cools
- Department of Internal Medicine and Paediatrics, Ghent University and Department of Paediatric Endocrinology, University Hospital Ghent, Ghent, Belgium
| | - Lloyd J W Tack
- Department of Internal Medicine and Paediatrics, Ghent University and Department of Paediatric Endocrinology, University Hospital Ghent, Ghent, Belgium
| | - Feyza Darendeliler
- Paediatric Endocrinology Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Paediatric Endocrinology Unit, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Evgenia Globa
- Department of Pediatric Endocrinology, Ukrainian Scientific Center of Endocrine Surgery, Endocrine Organs and Tissue Transplantation, MoH of Ukraine, Kyiv, Ukraine
| | - Romina Grinspon
- Centro de Investigaciones Endocrinológicas 'Dr. César Bergadá' (CEDIE), CONICET - FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sabine E Hannema
- Department of Paediatric Endocrinology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Amsterdam, The Netherlands
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | | | - Ajay Thankamony
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Violeta Iotova
- Department of Paediatrics - UMHAT 'Sv.Marina', Medical University of Varna, Varna, Bulgaria
| | - Vilhelm Mladenov
- Department of Paediatrics - UMHAT 'Sv.Marina', Medical University of Varna, Varna, Bulgaria
| | - Daniel Konrad
- Division of Paediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | - Inas Mazen
- Department of Clinical Genetics, National Research Center, Cairo, Egypt
| | - Marek Niedziela
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zofia Kolesinska
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Paediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
The importance of follicle-stimulating hormone in the prepubertal and pubertal testis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coemr.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Valeri C, Lovaisa MM, Racine C, Edelsztein NY, Riggio M, Giulianelli S, Venara M, Bedecarrás P, Ballerini MG, di Clemente N, Lamb CA, Schteingart HF, Rey RA. Molecular mechanisms underlying AMH elevation in hyperoestrogenic states in males. Sci Rep 2020; 10:15062. [PMID: 32934281 PMCID: PMC7492256 DOI: 10.1038/s41598-020-71675-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
Anti-Müllerian hormone (AMH) is secreted by Sertoli cells of the testes from early fetal life until puberty, when it is downregulated by androgens. In conditions like complete androgen insensitivity syndrome (CAIS), AMH downregulation does not occur and AMH increases at puberty, due in part to follicle-stimulating hormone (FSH) effect. However, other conditions like Peutz-Jeghers syndrome (PJS), characterised by low FSH, also have increased AMH. Because both CAIS and PJS may present as hyperoestrogenic states, we tested the hypothesis that oestradiol (E2) upregulates AMH expression in peripubertal Sertoli cells and explored the molecular mechanisms potentially involved. The results showed that E2 is capable of inducing an upregulation of endogenous AMH and of the AMH promoter activity in the prepubertal Sertoli cell line SMAT1, signalling through ERα binding to a specific ERE sequence present on the hAMH promoter. A modest action was also mediated through the membrane oestrogen receptor GPER. Additionally, the existence of ERα expression in Sertoli cells in patients with CAIS was confirmed by immunohistochemistry. The evidence presented here provides biological plausibility to the hypothesis that testicular AMH production increases in clinical conditions in response to elevated oestrogen levels.
Collapse
Affiliation(s)
- Clara Valeri
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - María M Lovaisa
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine (CRSA), 75012, Paris, France.,Institut Hospitalo-Universitaire ICAN, 75013, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, 75013, Paris, France
| | - Nadia Y Edelsztein
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT (CENPAT-CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Marcela Venara
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Patricia Bedecarrás
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - María G Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine (CRSA), 75012, Paris, France.,Institut Hospitalo-Universitaire ICAN, 75013, Paris, France
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), C1428ADN, Buenos Aires, Argentina
| | - Helena F Schteingart
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina. .,Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Rey RA. Biomarcadores de hipogonadismo masculino en la infancia y la adolescencia. ADVANCES IN LABORATORY MEDICINE 2020; 1:20190043. [PMCID: PMC10158747 DOI: 10.1515/almed-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/19/2020] [Indexed: 06/28/2023]
Abstract
El eje hipotálamo-hipófiso-testicular es activo en la vida fetal y durante los primeros meses de la vida posnatal: la hipófisis secreta hormona luteinizante (LH) y folículo-estimulante (FSH), mientras que el testículo produce testosterona y factor insulino-símil 3 (INSL3) en las células de Leydig y hormona anti-Mülleriana (AMH) e inhibina B en las células de Sertoli. En la infancia, los niveles séricos de gonadotrofinas, testosterona y factor INSL3 disminuyen a valores prácticamente indetectables, pero los de AMH e inhibina B permanecen altos. En la pubertad, se reactivan las gonadotrofinas y la producción de testosterona e INSL3, aumenta la inhibina y disminuye la AMH, como signo de maduración de la célula de Sertoli. Sobre la base del conocimiento de la fisiología del desarrollo del eje, es posible utilizar clínicamente estos biomarcadores para interpretar la fisiopatología y diagnosticar las diferentes formas de hipogonadismo que pueden presentarse en la infancia y la adolescencia.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET-FEI- División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo, 1330, C1425EFD, Buenos Aires, Argentina
| |
Collapse
|
20
|
Rey RA. Biomarkers of male hypogonadism in childhood and adolescence. ADVANCES IN LABORATORY MEDICINE 2020; 1:20200024. [PMID: 37363780 PMCID: PMC10159267 DOI: 10.1515/almed-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/19/2020] [Indexed: 06/28/2023]
Abstract
Objectives The objective of this review was to characterize the use of biomarkers of male hypogonadism in childhood and adolescence. Contents The hypothalamic-pituitary-gonadal (HPG) axis is active during fetal life and over the first months of postnatal life. The pituitary gland secretes follicle stimulating hormone (FSH) and luteinizing hormone (LH), whereas the testes induce Leydig cells to produce testosterone and insulin-like factor 3 (INSL), and drive Sertoli cells to secrete anti-Müllerian hormone (AMH) and inhibin B. During childhood, serum levels of gonadotropins, testosterone and insulin-like 3 (INSL3) decline to undetectable levels, whereas levels of AMH and inhibin B remain high. During puberty, the production of gonadotropins, testosterone, and INSL3 is reactivated, inhibin B increases, and AMH decreases as a sign of Sertoli cell maturation. Summary and outlook Based on our knowledge of the developmental physiology of the HPG axis, these biomarkers can be used in clinical practice to interpret the physiopathology of hypogonadism. Additionally, these markers can have diagnostic value in different forms of hypogonadism that may appear during childhood and adolescence.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET-FEI- División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Buenos Aires, Argentina
- Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| |
Collapse
|
21
|
Renault CH, Aksglaede L, Wøjdemann D, Hansen AB, Jensen RB, Juul A. Minipuberty of human infancy - A window of opportunity to evaluate hypogonadism and differences of sex development? Ann Pediatr Endocrinol Metab 2020; 25:84-91. [PMID: 32615687 PMCID: PMC7336259 DOI: 10.6065/apem.2040094.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Activation of the hypothalamic-pituitary-gonadal (HPG) axis happens in 3 phases during life. The first phase is during fetal life and is only separated from the second phase, called minipuberty, by the high concentration of placental hormones at birth. The third period of activation of the HPG axis is puberty and is well-described. Minipuberty consists of the neonatal activation of the HPG axis, mainly in the first 1-6 months, where the resulting high levels of gonadotropins and sex steroids induce the maturation of sexual organs in both sexes. With gonadal activation, testosterone levels rise in boys with peak levels after 1-3 months, which results in penile and testicular growth. In girls, gonadal activation leads to follicular maturation and a fluctuating increase in estrogen levels, with more controversy regarding the actual influence on the target tissue. The regulation of the HPG axis is complex, involving many biological and environmental factors. Only a few of these have known effects. Many details of this complex interaction of factors remain to be elucidated in order to understand the mechanisms underlying the first postnatal activation of the HPG axis as well as mechanisms shutting down the HPG axis, resulting in the hormonal quiescence observed between minipuberty and puberty. Minipuberty allows for the maturation of sexual organs and forms a platform for future fertility, but the long-term significance is still not absolutely clear. However, it provides a window of opportunity in the early detection of differences of sexual development, offering the possibility of initiating early medical treatment in some cases.
Collapse
Affiliation(s)
| | - Lise Aksglaede
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Wøjdemann
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Berg Hansen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Beck Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Corvest V, Lemaire P, Brailly-Tabard S, Brauner R. Puberty and Inhibin B in 35 Adolescents With Pituitary Stalk Interruption Syndrome. Front Pediatr 2020; 8:304. [PMID: 32596193 PMCID: PMC7300191 DOI: 10.3389/fped.2020.00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background: In patients with pituitary stalk interruption syndrome (PSIS), long-term follow-up is necessary to address their gonadotrophic status. The objectives of this study were (1) to describe pubertal features of and (2) to assess the ability of serum inhibin B concentration to predict hypogonadotropic hypogonadism (HH) in patients with PSIS. Methods: This retrospective single-center study included 35 patients with PSIS and known gonadotrophic status for whom a serum sample preserved at -22°C (collected at initial evaluation or later) was available for measuring inhibin B by the same hormonal immunoassay method. Results: Among the 21 boys, 15 had normal puberty (early in two), and six had partial (n = 2) or complete (n = 4) HH. Among the 14 girls, five had normal puberty (early in one)-four with regular menses and one in the process of puberty-, four had complete HH, and five had amenorrhea (primary in three and secondary in two) after normal pubertal development, despite a normal pubertal gonadotropin response to gonadotropin-releasing hormone test. These were considered as having partial HH. Only three boys had values over the normal lower range for serum inhibin B concentrations despite partial (n = 2) or complete (n = 1) HH. Inhibin B concentrations were low in all girls with complete HH, normal in all those with partial HH except in one and in those with normal puberty except in two. Considering boys and girls together, the occurrence of under-range inhibin B was significantly higher in those with HH than in those without (47 vs. 10%, p = 0.02). All 15 patients with HH had associated thyroid-stimulating hormone and adrenocorticotropic hormone deficiency except for 3 girls with partial HH. Conclusions: Under-range inhibin B concentrations in patients with PSIS might be suggestive of HH. These concentrations provide a simple first-line predictive test, especially in boys.
Collapse
Affiliation(s)
- Victoria Corvest
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | - Pierre Lemaire
- Université Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, Grenoble, France
| | - Sylvie Brailly-Tabard
- Faculté de médecine Paris Sud, Université Paris Saclay and Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Sud, CHU Bicêtre, Service de Génétique Moléculaire, Pharmacogénétique, Hormonologie, Le Kremlin-Bicêtre, France
| | - Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| |
Collapse
|
23
|
Grinspon RP, Bergadá I, Rey RA. Male Hypogonadism and Disorders of Sex Development. Front Endocrinol (Lausanne) 2020; 11:211. [PMID: 32351452 PMCID: PMC7174651 DOI: 10.3389/fendo.2020.00211] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Disorders of Sex Development (DSD) are congenital anomalies in which there is a discordance between chromosomal, genetic, gonadal, and/or internal/external genital sex. In XY individuals, the process of fetal sex differentiation can be disrupted at the stage of gonadal differentiation, resulting in gonadal dysgenesis, a form of early fetal-onset primary hypogonadism characterized by insufficient androgen and anti-Müllerian hormone (AMH) production, which leads to the development of ambiguous or female genitalia. The process of sex differentiation can also be disrupted at the stage of genital differentiation, due to isolated defects in androgen or AMH secretion, but not both. These are forms of fetal-onset hypogonadism with dissociated gonadal dysfunction. In this review, we present a perspective on impaired testicular endocrine function, i.e., fetal-onset male hypogonadism, resulting in incomplete virilization at birth.
Collapse
Affiliation(s)
- Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- *Correspondence: Romina P. Grinspon
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Cannarella R, Calogero AE, Condorelli RA, Aversa A, La Vignera S. Systemic effects of the hormonal treatment of male hypogonadism with preliminary indications for the management of COVID-19 patients. Ther Adv Endocrinol Metab 2020; 11:2042018820966438. [PMID: 33133492 PMCID: PMC7576928 DOI: 10.1177/2042018820966438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Male hypogonadism, defined as an inadequate production of testosterone (T), is associated with a greater morbidity and mortality. Epidemiological studies identified T deficiency as a risk factor for cardiovascular disease. Also, low serum T levels impact on glucose homeostasis through a worse glucose uptake, utilization, and disposal, and the general negative impact on metabolism. The aim of this review is to provide a comprehensive and updated overview of the effects of T replacement therapy on metabolic and cardiovascular systems and prostate tissue in patients with hypogonadism, including molecular mechanisms through which T exerts its actions. Furthermore, recent findings on novel coronavirus disease (COVID-19) epidemiology have shown a greater mortality in male compared with female patients and a role of T in promoting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection of the host cells has been demonstrated. Hence, the secondary aim of this review is to provide preliminary indications on the management in patients with COVID-19.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Sicily, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Sicily, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Sicily, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
25
|
Grinspon RP, Arozarena M, Prada S, Bargman G, Sanzone M, Morales Bazurto M, Gutiérrez M, Bedecarrás P, Kannemann A, Elena GO, Gottlieb S, Berenstein AJ, Ropelato MG, Bergadá I, Aversa LA, Rey RA. Safety of standardised treatments for haematologic malignancies as regards to testicular endocrine function in children and teenagers. Hum Reprod 2019; 34:2480-2494. [PMID: 31768530 DOI: 10.1093/humrep/dez216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/02/2019] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Does standardised treatments used in children and adolescents with haematologic malignancies, including acute lymphoblastic (ALL) or myeloid leukaemia (AML) and non-Hodgkin lymphoma (NHL), affect endocrine function of the developing testes? SUMMARY ANSWER Therapy of haematologic malignancies do not provoke an overt damage of Sertoli and Leydig cell populations, as revealed by normal levels of anti-Müllerian hormone (AMH) and testosterone, but a mild primary testicular dysfunction may be observed, compensated by moderate gonadotropin elevation, during pubertal development. WHAT IS KNOWN ALREADY Evidence exists on the deleterious effect that chemotherapy and radiotherapy have on germ cells, and some attention has been given to the effects on Leydig and Sertoli cells of the adult gonads, but information is virtually non-existent on the effects of oncologic treatment on testicular somatic cell components during childhood and adolescence. STUDY DESIGN, SIZE, DURATION A retrospective, analytical, observational study included 97 boys with haematological malignancies followed at two tertiary paediatric public hospitals in Buenos Aires, Argentina, between 2002 and 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Clinical records of males aged 1-18 years, referred with the diagnoses of ALL, AML or NHL for the assessment of gonadal function, were eligible. We assessed serum levels of AMH and FSH as biomarkers of Sertoli cell endocrine function and testosterone and LH as biomarkers of Leydig cell function. MAIN RESULTS AND THE ROLE OF CHANCE All hormone levels were normal in the large majority of patients until early pubertal development. From Tanner stage G3 onwards, while serum AMH and testosterone kept within the normal ranges, gonadotropins reached mildly to moderately elevated values in up to 35.9% of the cases, indicating a compensated Sertoli and/or Leydig cell dysfunction, which generally did not require hormone replacement therapy. LIMITATIONS, REASONS FOR CAUTION Serum inhibin B determination and semen analysis were not available for most patients; therefore, we could not conclude on potential fertility impairment or identify whether primary Sertoli cell dysfunction resulted in secondary depleted spermatogenesis or whether primary germ cell damage impacted Sertoli cell function. WIDER IMPLICATIONS OF THE FINDINGS The regimens used in the treatment of boys and adolescents with ALL, AML or NHL in the past two decades seem relatively safe for endocrine testicular function; nonetheless, a mild primary testicular endocrine dysfunction may be observed, usually compensated by slightly elevated gonadotropin secretion by the pituitary in adolescents, and not requiring hormone replacement therapy. No clinically relevant risk factor, such as severity of the disease or treatment protocol, could be identified in association with the compensated endocrine dysfunction. STUDY FUNDING/COMPETING INTEREST(S) This work was partially funded by grants PIP 11220130100687 of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and PICT 2016-0993 of Fondo para la Investigación Científica y Tecnológica (FONCYT), Argentina. R.A.R., R.P.G. and P.B. have received honoraria from CONICET (Argentina) for technology services using the AMH ELISA. L.A.A. is part-time employee of CSL Behring Argentina. The other authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - María Arozarena
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Silvina Prada
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Graciela Bargman
- División de Endocrinología, Hospital de Niños Pedro de Elizalde, C1270AAN Buenos Aires, Argentina
| | - María Sanzone
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Marjorie Morales Bazurto
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Marcela Gutiérrez
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Patricia Bedecarrás
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ana Kannemann
- Unidad de Hematología, Hospital Pedro de Elizalde, C1270AAN Buenos Aires, Argentina
| | - Graciela O Elena
- Unidad de Hematología, Hospital Pedro de Elizalde, C1270AAN Buenos Aires, Argentina
| | - Silvia Gottlieb
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ariel J Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Luis A Aversa
- Unidad de Hematología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| |
Collapse
|
26
|
Cohen J, Nassau DE, Patel P, Ramasamy R. Low Testosterone in Adolescents & Young Adults. Front Endocrinol (Lausanne) 2019; 10:916. [PMID: 32063884 PMCID: PMC6966696 DOI: 10.3389/fendo.2019.00916] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Male hypogonadism, the clinical syndrome with variable symptoms associated with gonadal dysfunction, can affect men of all ages. In older males, physiologic changes of the aging testis, account for the majority of decreased testosterone levels in this population. For younger males and adolescents, the etiology of hypogonadism is commonly due to congenital or acquired conditions that disrupt the testis production of testosterone or signaling from the hypothalamic-pituitary-gonadal axis. Diagnosis of hypogonadism in younger males can be a challenge, as symptoms such as decreased libido or erectile dysfunction, common in the older men, are not usually present, and young men instead commonly complain of low energy. While an underlying congenital cause should always be considered in young men with hypogonadism, acquired conditions such as obesity, diabetes, anabolic steroid or illicit drug use have all been associated with low testosterone levels. Outside of modifying identifiable risk factors for hypogonadism, pharmacologic testosterone therapy can also lead to therapeutic dilemmas in young men who desire paternity. Topical or injectable administration of testosterone, through negative feedback on the hypothalamus and pituitary, can decrease spermatogenesis, posing an infertility risk. Other agents that can replace testosterone or increase the body's natural production of testosterone without decreasing spermatogenesis are preferred, such as intranasal testosterone, selective estrogen modulators, aromatase inhibitors or human-chorionic gonadotrophin, often used in combination. Clinicians must maintain a high level of suspicion to properly diagnose young men with hypogonadism and tailor treatment based on both the underlying etiology and fertility goals.
Collapse
Affiliation(s)
- Jordan Cohen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Jordan Cohen
| | - Daniel E. Nassau
- Department of Urology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, United States
| | - Premal Patel
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ranjith Ramasamy
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|