1
|
Könen PP, Wüst M. Analysis of sesquiterpene hydrocarbons in grape berry exocarp ( Vitis vinifera L.) using in vivo-labeling and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). Beilstein J Org Chem 2019; 15:1945-1961. [PMID: 31501661 PMCID: PMC6720654 DOI: 10.3762/bjoc.15.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Sesquiterpenes are structurally diverse, potent flavoring substances that significantly influence the aroma profile of grapes (Vitis vinifera L.) at the time of physiological ripening. To investigate these natural compounds, freshly harvested, ripe berries of the red wine variety Lemberger (Vitis vinifera subsp. vinifera L.) were analyzed using comprehensive two-dimensional gas chromatography (GC×GC) coupled to a time-of-flight mass spectrometer (TOF-MS) after headspace-solid phase microextraction (HS-SPME). The identification of structurally complex natural compounds, such as sesquiterpenes from fruits and vegetables, is often reported as "tentative", as authentic standards are not commercially available for most of the analytes. For this reason, feeding experiments (in vivo labeling) were carried out using the stable isotope-labeled precursors [5,5-2H2]-1-deoxy-ᴅ-xylulose (d 2-DOX) and [6,6,6-2H3]-(±)-mevalonolactone (d 3-MVL) to clearly identify the volatiles. Based on the recorded mass spectra of the unlabeled and deuterated compounds, mechanisms for sesquiterpene formation in V. vinifera could be proposed and already known pathways could be confirmed or disproved. For example, the HS-SPME-GC×GC-TOF-MS measurements of fed sample material showed that the tricyclic sesquiterpene hydrocarbons α-copaene, β-copaene, α-cubebene, β-cubebene and the bicyclic δ-cadinene were biosynthesized via (S)-(-)-germacrene D rather than via (R)-(+)-germacrene D as intermediate.
Collapse
Affiliation(s)
- Philipp P Könen
- Institute of Nutritional and Food Sciences, Chair of Food Chemistry, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany
| | - Matthias Wüst
- Institute of Nutritional and Food Sciences, Chair of Food Chemistry, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany
| |
Collapse
|
2
|
Munier M, Tritsch D, Krebs F, Esque J, Hemmerlin A, Rohmer M, Stote RH, Grosdemange-Billiard C. Synthesis and biological evaluation of phosphate isosters of fosmidomycin and analogs as inhibitors of Escherichia coli and Mycobacterium smegmatis 1-deoxyxylulose 5-phosphate reductoisomerases. Bioorg Med Chem 2017; 25:684-689. [DOI: 10.1016/j.bmc.2016.11.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/26/2022]
|
3
|
Lipko A, Swiezewska E. Isoprenoid generating systems in plants - A handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process. Prog Lipid Res 2016; 63:70-92. [PMID: 27133788 DOI: 10.1016/j.plipres.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/07/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
Isoprenoids comprise an astonishingly diverse group of metabolites with numerous potential and actual applications in medicine, agriculture and the chemical industry. Generation of efficient platforms producing isoprenoids is a target of numerous laboratories. Such efforts are generally enhanced if the native biosynthetic routes can be identified, and if the regulatory mechanisms responsible for the biosynthesis of the compound(s) of interest can be determined. In this review a critical summary of the techniques applied to establish the contribution of the two alternative routes of isoprenoid production operating in plant cells, the mevalonate and methylerythritol pathways, with a focus on their co-operation (cross-talk) is presented. Special attention has been paid to methodological aspects of the referred studies, in order to give the reader a deeper understanding for the nuances of these powerful techniques. This review has been designed as an organized toolbox, which might offer the researchers comments useful both for project design and for interpretation of results obtained.
Collapse
Affiliation(s)
- Agata Lipko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
4
|
Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci U S A 2015; 112:E1974-83. [PMID: 25848029 DOI: 10.1073/pnas.1423570112] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.
Collapse
|
5
|
Tritsch D, Zinglé C, Rohmer M, Grosdemange-Billiard C. Flavonoids: true or promiscuous inhibitors of enzyme? The case of deoxyxylulose phosphate reductoisomerase. Bioorg Chem 2015; 59:140-4. [PMID: 25800132 DOI: 10.1016/j.bioorg.2015.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Flavonoids, due to their physical and chemical properties (among them hydrophobicity and metal chelation abilities), are potential inhibitors of the 1-deoxyxylulose 5-phosphate reductoisomerase and most of the tested flavonoids effectively inhibited its activity with encouraging IC50 values in the micromolar range. The addition of 0.01% Triton X100 in the assays led however, to a dramatic decrease of the inhibition revealing that a non-specific inhibition probably takes place. Our study highlights the possibility of erroneous conclusions regarding the inhibition of enzymes by flavonoids that are able to produce aggregates in micromolar range. Therefore, the addition of a detergent in the assays prevents possible false positive hits in high throughput screenings.
Collapse
Affiliation(s)
- Denis Tritsch
- Université de Strasbourg/CNRS, Strasbourg, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France.
| | - Catherine Zinglé
- Université de Strasbourg/CNRS, Strasbourg, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Michel Rohmer
- Université de Strasbourg/CNRS, Strasbourg, UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | | |
Collapse
|
6
|
May B, Wüst M. Induction of de Novo Mono- and Sesquiterpene Biosynthesis by Methyl Jasmonate in Grape Berry Exocarp. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1203.ch012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- B. May
- Institute of Nutrition and Food Sciences, Chair of Bioanalytics/Food Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - M. Wüst
- Institute of Nutrition and Food Sciences, Chair of Bioanalytics/Food Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| |
Collapse
|
7
|
Zinglé C, Tritsch D, Grosdemange-Billiard C, Rohmer M. Catechol–rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg Med Chem 2014; 22:3713-9. [DOI: 10.1016/j.bmc.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/27/2022]
|
8
|
Wölwer-Rieck U, May B, Lankes C, Wüst M. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2428-35. [PMID: 24579920 DOI: 10.1021/jf500270s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biosynthesis of the diterpenoid steviol glycosides rebaudioside A and stevioside in nonrooted cuttings of Stevia rebaudiana was investigated by feeding experiments using the labeled key precursors [5,5-(2)H2]-mevalonic acid lactone (d2-MVL) and [5,5-(2)H2]-1-deoxy-d-xylulose (d2-DOX). Labeled glycosides were extracted from the leaves and stems and were directly analyzed by LC-(-ESI)-MS/MS and by GC-MS after hydrolysis and derivatization of the resulting isosteviol to the corresponding TMS-ester. Additionally, the incorporation of the proffered d2-MVL and d2-DOX into volatile monoterpenes, sesquiterpenes, and diterpenes in glandular trichomes on leaves and stems was investigated by headspace-solid phase microextraction-GC-MS (HS-SPME-GC-MS). Incorporation of the labeled precursors indicated that diterpenes in leaves and monoterpenes and diterpenes in glandular trichomes are predominately biosynthesized via the methylerythritol phosphate (MEP) pathway, whereas both the MEP and mevalonate (MVA) pathways contribute to the biosynthesis of sesquiterpenes at equal rates in glandular trichomes. These findings give evidence for a transport of MEP pathway derived farnesyl diphosphate precursors from plastids to the cytosol. Contrarily, the transport of MVA pathway derived geranyl diphosphate and geranylgeranyl diphosphate precursors from the cytosol to the plastid is limited.
Collapse
Affiliation(s)
- Ursula Wölwer-Rieck
- Institute of Nutrition and Food Sciences, Chair of Bioanalytics/Food Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn , Endenicher Allee 11-13, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
9
|
Opitz S, Nes WD, Gershenzon J. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. PHYTOCHEMISTRY 2014; 98:110-9. [PMID: 24359633 DOI: 10.1016/j.phytochem.2013.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 05/08/2023]
Abstract
In higher plants, both the methylerythritol phosphate (MEP) and mevalonate (MVA) pathways contribute to the biosynthesis of isoprenoids. However, despite a significant amount of research on the activity of these pathways under different conditions, the relative contribution of each to the biosynthesis of diverse isoprenoids remains unclear. In this work, we examined the formation of several classes of isoprenoids in cotton (Gossypium hirsutum L.). After feeding [5,5-(2)H2]-1-deoxy-D-xylulose ([5,5-(2)H2]DOX) and [2-(13)C]MVA to intact cotton seedlings hydroponically, incorporation into isoprenoids was analyzed by MS and NMR. The predominant pattern of incorporation followed the classical scheme in which C5 units from the MEP pathway were used to form monoterpenes (C10), phytol side chains (C20) and carotenoids (C40) while C5 units from the MVA pathway were used to form sesquiterpenes (C15), terpenoid aldehydes (C15 and C25) and steroids/triterpenoids (C30). However, both pathways contributed to all classes of terpenoids, sometimes substantially. For example, the MEP pathway provided up to 20% of the substrate for sterols and the MVA pathway provided as much as 50% of the substrate for phytol side chains and carotenoids. Incorporation of C5 units from the MEP pathway was highest in cotyledons, compared to true leaves, and not observed at all in the roots. Incorporation of C5 units from the MVA pathway was highest in the roots (into sterols) and more prominent in the first true leaves than in other above-ground organs. The relative accumulation of label in intermediates vs. end products of phytosterol metabolism confirmed previous identification of slow steps in this pathway.
Collapse
Affiliation(s)
- Stefan Opitz
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - W David Nes
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, D-07745 Jena, Germany.
| |
Collapse
|
10
|
Riclea R, Citron CA, Rinkel J, Dickschat JS. Identification of isoafricanol and its terpene cyclase in Streptomyces violaceusniger using CLSA-NMR. Chem Commun (Camb) 2014; 50:4228-30. [DOI: 10.1039/c4cc00177j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
May B, Lange BM, Wüst M. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. PHYTOCHEMISTRY 2013; 95:135-44. [PMID: 23954075 PMCID: PMC3838315 DOI: 10.1016/j.phytochem.2013.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 05/20/2023]
Abstract
The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries.
Collapse
Affiliation(s)
- Bianca May
- University of Bonn, Department of Nutrition and Food Sciences, Bioanalytics, Endenicher Allee 11-13, D-53115 Bonn, Germany
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Matthias Wüst
- University of Bonn, Department of Nutrition and Food Sciences, Bioanalytics, Endenicher Allee 11-13, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Chang Hsu Y, Hwu JR. Deoxygenative Olefination Reaction as the Key Step in the Syntheses of Deoxy and Iminosugars. Chemistry 2012; 18:7686-90. [DOI: 10.1002/chem.201201060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Indexed: 11/09/2022]
|
13
|
Li H, Dai SB, Gao WY. Preparation of Isotope Labeled/Unlabeled Key Intermediates in 2-Methyl-D-erythritol 4-Phosphate Terpenoid Biosynthetic Pathway. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201100396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Dickschat JS, Citron CA, Brock NL, Riclea R, Kuhz H. Synthesis of Deuterated Mevalonolactone Isotopomers. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Li H, Tian J, Wang H, Yang SQ, Gao WY. An Improved Preparation of D-Glyceraldehyde 3-Phosphate and Its Use in the Synthesis of 1-Deoxy-D-xylulose 5-Phosphate. Helv Chim Acta 2010. [DOI: 10.1002/hlca.200900441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Zhou YF, Cui Z, Li H, Tian J, Gao WY. Optimized enzymatic preparation of 1-deoxy-d-xylulose 5-phosphate. Bioorg Chem 2010; 38:120-3. [PMID: 20149406 DOI: 10.1016/j.bioorg.2010.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
The preparation of 1-deoxy-d-xylulose 5-phosphate, the key intermediate of MEP biosynthetic pathway for terpenoids by using recombinant 1-deoxy-d-xylulose 5-phosphate synthase of Rhodobacter capsulatus was optimized. The simple one-pot synthesis coupling with a newly established ion-exchange purification process affords the target compound with more than 80% yield and high purity (>95%). The procedure can also be employed to synthesize isotope labeled 1-deoxy-d-xylulose 5-phosphate by using isotope labeled starting materials.
Collapse
Affiliation(s)
- Yue-Fei Zhou
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
17
|
Kunert M, Søe A, Bartram S, Discher S, Tolzin-Banasch K, Nie L, David A, Pasteels J, Boland W. De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:895-904. [PMID: 18687400 DOI: 10.1016/j.ibmb.2008.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 06/23/2008] [Accepted: 06/25/2008] [Indexed: 05/26/2023]
Abstract
In the larval chrysomelines the de novo synthesis of monoterpenoids (iridoids) is believed to represent the ancestral state in the evolution of chemical defenses. Here we demonstrate that the iridoid producing larvae of Plagiodera versicolora and Phratora laticollis have the potential to sequester precursors from food. In nature, iridoids may even have a dual origin, namely plant-derived and de novo produced. The ability to sequester plant-derived precursors was proved by (i) (13)C-labelling of the terpenoids in the food plant, (ii) by larval feeding on leaves impregnated with analogs and labelled putative precursors for iridoid biosynthesis; and (iii) by injection of the precursors into the hemolymph followed by mass spectroscopic analysis of their distribution in the hemolymph, defensive secretion, and faeces. The experimental findings support a network of transport systems which allows a broader range of glucosides to enter and to leave the hemocoel, while only the appropriate precursor, 8-hydroxygeraniol-8-O-beta-d-glucoside, is channelled to the reservoir and processed to iridoids. The dual system of de novo biosynthesis and sequestration of phytogenic precursors may have favoured the larvae to shift from one host plant to another without losing their defense.
Collapse
Affiliation(s)
- Maritta Kunert
- Max-Planck-Institute for Chemical Ecology, Department of Bioorganic Chemistry, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Skorupinska-Tudek K, Poznanski J, Wojcik J, Bienkowski T, Szostkiewicz I, Zelman-Femiak M, Bajda A, Chojnacki T, Olszowska O, Grunler J, Meyer O, Rohmer M, Danikiewicz W, Swiezewska E. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. J Biol Chem 2008; 283:21024-35. [PMID: 18502754 DOI: 10.1074/jbc.m706069200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant isoprenoids are derived from two biosynthetic pathways, the cytoplasmic mevalonate (MVA) and the plastidial methylerythritol phosphate (MEP) pathway. In this study their respective contributions toward formation of dolichols in Coluria geoides hairy root culture were estimated using in vivo labeling with (13)C-labeled glucose as a general precursor. NMR and mass spectrometry showed that both the MVA and MEP pathways were the sources of isopentenyl diphosphate incorporated into polyisoprenoid chains. The involvement of the MEP pathway was found to be substantial at the initiation stage of dolichol chain synthesis, but it was virtually nil at the terminal steps; statistically, 6-8 isoprene units within the dolichol molecule (i.e. 40-50% of the total) were derived from the MEP pathway. These results were further verified by incorporation of [5-(2)H]mevalonate or [5,5-(2)H(2)]deoxyxylulose into dolichols as well as by the observed decreased accumulation of dolichols upon treatment with mevinolin or fosmidomycin, selective inhibitors of either pathway. The presented data indicate that the synthesis of dolichols in C. geoides roots involves a continuous exchange of intermediates between the MVA and MEP pathways. According to our model, oligoprenyl diphosphate chains of a length not exceeding 13 isoprene units are synthesized in plastids from isopentenyl diphosphate derived from both the MEP and MVA pathways, and then are completed in the cytoplasm with several units derived solely from the MVA pathway. This study also illustrates an innovative application of mass spectrometry for qualitative and quantitative evaluation of the contribution of individual metabolic pathways to the biosynthesis of natural products.
Collapse
|
19
|
Arimura GI, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithöfer A, Boland W. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. PLANTA 2008; 227:453-64. [PMID: 17924138 PMCID: PMC2756395 DOI: 10.1007/s00425-007-0631-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 09/12/2007] [Indexed: 05/18/2023]
Abstract
Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a beta-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11-homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-D: -xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids.
Collapse
Affiliation(s)
- Gen-ichiro Arimura
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Stefan Garms
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Massimo Maffei
- Department of Plant Biology and Centre of Excellence CEBIOVEM, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Simone Bossi
- Department of Plant Biology and Centre of Excellence CEBIOVEM, University of Turin, Viale P.A. Mattioli 25, 10125 Turin, Italy
| | - Birgit Schulze
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Margit Leitner
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
20
|
Cox RJ, Evitt AS. Acyl palladium species in synthesis: single-step synthesis of alpha,beta-unsaturated ketones from acid chlorides. Org Biomol Chem 2006; 5:229-32. [PMID: 17205164 DOI: 10.1039/b616582f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conditions are reported for the facile, one-pot synthesis of alpha,beta-unsaturated ketones via the palladium-catalysed cross-coupling of acyl chlorides with hydrozirconated acetylenes, and its use in the 2-step synthesis of D-5-O-benzyl deoxyxylulose.
Collapse
Affiliation(s)
- Russell J Cox
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | |
Collapse
|