1
|
Tamaki S, Kusamoto T, Tsurugi H. Decarboxylative Alkylation of Carboxylic Acids with Easily Oxidizable Functional Groups Catalyzed by an Imidazole-Coordinated Fe 3 Cluster under Visible Light Irradiation. Chemistry 2024:e202402705. [PMID: 39226120 DOI: 10.1002/chem.202402705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Decarboxylative alkylation of carboxylic acids with easily oxidizable functional groups such as phenol and indole functionalities was achieved using a catalytic amount of basic iron(III) acetate, Fe(OAc)2(OH), in the presence of benzimidazole under 427 nm LED irradiation. Kinetic analyses of this catalytic reaction revealed that the reaction rate is first-order in alkenes and is linearly correlated with the light intensity; the faster reaction rate for the benzimidazole-ligated species was consistent with the increased absorbance in the visible light region. Wide functional group tolerance for the easily oxidizable groups is ascribed to the weak oxidation ability of the in situ-generated oxo-bridged iron clusters compared with other iron(III) species.
Collapse
Affiliation(s)
- Sota Tamaki
- Osaka University, Department of Chemistry, Graduate School of Engineering Science, Toyonaka, Osaka, Japan
| | - Tetsuro Kusamoto
- Osaka University, Department of Chemistry, Graduate School of Engineering Science, Toyonaka, Osaka, Japan
| | - Hayato Tsurugi
- Osaka University, Suita, Osaka, Department of Applied Chemistry, Graduate School of Engineering, Japan
| |
Collapse
|
2
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
3
|
Wang Y, Fan S, Tang X. Nucleophilic Organocatalyst for Photochemical Carbon Radical Generation via S N2 Substitution. Org Lett 2024; 26:4002-4007. [PMID: 38691539 DOI: 10.1021/acs.orglett.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Photochemical generation of radicals is a powerful way to construct various molecules. But most of these methods rely on initiators or the redox properties of radical precursors. Herein, we report a photochemical organic catalyst that reacts with benzyl halide to generate carbon radical via an SN2 pathway. This nucleophilic catalyst can be easily prepared and is bench-stable. The SN2 process does not rely on the redox properties of halides, showing potential synthetic utility. Control experiments and UV-vis spectroscopic analysis indicate that the SN2 substitution adduct is the key intermediate.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shiwen Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xinjun Tang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
4
|
Benny A, Di Simo L, Guazzelli L, Scanlan EM. Radical Mediated Decarboxylation of Amino Acids via Photochemical Carbonyl Sulfide (COS) Elimination. Molecules 2024; 29:1465. [PMID: 38611745 PMCID: PMC11013372 DOI: 10.3390/molecules29071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Herein, we present the first examples of amino acid decarboxylation via photochemically activated carbonyl sulfide (COS) elimination of the corresponding thioacids. This method offers a mild approach for the decarboxylation of amino acids, furnishing N-alkyl amino derivatives. The methodology was compatible with amino acids displaying both polar and hydrophobic sidechains and was tolerant towards widely used amino acid-protecting groups. The compatibility of the reaction with continuous-flow conditions demonstrates the scalability of the process.
Collapse
Affiliation(s)
- Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland; (A.B.); (L.D.S.)
| | - Lorenzo Di Simo
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland; (A.B.); (L.D.S.)
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Eoin M. Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, D02 R590 Dublin, Ireland; (A.B.); (L.D.S.)
| |
Collapse
|
5
|
Azpilcueta-Nicolas CR, Lumb JP. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J Org Chem 2024; 20:346-378. [PMID: 38410775 PMCID: PMC10896223 DOI: 10.3762/bjoc.20.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Due to their ease of preparation, stability, and diverse reactivity, N-hydroxyphthalimide (NHPI) esters have found many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or electrochemical conditions and can be influenced by a number of factors, including the nature of the electron donor, the use of Brønsted and Lewis acids, and the possibility of forming charge-transfer complexes. Such versatility creates many opportunities to influence the reaction conditions, providing a number of parameters with which to control reactivity. In this perspective, we provide an overview of the different mechanisms for radical reactions involving NHPI esters, with an emphasis on recent applications in radical additions, cyclizations and decarboxylative cross-coupling reactions. Within these reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations.
Collapse
Affiliation(s)
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
7
|
Chen P, Wang J, Zhang S, Wang Y, Sun Y, Bai S, Wu Q, Cheng X, Cao P, Qi X. Total syntheses of Tetrodotoxin and 9-epiTetrodotoxin. Nat Commun 2024; 15:679. [PMID: 38263179 PMCID: PMC10806222 DOI: 10.1038/s41467-024-45037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Tetrodotoxin and congeners are specific voltage-gated sodium channel blockers that exhibit remarkable anesthetic and analgesic effects. Here, we present a scalable asymmetric syntheses of Tetrodotoxin and 9-epiTetrodotoxin from the abundant chemical feedstock furfuryl alcohol. The optically pure cyclohexane skeleton is assembled via a stereoselective Diels-Alder reaction. The dense heteroatom substituents are established sequentially by a series of functional group interconversions on highly oxygenated cyclohexane frameworks, including a chemoselective cyclic anhydride opening, and a decarboxylative hydroxylation. An innovative SmI2-mediated concurrent fragmentation, an oxo-bridge ring opening and ester reduction followed by an Upjohn dihydroxylation deliver the highly oxidized skeleton. Ruthenium-catalyzed oxidative alkyne cleavage and formation of the hemiaminal and orthoester under acidic conditions enable the rapid assembly of Tetrodotoxin, anhydro-Tetrodotoxin, 9-epiTetrodotoxin, and 9-epi lactone-Tetrodotoxin.
Collapse
Affiliation(s)
- Peihao Chen
- School of Life Sciences, Peking University, Beijing, 100871, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jing Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Shuangfeng Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yan Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuze Sun
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Songlin Bai
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Qingcui Wu
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xinyu Cheng
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- National Institute of Biological Sciences, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100730, China
| | - Peng Cao
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Kato T, Hagiwara K, Inoue M. Generation and Coupling of Radical Species from α-Alkoxy Bridgehead Carboxylic Acid, Selenide, Telluride, Acyl Selenide, and Acyl Telluride. Chem Pharm Bull (Tokyo) 2024; 72:767-771. [PMID: 39198181 DOI: 10.1248/cpb.c24-00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
α-Alkoxy bridgehead radicals enable intermolecular construction of sterically congested C-C bonds due to their sterically accessible nature. We implemented these radical species into total syntheses of various densely oxygenated natural products and demonstrated their exceptional versatility. Herein, we employed different precursors to generate the same α-alkoxy bridgehead radical and compared the efficacy of the precursors for coupling reactions. Specifically, the bridgehead radical of the trioxaadamantane structure was formed from α-alkoxy carboxylic acid, selenide/telluride, and acyl selenide/acyl telluride, and reacted with 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one and 5-oxo-1-cyclopentene-1-carbonitrile. The efficiency of the bridgehead radical formation and subsequent coupling reaction significantly depended on the structures of the precursors and acceptors as well as the reaction conditions. Our findings provide new insights for selecting the appropriate substrates of key coupling reactions in the total synthesis of complex natural products.
Collapse
Affiliation(s)
- Takehiro Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
9
|
Di Terlizzi L, Nicchio L, Callegari C, Scaringi S, Neuville L, Fagnoni M, Protti S, Masson G. Visible-Light-Mediated Divergent and Regioselective Vicinal Difunctionalization of Styrenes with Arylazo Sulfones. Org Lett 2023; 25:9047-9052. [PMID: 38085821 DOI: 10.1021/acs.orglett.3c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Activated by visible light, arylazo sulfones can serve as multifaceted reactants and are employed in diazenylation, sulfonylation, and arylation reactions under (photo)catalyst-free conditions. Such versatile reactivity enabled us to develop an operationally simple, regioselective, and tunable difunctionalization of styrenes with arylazo sulfones to produce α-sulfonyl arylhydrazones and 1,2-alkoxyarylated products in moderate to excellent yields. Furthermore, such difunctionalized products have been exploited as key building blocks for the synthesis of various heterocycles.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Luca Nicchio
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Camilla Callegari
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Simone Scaringi
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| |
Collapse
|
10
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
McClain EJ, Wortman AK, Stephenson CRJ. Radical generation enabled by photoinduced N-O bond fragmentation. Chem Sci 2022; 13:12158-12163. [PMID: 36349097 PMCID: PMC9600408 DOI: 10.1039/d2sc02953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Recent advances in synthetic chemistry have seen a resurgence in the development of methods for visible light-mediated radical generation. Herein, we report the development of a photoactive ester based on a quinoline N-oxide core structure, that provides a strong oxidant in its excited state. The heteroaromatic N-oxide provides access to primary, secondary, and tertiary radical intermediates, and its application toward the development of a photochemical Minisci alkylation is reported.
Collapse
Affiliation(s)
- Edward J McClain
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Alan K Wortman
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| |
Collapse
|
12
|
Xiong Z, Weidlich F, Sanchez C, Wirth T. Biomimetic total synthesis of (-)-galanthamine via intramolecular anodic aryl-phenol coupling. Org Biomol Chem 2022; 20:4123-4127. [PMID: 35537211 DOI: 10.1039/d2ob00669c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(-)-Galanthamine as a drug for the treatment of Alzheimer's disease has attracted synthetic chemists for decades. However, previous total synthetic and biomimetic approaches often use stoichiometric oxidants (metal oxidants or hypervalent iodine) to prepare the target product. Anodic oxidative coupling offers a sustainable alternative method which is, for the first time, successfully applied to the total synthesis of (-)-galanthamine. We report a new asymmetric total synthesis of (-)-galanthamine by using an anodic aryl-phenol coupling as the key synthetic step.
Collapse
Affiliation(s)
- Ziyue Xiong
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Frauke Weidlich
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Camille Sanchez
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
13
|
|
14
|
Thoination of N-alkyl-O-acyl hydroxamic acid derivatives via Lawesson's reagent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Guin S, Majee D, Samanta S. Recent Advances in Visible‐Light‐Driven Photocatalyzed γ‐Cyanoalkylation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soumitra Guin
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Debashis Majee
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| | - Sampak Samanta
- Department of Chemistry Indian Institute of TechnologyIndore 453552 Indore India
| |
Collapse
|
16
|
Xiao P, Pannecoucke X, Bouillon JP, Couve-Bonnaire S. Wonderful fusion of organofluorine chemistry and decarboxylation strategy. Chem Soc Rev 2021; 50:6094-6151. [PMID: 34027960 DOI: 10.1039/d1cs00216c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decarboxylation strategy has been emerging as a powerful tool for the synthesis of fluorine-containing organic compounds that play important roles in various fields such as pharmaceuticals, agrochemicals, and materials science. Considerable progress in decarboxylation has been made over the past decade towards the construction of diverse valuable fluorinated fine chemicals for which the fluorinated part can be brought in two ways. The first way is described as the reaction of non-fluorinated carboxylic acids (and their derivatives) with fluorinating reagents, as well as fluorine-containing building blocks. The second way is dedicated to the exploration and the use of fluorine-containing carboxylic acids (and their derivatives) in decarboxylative transformations. This review aims to provide a comprehensive summary of the development and applications of decarboxylative radical, nucleophilic and cross-coupling strategies in organofluorine chemistry.
Collapse
Affiliation(s)
- Pan Xiao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France.
| | | | | |
Collapse
|
17
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
18
|
Shi J, Yuan T, Zheng M, Wang X. Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05211] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiale Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Tao Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116. China
| |
Collapse
|
19
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
20
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
21
|
Varenikov A, Shapiro E, Gandelman M. Decarboxylative Halogenation of Organic Compounds. Chem Rev 2021; 121:412-484. [PMID: 33200917 PMCID: PMC7884003 DOI: 10.1021/acs.chemrev.0c00813] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Decarboxylative halogenation, or halodecarboxylation, represents one of the fundamental key methods for the synthesis of ubiquitous organic halides. The method is based on conversion of carboxylic acids to the corresponding organic halides via selective cleavage of a carbon-carbon bond between the skeleton of the molecule and the carboxylic group and the liberation of carbon dioxide. In this review, we discuss and analyze major approaches for the conversion of alkanoic, alkenoic, acetylenic, and (hetero)aromatic acids to the corresponding alkyl, alkenyl, alkynyl, and (hetero)aryl halides. These methods include the preparation of families of valuable organic iodides, bromides, chlorides, and fluorides. The historic and modern methods for halodecarboxylation reactions are broadly discussed, including analysis of their advantages and drawbacks. We critically address the features, reaction selectivity, substrate scopes, and limitations of the approaches. In the available cases, mechanistic details of the reactions are presented, and the generality and uniqueness of the different mechanistic pathways are highlighted. The challenges, opportunities, and future directions in the field of decarboxylative halogenation are provided.
Collapse
Affiliation(s)
- Andrii Varenikov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Evgeny Shapiro
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
22
|
He S, Li H, Chen X, Krylov IB, Terent'ev AO, Qu L, Yu B. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Chen N, Ye Z, Zhang F. Recent progress on electrochemical synthesis involving carboxylic acids. Org Biomol Chem 2021; 19:5501-5520. [PMID: 34079974 DOI: 10.1039/d1ob00420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.
Collapse
Affiliation(s)
- Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
24
|
Kodama T, Kubo M, Shinji W, Ohkubo K, Tobisu M. Phenylene-bridged bis(benzimidazolium) (BBIm 2+): a dicationic organic photoredox catalyst. Chem Sci 2020; 11:12109-12117. [PMID: 34094425 PMCID: PMC8162872 DOI: 10.1039/d0sc03958f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
A dicationic photoredox catalyst composed of phenylene-bridged bis(benzimidazolium) (BBIm2+) was designed, synthesised and demonstrated to promote the photochemical decarboxylative hydroxylation and dimerisation of carboxylic acids. The catalytic activity of BBIm2+ was higher than that for a monocation analogue, suggesting that the dicationic nature of BBIm2+ plays a key role in these decarboxylative reactions. The rate constant for the decay of the triplet-triplet absorption of the excited BBIm2+ increased with increasing concentration of the carboxylate anion with a saturated dependence, suggesting that photoinduced electron transfer occurs within the ion pair complex composed of the triplet excited state of BBIm2+ and a carboxylate anion.
Collapse
Affiliation(s)
- Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Maiko Kubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Wataru Shinji
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Osaka University Suita Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University Suita Osaka 565-0871 Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
25
|
Qiu D, Lian C, Mao J, Fagnoni M, Protti S. Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. J Org Chem 2020; 85:12813-12822. [PMID: 32956584 PMCID: PMC8011925 DOI: 10.1021/acs.joc.0c01895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of research papers that report photocatalyst-free protocols is currently increasing. Among the different approaches proposed, the conversion of a strong C-X bond of a stable substrate into a photolabile reactive moiety has been recently proposed. In this Synopsis, we introduce the so-dubbed dyedauxiliary group strategy by focusing on arylazo sulfones that are bench stable and visible-light responsive derivatives of anilines that have been exploited as precursors of a wide range of intermediates, including carbon-centered radicals as well as aryl cations.
Collapse
Affiliation(s)
- Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
26
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
27
|
Affiliation(s)
- Lidong Cao
- University of BernDepartment of Chemistry and Biochemistry Freiestrasse 3 CH-3012 Bern Switzerland
- Institute of Plant ProtectionChinese Academy of Agricultural Sciences No. 2 Yuanmingyuan West Road, Haidian District Beijing 100193, P. R. of China
| | - Ciril Jimeno
- University of BernDepartment of Chemistry and Biochemistry Freiestrasse 3 CH-3012 Bern Switzerland
- Department of Biological ChemistryInstitute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Philippe Renaud
- University of BernDepartment of Chemistry and Biochemistry Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
28
|
Wu Y, Chen J, Li L, Wen K, Yao X, Pang J, Wu T, Tang X. Copper-Mediated Decarboxylative Sulfonylation of Arylacetic Acids with Sodium Sulfinates. Org Lett 2020; 22:7164-7168. [DOI: 10.1021/acs.orglett.0c02516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Lu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China
| |
Collapse
|
29
|
Ye Z, Wu Y, Chen N, Zhang H, Zhu K, Ding M, Liu M, Li Y, Zhang F. Enantiospecific electrochemical rearrangement for the synthesis of hindered triazolopyridinone derivatives. Nat Commun 2020; 11:3628. [PMID: 32686668 PMCID: PMC7371640 DOI: 10.1038/s41467-020-17389-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/18/2020] [Indexed: 01/30/2023] Open
Abstract
Triazolopyridinone derivatives are of high value in both medicinal and material chemistry. However, the chiral or hindered triazolopyridinone derivatives remain an underexplored area of chemical space because they are difficult to prepare via conventional methods. Here we report an electrochemical rearrangement for the efficient synthesis of otherwise inaccessible triazolopyridinones with diverse alkyl carboxylic acids as starting materials. This enables the efficient preparation of more than 60 functionalized triazolopyridinones under mild conditions in a sustainable manner. This method is evaluated for the late stage modification of bioactive natural products, amino acids and pharmaceuticals, and it is further applied to the decagram scale preparation of enantiopure triazolopyridinones. The control experiments support a mechanism involving an oxidative cyclization and 1,2-carbon migration. This facile and scalable rearrangement demonstrates the power of electrochemical synthesis to access otherwise-inaccessible triazolopyridinones and may find wide application in organic, material and medicinal chemistry. Chiral and hindered triazolopyridinone derivatives are an underexplored area of chemical space mainly due to their challenging synthesis via classical methods. Here, the authors report an electrochemical rearrangement for the synthesis of triazolopyridinones using diverse, available alkyl carboxylic acids as starting materials.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Yanqi Wu
- Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Hong Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Mingruo Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Min Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Yong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, PR China. .,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, PR China.
| |
Collapse
|
30
|
Watanabe A, Koyamada K, Miyamoto K, Kanazawa J, Uchiyama M. Decarboxylative Bromination of Sterically Hindered Carboxylic Acids with Hypervalent Iodine(III) Reagents. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ayumi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenta Koyamada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
- Cluster of Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Kong Z, He L, Shi Y, Guan Q, Ning P. A review of thermal homogeneous catalytic deoxygenation reactions for valuable products. Heliyon 2020; 6:e03446. [PMID: 32123767 PMCID: PMC7036526 DOI: 10.1016/j.heliyon.2020.e03446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
To remove high oxygen content is important to make high quality oil and valuable products. In this paper, the research on homogeneous catalytic deoxygenation reactions, including decarboxylation (DCX)/decarbonylation (DCN), hydrodeoxygenation (HDO) is reviewed. Based on DCX/DCN, the classic radical reactions such as the Barton decarboxylation, Henkel, Hunsdiecker and Kochi reactions were introduced, the practice and overall performance are also discussed. In addition, the different reaction pathways and mechanisms were demonstrated and the key chemical processes have been selected from the literature as examples to elaborate the critical emphasis on the mechanistic understanding. The applications of the catalytic deoxygenation reactions for high-value products have also been highlighted. Overall, this review provides insight discussions on the DO issues and progresses in homogeneous catalytic aspects.
Collapse
Affiliation(s)
- Zhaoni Kong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuzheng Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Corresponding author.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Corresponding author.
| |
Collapse
|
32
|
Ville A, Viault G, Hélesbeux JJ, Guilet D, Richomme P, Séraphin D. Efficient Semi-Synthesis of Natural δ-( R)-Tocotrienols from a Renewable Vegetal Source. JOURNAL OF NATURAL PRODUCTS 2019; 82:51-58. [PMID: 30629440 DOI: 10.1021/acs.jnatprod.8b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent studies have highlighted the biological potential of tocotrienols, a vitamin E subfamily. The major natural sources of tocotrienols are complex mixtures requiring particularly challenging purification processes. The present study describes efficient semi-synthetic strategies toward relevant δ-( R)-tocotrienol derivatives, using as a starting material δ-( R)-garcinoic acid, the major vitamin E derivative isolated from Garcinia kola nuts, a renewable vegetal source.
Collapse
Affiliation(s)
- Alexia Ville
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Guillaume Viault
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Jean-Jacques Hélesbeux
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - David Guilet
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Pascal Richomme
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| | - Denis Séraphin
- SONAS, EA921, UNIV Angers , SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 bd Daviers , 49045 Angers Cedex 01, France
| |
Collapse
|
33
|
Saporito D, Rodriguez SA, Baumgartner MT. Visible Light-Promoted C–C Bond Formation from Hydroxyaryls in Water. Aust J Chem 2019. [DOI: 10.1071/ch19378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An eco-friendly and direct arylation of hydroxyaryls in water using photoinduced reactions with different substrates (1-bromo-2-naphthol, 1-iodo-2-naphthol, N-(2-iodophenyl)acetamide, 5-bromouracil, 2-iodo-N-methylbenzamide, and 2-iodobenzamide) was studied. For example, π-expanded coumarins, compounds with potential optical applications, were synthesized in very high yield, without the use of toxic reagents, in a one-pot reaction. In addition, we demonstrate that the irradiation source (halogen lamp) can be efficiently replaced by an LED without altering the reaction yield.
Collapse
|
34
|
Hong BT, Cheng YSE, Cheng TJ, Fang JM. Boronate, trifluoroborate, sulfone, sulfinate and sulfonate congeners of oseltamivir carboxylic acid: Synthesis and anti-influenza activity. Eur J Med Chem 2018; 163:710-721. [PMID: 30576902 DOI: 10.1016/j.ejmech.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022]
Abstract
Tamiflu readily undergoes endogenous hydrolysis to give oseltamivir carboxylic acid (OC) as the active anti-influenza agent to inhibit the viral neuraminidase (NA). GOC is derived from OC by replacing the 5-amino group with a guanidino group. In this study, OC and GOC congeners with the carboxylic acid bioisosteres of boronic acid, trifluoroborate, sulfone, sulfinic acid, sulfonic acid and sulfonate ester were first synthesized, starting with conversion of OC to a Barton ester, followed by halodecarboxylation to give the iodocyclohexene, which served as a pivotal intermediate for palladium-catalyzed coupling reactions with appropriate diboron and thiol reagents. The enzymatic and cell-based assays indicated that the GOC congeners consistently displayed better NA inhibition and anti-influenza activity than the corresponding OC congeners. The GOC sulfonic acid congener (7a) was the most potent anti-influenza agent, showing EC50 = 2.2 nM against the wild-type H1N1 virus, presumably because the sulfonic acid 7a was more lipophilic than GOC and exerted stronger interactions on the three arginine residues (R118, R292 and R371) in the NA active site. Although the trifluoroborates, sulfones and sulfonate esters did not have acidic proton, they still exhibited appreciable NA inhibitory activity, indicating that the polarized B-F and S→O bonds still made sufficient interactions with the tri-arginine motif.
Collapse
Affiliation(s)
- Bei-Tao Hong
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | | | - Ting-Jen Cheng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan; The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
35
|
Wang Y, Leng L, Liu Y, Dai G, Xue F, Chen Z, Meng J, Wen G, Xiao Y, Liu XY, Qin Y. Asymmetric Synthesis of an Advanced Tetracyclic Framework of (+)-Sarain A. Org Lett 2018; 20:6701-6704. [PMID: 30346782 DOI: 10.1021/acs.orglett.8b02779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lingying Leng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guiying Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fanglin Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxin Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Ouyang XH, Li Y, Song RJ, Li JH. Alkylamination of Styrenes with Alkyl N-Hydroxyphthalimide Esters and Amines by B(C6H5)3-Facilitated Photoredox Catalysis. Org Lett 2018; 20:6659-6662. [DOI: 10.1021/acs.orglett.8b02670] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Sakakibara Y, Ito E, Fukushima T, Murakami K, Itami K. Late-Stage Functionalization of Arylacetic Acids by Photoredox-Catalyzed Decarboxylative Carbon-Heteroatom Bond Formation. Chemistry 2018; 24:9254-9258. [DOI: 10.1002/chem.201802143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yota Sakakibara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Eri Ito
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Tomohiro Fukushima
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
- JST-ERATO, Itami Molecular Nanocarbon Project; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
- JST-ERATO, Itami Molecular Nanocarbon Project; Nagoya University; Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
38
|
Affiliation(s)
- Sandip Murarka
- Department of Chemistry; Indian Institute of Technology Jodhpur; NH-65 Nagaur Road, Karwar - 342037 Jodhpur District, Rajasthan India
| |
Collapse
|
39
|
Kong W, Yu C, An H, Song Q. Photoredox-Catalyzed Decarboxylative Alkylation of Silyl Enol Ethers To Synthesize Functionalized Aryl Alkyl Ketones. Org Lett 2018; 20:349-352. [PMID: 29300492 DOI: 10.1021/acs.orglett.7b03587] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoredox-catalyzed decarboxylative alkylation of silyl enol ethers has been developed. Diverse functionalized aryl alkyl ketones were afforded in modest to good yields using N-(acyloxy)phthalimide as an easy access alkyl radical source under mild and operationally simple conditions. The excellent performance of drug molecules such as fenbufen and indomethacin and naturally occurring carboxylic acids such as stearic acid and dehydrocholic acid further demonstrated the practicability of the reaction.
Collapse
Affiliation(s)
- Weiguang Kong
- Institute of Next Generation Matter Transformation, College of Chemical Engineering & College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Changjiang Yu
- Institute of Next Generation Matter Transformation, College of Chemical Engineering & College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Hejun An
- Institute of Next Generation Matter Transformation, College of Chemical Engineering & College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering & College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
40
|
Mumtaz S, Robertson MJ, Oelgemöller M. Recent Advances in Photodecarboxylations Involving Phthalimides. Aust J Chem 2018. [DOI: 10.1071/ch18220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Owing to their favourable photophysical and electrochemical properties, phthalimides undergo a variety of highly efficient photodecarboxylation reactions. These transformations have been applied to the synthesis of macrocyclic compounds as well as bioactive addition adducts. N-Acetoxyphthalimides are versatile precursors to imidyl and alkyl radicals through photodecarboxylation and have subsequently been used for a variety of coupling reactions. The generally mild reaction conditions make these reactions attractive for green chemical applications. The process protocols were successfully transferred to novel photoreactor devices, among these falling film or continuous flow reactors.
Collapse
|
41
|
Yang Q, Jia Z, Li L, Zhang L, Luo S. Visible-light promoted arene C–H/C–X lactonizationviacarboxylic radical aromatic substitution. Org Chem Front 2018. [DOI: 10.1039/c7qo00826k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photocatalytic carboxylic radical aromatic substitution enables the synthesis of diversely substituted coumarins by inert C–X bond cleavage under mild conditions.
Collapse
Affiliation(s)
- Qi Yang
- Key Laboratory for Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Zongbin Jia
- Key Laboratory for Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Longji Li
- Key Laboratory for Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Long Zhang
- Key Laboratory for Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
- University of Chinese Academy of Sciences
| | - Sanzhong Luo
- Key Laboratory for Molecular Recognition and Function
- Institute of Chemistry
- Beijing
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
42
|
Hashimoto S, Katoh SI, Kato T, Urabe D, Inoue M. Total Synthesis of Resiniferatoxin Enabled by Radical-Mediated Three-Component Coupling and 7-endo Cyclization. J Am Chem Soc 2017; 139:16420-16429. [DOI: 10.1021/jacs.7b10177] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun-ichiro Katoh
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takehiro Kato
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Liu P, Liu W, Li CJ. Catalyst-Free and Redox-Neutral Innate Trifluoromethylation and Alkylation of Aromatics Enabled by Light. J Am Chem Soc 2017; 139:14315-14321. [DOI: 10.1021/jacs.7b08685] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peng Liu
- Department
of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
- Ministry
of Education Key laboratory of Combinatorial Biosynthesis and Drug
Discovery, Hubei Provincial Engineering and Technology Research Center
for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenbo Liu
- Department
of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department
of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
44
|
Yoshimi Y. Photoinduced electron transfer-promoted decarboxylative radical reactions of aliphatic carboxylic acids by organic photoredox system. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Jia K, Pan Y, Chen Y. Selective Carbonyl-C(sp 3 ) Bond Cleavage To Construct Ynamides, Ynoates, and Ynones by Photoredox Catalysis. Angew Chem Int Ed Engl 2017; 56:2478-2481. [PMID: 28121070 DOI: 10.1002/anie.201611897] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/05/2017] [Indexed: 11/10/2022]
Abstract
Carbon-carbon bond cleavage/functionalization is synthetically valuable, and selective carbonyl-C(sp3 ) bond cleavage/alkynylation presents a new perspective in constructing ynamides, ynoates, and ynones. Reported here is the first alkoxyl-radical-enabled carbonyl-C(sp3 ) bond cleavage/alkynylation reaction by photoredox catalysis. The use of novel cyclic iodine(III) reagents are essential for β-carbonyl alkoxyl radical generation from β-carbonyl alcohols, including alcohols with high redox potential (Epox >2.2 V vs. SCE in MeCN). β-Amide, β-ester, and β-ketone alcohols yield ynamides, ynoates, and ynones, respectively, for the first time, with excellent regio- and chemoselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Kunfang Jia
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
46
|
Jia K, Pan Y, Chen Y. Selective Carbonyl−C(sp3) Bond Cleavage To Construct Ynamides, Ynoates, and Ynones by Photoredox Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611897] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kunfang Jia
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Yue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
- Department of Chemistry; Shanghai University; 99 Shangda Road Shanghai 200444 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
47
|
Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJE, Zhong JZ, Mills RB, Yan M, Yuan C, Eastgate MD, Baran PS. Nickel-Catalyzed Barton Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms. Angew Chem Int Ed Engl 2017; 56:260-265. [PMID: 27981703 PMCID: PMC5295468 DOI: 10.1002/anie.201609662] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 11/07/2022]
Abstract
Two named reactions of fundamental importance and paramount utility in organic synthesis have been reinvestigated, the Barton decarboxylation and Giese radical conjugate addition. N-hydroxyphthalimide (NHPI) based redox-active esters were found to be convenient starting materials for simple, thermal, Ni-catalyzed radical formation and subsequent trapping with either a hydrogen atom source (PhSiH3 ) or an electron-deficient olefin. These reactions feature operational simplicity, inexpensive reagents, and enhanced scope as evidenced by examples in the realm of peptide chemistry.
Collapse
Affiliation(s)
- Tian Qin
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lara R Malins
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jacob T Edwards
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rohan R Merchant
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alexander J E Novak
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jacob Z Zhong
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Riley B Mills
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ming Yan
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Changxia Yuan
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Martin D Eastgate
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Phil S Baran
- The Scripps Research Institute (TSRI), North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
48
|
Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJE, Zhong JZ, Mills RB, Yan M, Yuan C, Eastgate MD, Baran PS. Nickel‐Catalyzed Barton Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609662] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tian Qin
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | - Lara R. Malins
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | - Jacob T. Edwards
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | - Rohan R. Merchant
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | | | - Jacob Z. Zhong
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | - Riley B. Mills
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | - Ming Yan
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| | - Changxia Yuan
- Chemical Development Bristol-Myers Squibb One Squibb Drive New Brunswick NJ 08903 USA
| | - Martin D. Eastgate
- Chemical Development Bristol-Myers Squibb One Squibb Drive New Brunswick NJ 08903 USA
| | - Phil S. Baran
- The Scripps Research Institute (TSRI) North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
49
|
Urabe D, Asaba T, Inoue M. Asymmetric Total Synthesis of Crotophorbolone: Construction of the 5/7/6-Fused Ring System via an α-Alkoxy Bridgehead Radical Reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Crespi S, Protti S, Fagnoni M. Wavelength Selective Generation of Aryl Radicals and Aryl Cations for Metal-Free Photoarylations. J Org Chem 2016; 81:9612-9619. [DOI: 10.1021/acs.joc.6b01619] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Crespi
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|