1
|
Ceramella J, Iacopetta D, Caruso A, Mariconda A, Petrou A, Geronikaki A, Rosano C, Saturnino C, Catalano A, Longo P, Sinicropi MS. 5,8-Dimethyl-9H-carbazole Derivatives Blocking hTopo I Activity and Actin Dynamics. Pharmaceuticals (Basel) 2023; 16:ph16030353. [PMID: 36986453 PMCID: PMC10051477 DOI: 10.3390/ph16030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Over the years, carbazoles have been largely studied for their numerous biological properties, including antibacterial, antimalarial, antioxidant, antidiabetic, neuroprotective, anticancer, and many more. Some of them have gained great interest for their anticancer activity in breast cancer due to their capability in inhibiting essential DNA-dependent enzymes, namely topoisomerases I and II. With this in mind, we studied the anticancer activity of a series of carbazole derivatives against two breast cancer cell lines, namely the triple negative MDA-MB-231 and MCF-7 cells. Compounds 3 and 4 were found to be the most active towards the MDA-MB-231 cell line without interfering with the normal counterpart. Using docking simulations, we assessed the ability of these carbazole derivatives to bind human topoisomerases I and II and actin. In vitro specific assays confirmed that the lead compounds selectively inhibited the human topoisomerase I and interfered with the normal organization of the actin system, triggering apoptosis as a final effect. Thus, compounds 3 and 4 are strong candidates for further drug development in multi-targeted therapy for the treatment of triple negative breast cancer, for which safe therapeutic regimens are not yet available.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
- Correspondence: ; Tel.: +39-0984-493200
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 1632 Genova, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
3
|
Sirin S, Duyar H, Aslım B, Seferoğlu Z. Synthesis and biological activity of pyrrolidine/piperidine substituted 3-amido-9-ethylcarbazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
A Nitrocarbazole as a New Microtubule-Targeting Agent in Breast Cancer Treatment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast cancer is still considered a high-incidence disease, and numerous are the research efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole compounds are largely studied for their anticancer properties and their ability to interfere with specific targets, such as microtubule components. The latter are involved in vital cellular functions, and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them, 2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8 μM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule. Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.
Collapse
|
5
|
Ceramella J, Iacopetta D, Barbarossa A, Caruso A, Grande F, Bonomo MG, Mariconda A, Longo P, Carmela S, Sinicropi MS. Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini Rev Med Chem 2020; 20:444-465. [PMID: 31951166 DOI: 10.2174/1389557520666200117144701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | | | | | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| | - Saturnino Carmela
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| |
Collapse
|
6
|
Ceramella J, Caruso A, Occhiuzzi MA, Iacopetta D, Barbarossa A, Rizzuti B, Dallemagne P, Rault S, El-Kashef H, Saturnino C, Grande F, Sinicropi MS. Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. Eur J Med Chem 2019; 181:111583. [DOI: 10.1016/j.ejmech.2019.111583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
|
7
|
Arya KR, Sparkes HA, Pandiyan BV, Rajendra Prasad KJ. A Regioselective Synthesis of Carbazole‐Appended Dispiropyrrolothiazoles/Pyrrolidines: Synthesis, Computational Studies and In Vitro Anticancer Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201801331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hazel A. Sparkes
- School of ChemistryUniversity of Bristol, Cantock's Close, Bristol, BS8 1TS United Kingdom
| | | | | |
Collapse
|
8
|
Caruso A, Ceramella J, Iacopetta D, Saturnino C, Mauro MV, Bruno R, Aquaro S, Sinicropi MS. Carbazole Derivatives as Antiviral Agents: An Overview. Molecules 2019; 24:E1912. [PMID: 31109016 PMCID: PMC6572111 DOI: 10.3390/molecules24101912] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Keywords: carbazole; tetrahydrocarbazole; antiviral agents.
Collapse
Affiliation(s)
- Anna Caruso
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Jessica Ceramella
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Domenico Iacopetta
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Potenza 85100, Italy.
| | | | - Rosalinda Bruno
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health & Nutritional Sciences, University of Calabria,87036 Arcavacata di Rende, Italy.
| |
Collapse
|
9
|
Sinicropi MS, Iacopetta D, Rosano C, Randino R, Caruso A, Saturnino C, Muià N, Ceramella J, Puoci F, Rodriquez M, Longo P, Plutino MR. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: synthesis, characterisation and molecular mechanism evaluation. J Enzyme Inhib Med Chem 2018; 33:434-444. [PMID: 29383954 PMCID: PMC6010102 DOI: 10.1080/14756366.2017.1419216] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Synthetic or natural carbazole derivatives constitute an interesting class of heterocycles, which showed several pharmaceutical properties and occupied a promising place as antitumour tools in preclinical studies. They target several cellular key-points, e.g. DNA and Topoisomerases I and II. The most studied representative, i.e. Ellipticine, was introduced in the treatment of metastatic breast cancer. However, because of the onset of dramatic side effects, its use was almost dismissed. Many efforts were made in order to design and synthesise new carbazole derivatives with good activity and reduced side effects. The major goal of the present study was to synthesise a series of new N-thioalkylcarbazole derivatives with anti-proliferative effects. Two compounds, 5a and 5c, possess an interesting anti-proliferative activity against breast and uterine cancer cell lines without affecting non-tumoural cell lines viability. The most active compound (5c) induces cancer cells death triggering the intrinsic apoptotic pathway by inhibition of Topoisomerase II.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Policlinico San Martino-IST, Genova, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Saturnino C, Caruso A, Iacopetta D, Rosano C, Ceramella J, Muià N, Mariconda A, Bonomo MG, Ponassi M, Rosace G, Sinicropi MS, Longo P. Inhibition of Human Topoisomerase II by N,N,N-Trimethylethanammonium Iodide Alkylcarbazole Derivatives. ChemMedChem 2018; 13:2635-2643. [PMID: 30347518 DOI: 10.1002/cmdc.201800546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/29/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy is used for the treatment of all stages of breast cancer, including the metastatic stage of the disease. Treatment regimens are generally tailored for each patient's particular situation. However, chemotherapeutic agents are the leading cause of serious drug-related adverse effects; moreover, drug resistance often occurs. In this study, we designed and synthesized a new series of N-alkylcarbazoles derived from ellipticine, an alkaloid with a carbazole skeleton initially used in the treatment of metastatic breast cancer and later dismissed because of poor aqueous solubility and severe side effects. After evaluating the binding modes of our class of newly synthesized compounds with human topoisomerase II (hTopo II), we performed hTopo II decatenation assays, identifying compound 4 f (2-(4-((3-chloro-9H-carbazol-9-yl)pentyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) as a good inhibitor. Moreover, 4 f and 4 g (2-(4-((3-chloro-9H-carbazol-9-yl)hexyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) showed a good anti-proliferative activity toward breast cancer cells, causing apoptosis by activation of the caspase pathway. Interestingly, the activity of these two compounds on triple-negative MDA-MB-231 cells, which tend to be highly metastatic and aggressive, is strictly connected to the observed inhibition of hTopo II.
Collapse
Affiliation(s)
- Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044, Dalmine, BG, Italy
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044, Dalmine, BG, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|
11
|
Vlaar CP, Castillo-Pichardo L, Medina JI, Marrero-Serra CM, Vélez E, Ramos Z, Hernández E. Design, synthesis and biological evaluation of new carbazole derivatives as anti-cancer and anti-migratory agents. Bioorg Med Chem 2018; 26:884-890. [PMID: 29358027 PMCID: PMC5822041 DOI: 10.1016/j.bmc.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
Based on the efficacy of EHop-016 as an inhibitor of migration and Rac1 activation, a new series of carbazole derivatives has been synthesized. Cytotoxic and anti-migratory effects of these compounds were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. Preliminary investigations of their anticancer activity demonstrated that several compounds have moderate antiproliferative effects on cancer cell lines with GI50 values in the range of 13-50 µM. Furthermore, compounds 3b and 11b inhibit migration activity of metastatic cell line MDA-MB-231 by 32% and 34%, respectively. Compound 11b was shown to inhibit activation of the Rho GTPase Rac1 by 55% at 250 nM in both MDA-MB-231 and MDA-MB-435 cell lines. Compared with the IC50 of Rac1 inhibition by lead compound EHop-016 of 1.1 µM, compound 11b demonstrates 4X improved in vitro efficacy.
Collapse
Affiliation(s)
- Cornelis P Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, United States
| | - Linette Castillo-Pichardo
- Department of Pathology and Laboratory Medicine, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960, United States
| | - Julia I Medina
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, United States
| | - Cathyria M Marrero-Serra
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, United States
| | - Ericka Vélez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, United States
| | - Zulma Ramos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, United States
| | - Eliud Hernández
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, United States.
| |
Collapse
|
12
|
Tundis R, Iacopetta D, Sinicropi MS, Bonesi M, Leporini M, Passalacqua NG, Ceramella J, Menichini F, Loizzo MR. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). Food Chem Toxicol 2017; 106:155-164. [PMID: 28552787 DOI: 10.1016/j.fct.2017.05.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/19/2017] [Indexed: 01/28/2023]
Abstract
The aim of the present study was to investigate the in vitro antioxidant and antitumor effects of Salvia fruticosa Mill subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). The aerial parts were extracted by maceration with methanol. This extract was partitioned with methanol and n-hexane. Luteolin, luteolin 7-O-glucoside, rutin and salvigenin were isolated from the methanol-soluble fraction. n-Hexane fraction showed viridiflorol, β-pinene, 1,8-cineole, as main components. The methanol-soluble fraction exerted antitumor activity against human breast cancer (MCF-7 and MDA-MB-231) and human colorectal carcinoma (RKO and Caco-2) cells. TUNEL test revealed that S. fruticosa subsp. thomasii leads to cells death by apoptosis, with low cytotoxic effects on non-tumoral 3T3-L1 cells. Moreover, it exerted the highest protection of lipid peroxidation and reduced the oxidative stress induced by menadione treatment in 3T3-L1 murine fibroblasts. S. fruticosa subsp. thomasii bioactivity could promote its use not only as food but also in nutraceutical/pharmaceutical industries.
Collapse
Affiliation(s)
- R Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - D Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - M S Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - M Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - M Leporini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - N G Passalacqua
- Natural History Museum of Calabria and Botanic Garden, University of Calabria, I-87036 Rende, CS, Italy.
| | - J Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - F Menichini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - M R Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| |
Collapse
|
13
|
Avula VKR, Vallela S, Anireddy JS, Chamarthi NR. A Green Synthesis of 2-Amino-4-(9H
-carbazole-3-yl)thiophene-3-carbonitriles by a Step-wise and One-pot Three-component Gewald Reaction. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vijay Kumar Reddy Avula
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
- Centre for Chemical Science and Technological, IST; Jawaharlal Nehru Technological University; Kukatpally Hyderabad 500 085 Telangana India
| | - Swetha Vallela
- Centre for Chemical Science and Technological, IST; Jawaharlal Nehru Technological University; Kukatpally Hyderabad 500 085 Telangana India
| | - Jaya Shree Anireddy
- Centre for Chemical Science and Technological, IST; Jawaharlal Nehru Technological University; Kukatpally Hyderabad 500 085 Telangana India
| | - Naga Raju Chamarthi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| |
Collapse
|
14
|
Synthesis of new pyrrolo-, and pyrido-anellated quinazolinones as potential antiproliferative agents. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.10.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Iacopetta D, Rosano C, Puoci F, Parisi OI, Saturnino C, Caruso A, Longo P, Ceramella J, Malzert-Fréon A, Dallemagne P, Rault S, Sinicropi MS. Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. Eur J Pharm Sci 2016; 96:263-272. [PMID: 27702608 DOI: 10.1016/j.ejps.2016.09.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/17/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023]
Abstract
Natural or synthetic carbazole derivatives have recently attracted the attention of the scientific world because of their multiple biological activity, leading to an increase of designed, synthesized and studied analogues. In this paper, four 1,4-dimethylcarbazole derivatives, analogues of Ellipticine, have been investigated for their ability to block cancer cells growth, with low effects on the proliferation of normal cells. DNA topoisomerases inhibition assays, docking simulations, stability studies and effects on a membrane model are reported. Particularly, compounds 2 and 3 have been found thermally stable and able to inhibit, strongly and selectively, the human DNA topoisomerase II. These properties confer a good and broad antitumoral activity in vitro, with very low cytotoxic effect on the proliferation of normal cell lines and without damaging, in contrast with Ellipticine, the cell membrane model. The presented outcomes set the most active compounds as good candidates for pre-clinical studies useful in cancer treatment.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Camillo Rosano
- UOS Proteomics IRCCS AOU San Martino-IST National Institute for Cancer Research, Largo R. Benzi 10, Genoa, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Aurélie Malzert-Fréon
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France.
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Sylvain Rault
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
16
|
Rizza P, Pellegrino M, Caruso A, Iacopetta D, Sinicropi MS, Rault S, Lancelot JC, El-Kashef H, Lesnard A, Rochais C, Dallemagne P, Saturnino C, Giordano F, Catalano S, Andò S. 3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. Eur J Med Chem 2015; 107:275-87. [PMID: 26599533 DOI: 10.1016/j.ejmech.2015.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/05/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
A series of unknown 3-(alkyl(dialkyl)amino)benzofuro[2,3-f]quinazolin-1(2H)-ones 4-17 has been synthesized as new ellipticine analogs, in which the carbazole moiety and the pyridine ring were replaced by a dibenzofuran residue and a pyrimidine ring, respectively. The synthesis of these benzofuroquinazolinones 4-17 was performed in a simple one-pot reaction using 3-aminodibenzofuran or its 2-methoxy derivative, as starting materials. From 3-(dipropylamino)-5-methoxybenzofuro[2,3-f] quinazolin-1(2H)-one (13), we prepared 3-(dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (18), referred to as DPA-HBFQ-1. The cytotoxic activities of all the synthesized compounds, tested in different human breast cancer cell lines, revealed that DPA-HBFQ-1 was the most active compound. In particular, the latter was able to inhibit anchorage-dependent and -independent cell growth and to induce apoptosis in estrogen receptor alpha (ERα)-positive and -negative breast cancer cells. It did not affect proliferation and apoptotic responses in MCF-10A normal breast epithelial cells. The observed effects have been ascribed to an enhanced p21(Cip1/WAF1) expression in a p53-dependent manner of tumor suppressor and to a selective inhibition of human topoisomerase II. In addition, DPA-HBFQ-1 exerted growth inhibitory effects also in other cancer cell lines, even though with a lower cytotoxic activity. Our results indicate DPA-HBFQ-1 as a good candidate to be useful as cancer therapeutic agent, particularly for breast cancer.
Collapse
Affiliation(s)
- Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy.
| | - Sylvain Rault
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France.
| | - Jean Charles Lancelot
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Aurelien Lesnard
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Christophe Rochais
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Patrick Dallemagne
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258, FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Carmela Saturnino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Italy.
| |
Collapse
|
17
|
Monitoring the Competence of a New Keto-tetrahydrocarbazole Based Fluorosensor Under Homogeneous, Micro-Heterogeneous and Serum Albumin Environments. J Fluoresc 2015; 25:1931-49. [PMID: 26489935 DOI: 10.1007/s10895-015-1685-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
We present here a detailed photophysical study of a recently synthesised fluorophore 8-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one. This is a synthetic precursor of bio-active carbazole skeleton Clausenalene. Spectroscopic investigation of the fluorophore has been carried out in different protic and aprotic solvents, as well as in binary solvent mixtures, using absorption, steady-state and time-resolved fluorescence techniques. This fluorophore is particularly responsive to the hydrogen bonding nature as well as polarity of the solvent molecules. When considered in micelles and β-cyclodextrin, this behaves as a reporter of its immediate microenvironment. Steady state and time resolved fluorometric and circular dichroism techniques have been used to explore the binding interaction of the fluorophore with transport proteins, bovine serum albumin and human serum albumin. The probable binding sites of the fluorophore in the proteinous environments have been evaluated from fluorescence resonance energy transfer study. Laser flash photolysis experiments also have been performed to observe the triplet excited state interaction between the fluorophore and albumin proteins.
Collapse
|
18
|
N-alkyl carbazole derivatives as new tools for Alzheimer's disease: preliminary studies. Molecules 2014; 19:9307-17. [PMID: 24991761 PMCID: PMC6271900 DOI: 10.3390/molecules19079307] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and age-related neurodegenerative disorder affecting brain cells and is the most common form of "dementia", because of the cognitive detriment which takes place. Neuronal disruption represents its major feature, due to the cytosolic accumulation of amyloid β-peptide (Aβ) which leads to senile plaques formation and intracellular neurofibrillary tangles. Many studies have focused on the design and therapeutic use of new molecules able to inhibit Aβ aggregation. In this context, we evaluated the ability of two recently synthesized series of N-alkyl carbazole derivatives to increase the Aβ soluble forms, through molecular docking simulations and in vitro experiments. Our data evidenced that two carbazole derivatives, the most active, adopt distinct binding modes involving key residues for Aβ fibrillization. They exhibit a good interfering activity on Aβ aggregation in mouse (N2a) cells, stably expressing wild-type human amyloid precursor protein (APP) 695. These preliminary results are promising and we are confident that the N-alkyl carbazole derivatives may encourage next future studies needed for enlarging the knowledge about the AD disease approach.
Collapse
|
19
|
Panno A, Sinicropi MS, Caruso A, El-Kashef H, Lancelot JC, Aubert G, Lesnard A, Cresteil T, Rault S. New Trimethoxybenzamides and Trimethoxyphenylureas Derived from Dimethylcarbazole as Cytotoxic Agents. Part I. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1951] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antonella Panno
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258-FR CNRS 3038 INC3M, Bd Becquerel; 14032 Caen Cedex France
- Dipartimento di Scienze Farmaceutiche; Università della Calabria; 87036 Arcavacata di Rende Cosenza Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Scienze Farmaceutiche; Università della Calabria; 87036 Arcavacata di Rende Cosenza Italy
| | - Anna Caruso
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258-FR CNRS 3038 INC3M, Bd Becquerel; 14032 Caen Cedex France
- Dipartimento di Scienze Farmaceutiche; Università della Calabria; 87036 Arcavacata di Rende Cosenza Italy
| | - Hussein El-Kashef
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258-FR CNRS 3038 INC3M, Bd Becquerel; 14032 Caen Cedex France
- Chemistry Department, Faculty of Science; Assiut University; 71516 Assiut Egypt
| | - Jean-Charles Lancelot
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258-FR CNRS 3038 INC3M, Bd Becquerel; 14032 Caen Cedex France
| | - Geneviève Aubert
- Institut de Chimie des Substances Naturelles, UPR 2301; CNRS; Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Aurélien Lesnard
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258-FR CNRS 3038 INC3M, Bd Becquerel; 14032 Caen Cedex France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, UPR 2301; CNRS; Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Sylvain Rault
- Université de Caen Basse-Normandie; Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258-FR CNRS 3038 INC3M, Bd Becquerel; 14032 Caen Cedex France
| |
Collapse
|
20
|
Parisi OI, Morelli C, Puoci F, Saturnino C, Caruso A, Sisci D, Trombino GE, Picci N, Sinicropi MS. Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy. J Mater Chem B 2014; 2:6619-6625. [DOI: 10.1039/c4tb00607k] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic Molecularly Imprinted Polymers (MMIPs) are synthesized with the aim to prepare novel devices for 9H-carbazole derivative sustained delivery in targeted cancer therapy.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
- Department of Informatics
| | - Catia Morelli
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
| | - Carmela Saturnino
- Department of Pharmaceutical and Biomedical Sciences
- University of Salerno
- 84084 Fisciano, Italy
| | - Anna Caruso
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
- Department of Informatics
| | - Diego Sisci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
| | - Giovanna Elvi Trombino
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
| | - Nevio Picci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende, Italy
| | | |
Collapse
|
21
|
Caruso A, Sinicropi MS, Lancelot JC, El-Kashef H, Saturnino C, Aubert G, Ballandonne C, Lesnard A, Cresteil T, Dallemagne P, Rault S. Synthesis and evaluation of cytotoxic activities of new guanidines derived from carbazoles. Bioorg Med Chem Lett 2013; 24:467-72. [PMID: 24374274 DOI: 10.1016/j.bmcl.2013.12.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Several new alkylguanidines derived from carbazole have been synthesized in a simple one-pot reaction starting from 3-aminocarbazole derivatives. The aminocarbazoles were reacted with ethoxycarbonylisothiocyanate, to give thiourea intermediates, followed by the addition of an alkylamine and HgCl2 to give ethoxycarbonylguanidine intermediates. The reaction mixture was then heated at 160 °C to give the N-(1,4-dimethyl-9H-carbazol-3-yl)-N'-alkylguanidines. The cytotoxic activity of all the synthesized guanidines was evaluated against different cell lines.
Collapse
Affiliation(s)
- Anna Caruso
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy; Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Jean-Charles Lancelot
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Hussein El-Kashef
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France; Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Carmela Saturnino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Geneviève Aubert
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Céline Ballandonne
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Aurélien Lesnard
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Patrick Dallemagne
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| | - Sylvain Rault
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie UPRES EA 4258 - FR CNRS 3038 INC3M, Bd Becquerel, 14032 Caen Cedex, France
| |
Collapse
|
22
|
Debray J, Bonte S, Lozach O, Meijer L, Demeunynck M. Catalyst-free synthesis of quinazolin-4-ones from (hetero)aryl-guanidines: application to the synthesis of pyrazolo[4,3-f]quinazolin-9-ones, a new family of DYRK1A inhibitors. Mol Divers 2012; 16:659-67. [PMID: 22991074 DOI: 10.1007/s11030-012-9397-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/03/2012] [Indexed: 01/10/2023]
Abstract
A small library of heterocycle-fused quinazolin-4-ones was prepared and evaluated as kinase inhibitors. The key step of the two-step process involves the environmental friendly thermolysis of N-ethoxycarbonyl-N'-(hetero) arylguanidines at 130 °C in water. The cyclization is fully regioselective. The most active molecules, 7-(2-hydroxyethylamino)- and 7-(3-hydroxypropylamino)-pyrazolo[4,3-f]quinazolin-9-ones, inhibit DYRK1A and CLK1 at submicromolar concentrations, indicating the potential interest of this new heterocycle in drug design.
Collapse
Affiliation(s)
- Julien Debray
- Département de Pharmacochimie Moléculaire, UMR 5063 & ICMG FR-2607, CNRS/Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
23
|
Schmidt AW, Reddy KR, Knölker HJ. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem Rev 2012; 112:3193-328. [PMID: 22480243 DOI: 10.1021/cr200447s] [Citation(s) in RCA: 899] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arndt W. Schmidt
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| | - Kethiri R. Reddy
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| |
Collapse
|
24
|
Sreenivas DK, Ramkumar N, Nagarajan R. Copper-mediated domino synthesis of pyrimido[4,5-b]carbazolones via Ullmann N-arylation and aerobic oxidative C-H amidation. Org Biomol Chem 2012; 10:3417-23. [PMID: 22426822 DOI: 10.1039/c2ob07179g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New pyrimido[4,5-b]carbazolone derivatives have been synthesized through cascade Ullmann N-arylation and aerobic oxidative C-H amidation reactions catalyzed by CuBr under air and ligand-free conditions.
Collapse
|
25
|
Caruso A, Chimento A, El-Kashef H, Lancelot JC, Panno A, Pezzi V, Saturnino C, Sinicropi MS, Sirianni R, Rault S. Antiproliferative activity of some 1,4-dimethylcarbazoles on cells that express estrogen receptors: part I. J Enzyme Inhib Med Chem 2011; 27:609-13. [DOI: 10.3109/14756366.2011.603132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Caruso
- Department of Pharmaceutical Sciences, University of Calabria,
Arcavacata di Rende (CS), Italy
| | - Adele Chimento
- Department of Pharmaco-Biology, University of Calabria,
Arcavacata di Rende (CS), Italy
| | - Hussein El-Kashef
- Chemistry Department, Faculty of Science, Assiut University,
Assiut, Egypt
| | - Jean-Charles Lancelot
- Université de Caen Basse-Normandie, U.F.R. des Sciences Pharmaceutiques, Centre d’Etudes et de Recherche sur le Médicament de Normandie, Boulevard Becquerel,
Caen Cedex, France
| | - Antonella Panno
- Department of Pharmaceutical Sciences, University of Calabria,
Arcavacata di Rende (CS), Italy
| | - Vincenzo Pezzi
- Department of Pharmaco-Biology, University of Calabria,
Arcavacata di Rende (CS), Italy
| | - Carmela Saturnino
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno,
Fisciano (SA), Italy
| | | | - Rosa Sirianni
- Department of Pharmaco-Biology, University of Calabria,
Arcavacata di Rende (CS), Italy
| | - Sylvain Rault
- Université de Caen Basse-Normandie, U.F.R. des Sciences Pharmaceutiques, Centre d’Etudes et de Recherche sur le Médicament de Normandie, Boulevard Becquerel,
Caen Cedex, France
| |
Collapse
|
26
|
Mousset D, Rabot R, Bouyssou P, Coudert G, Gillaizeau I. Synthesis and biological evaluation of novel benzoxazinic analogues of ellipticine. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.05.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|