1
|
Kimishima A, Nishitomi A, Kondo N, Honma S, Honsho M, Negami S, Maruyama S, Taguchi K, Matsui H, Hanaki H, Chinen T, Usui T, Ogasawara H, Asami Y. Isolation of microorganisms from the feces of Kitasato Yakumo beef cattle as bioactive natural product producers. Biosci Biotechnol Biochem 2024; 88:1242-1246. [PMID: 39025804 DOI: 10.1093/bbb/zbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
We envisioned that the rumen of Kitasato Yakumo beef cattle would contain unique microorganisms which produce bioactive compounds as their defense response to the external environment. The variety of microorganisms were collected from the feces of Kitasato Yakumo beef cattle. We evaluated the biological activity of the culture broth of the isolated strains, proving the utility of our approach.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Atsuka Nishitomi
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naozumi Kondo
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Sota Honma
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Sota Negami
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Serino Maruyama
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kazuki Taguchi
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hidehito Matsui
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hideaki Hanaki
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
2
|
Sulik M, Antoszczak M, Huczyński A, Steverding D. Antiparasitic activity of ivermectin: Four decades of research into a "wonder drug". Eur J Med Chem 2023; 261:115838. [PMID: 37793327 DOI: 10.1016/j.ejmech.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Parasitic diseases still pose a serious threat to human and animal health, particularly for millions of people and their livelihoods in low-income countries. Therefore, research into the development of effective antiparasitic drugs remains a priority. Ivermectin, a sixteen-membered macrocyclic lactone, exhibits a broad spectrum of antiparasitic activities, which, combined with its low toxicity, has allowed the drug to be widely used in the treatment of parasitic diseases affecting humans and animals. In addition to its licensed use against river blindness and strongyloidiasis in humans, and against roundworm and arthropod infestations in animals, ivermectin is also used "off-label" to treat many other worm-related parasitic diseases, particularly in domestic animals. In addition, several experimental studies indicate that ivermectin displays also potent activity against viruses, bacteria, protozoans, trematodes, and insects. This review article summarizes the last 40 years of research on the antiparasitic effects of ivermectin, and the use of the drug in the treatment of parasitic diseases in humans and animals.
Collapse
Affiliation(s)
- Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland.
| | - Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
3
|
Kimishima A, Sakai K, Honsho M, Wasuwanich P, Matsui H, Watanabe Y, Iwatsuki M, Sunazuka T, Arima N, Abe K, Hanaki H, Asami Y. An efflux pump deletion mutant enabling the discovery of a macrolide as an overlooked anti-P. aeruginosa active compound. J Antibiot (Tokyo) 2023; 76:301-303. [PMID: 36964398 DOI: 10.1038/s41429-023-00607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/26/2023]
Abstract
Antimicrobial resistance is a serious, worldwide problem. Pseudomonas aeruginosa (P. aeruginosa) is the pathogen that poses a major threat to human health. However, resistance-nodulation-cell division type multidrug efflux pump systems defend P. aeruginosa from many antibiotics. Therefore, only limited therapeutic drugs are available. In this regard, we screened overlooked anti- P. aeruginosa compounds from the Ōmura Natural Compound library using an efflux pump deletion P. aeruginosa mutant strain, YM64, which led us to find a semisynthetic macrolide, 5-O-mycaminosyltylonolide, whose anti- P. aeruginosa activity against a standard laboratory adapted strain, PAO1, was enhanced by an efflux pump inhibitor, phenylalanine-arginine beta-naphthylamide.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
| | - Kazunari Sakai
- Research Management Department, Kowa Company LTD., 4-13-3 Nihonbashi-honcho, Chuo-ku, Tokyo, 103-8433, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
| | - Paul Wasuwanich
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Hidehito Matsui
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
| | - Naoaki Arima
- Research Management Department, Kowa Company LTD., 4-13-3 Nihonbashi-honcho, Chuo-ku, Tokyo, 103-8433, Japan
| | - Kazutoyo Abe
- Research Management Department, Kowa Company LTD., 4-13-3 Nihonbashi-honcho, Chuo-ku, Tokyo, 103-8433, Japan
| | - Hideaki Hanaki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan
- Research Management Department, Kowa Company LTD., 4-13-3 Nihonbashi-honcho, Chuo-ku, Tokyo, 103-8433, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 108-8641, Japan.
| |
Collapse
|
4
|
Kobayashi C, Watanabe Y, Oshima M, Hirose T, Yamasaki M, Iwamoto M, Iwatsuki M, Asami Y, Kuramochi K, Wakae K, Aizaki H, Muramatsu M, Sureau C, Sunazuka T, Watashi K. Fungal Secondary Metabolite Exophillic Acid Selectively Inhibits the Entry of Hepatitis B and D Viruses. Viruses 2022; 14:v14040764. [PMID: 35458494 PMCID: PMC9026752 DOI: 10.3390/v14040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Current anti-hepatitis B virus (HBV) drugs are suppressive but not curative for HBV infection, so there is considerable demand for the development of new anti-HBV agents. In this study, we found that fungus-derived exophillic acid inhibits HBV infection with a 50% maximal inhibitory concentration (IC50) of 1.1 µM and a 50% cytotoxic concentration (CC50) of >30 µM in primary human hepatocytes. Exophillic acid inhibited preS1-mediated viral attachment to cells but did not affect intracellular HBV replication. Exophillic acid appears to target the host cells to reduce their susceptibility to viral attachment rather than acting on the viral particles. We found that exophillic acid interacted with the HBV receptor, sodium taurocholate cotransporting polypeptide (NTCP). Exophillic acid impaired the uptake of bile acid, the original function of NTCP. Consistent with our hypothesis that it affects NTCP, exophillic acid inhibited infection with HBV and hepatitis D virus (HDV), but not that of hepatitis C virus. Moreover, exophillic acid showed a pan-genotypic anti-HBV effect. We thus identified the anti-HBV/HDV activity of exophillic acid and revealed its mode of action. Exophillic acid is expected to be a potential new lead compound for the development of antiviral agents.
Collapse
Affiliation(s)
- Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Mizuki Oshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Masako Yamasaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, 75739 Paris, France;
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- MIRAI, JST, Saitama 332-0012, Japan
- Correspondence:
| |
Collapse
|
5
|
PK-PD Modeling and Optimal Dosing Regimen of Acetylkitasamycin against Streptococcus suis in Piglets. Antibiotics (Basel) 2022; 11:antibiotics11020283. [PMID: 35203885 PMCID: PMC8868236 DOI: 10.3390/antibiotics11020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Streptococcus suis (S. suis) causes severe respiratory diseases in pigs and is also an important pathogen causing hidden dangers to public health and safety. Acetylkitasamycin is a new macrolide agent that has shown good activity to Gram-positive cocci such as Streptococcus. The purpose of this study was to perform pharmacokinetic–pharmacodynamic (PK-PD) modeling to formulate a dosing regimen of acetylkitasamycin for treatment of S. suis and to decrease the emergence of acetylkitasamycin-resistant S. suis. The minimal inhibitory concentration (MIC) of 110 S. suis isolates was determined by broth micro dilution method. The MIC50 of the 55 sensitive S. suis isolates was 1.21 μg/mL. The strain HB1607 with MIC close to MIC50 and high pathogenicity was used for the PK-PD experiments. The MIC and MBC of HB1607 in both MH broth and pulmonary epithelial lining fluid (PELF) was 1 and 2 μg/mL, respectively. The liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration change of acetylkitasamycin in piglet plasma and PELF after intragastric administration of a single dose of 50 mg/kg b.w. acetylkitasamycin. The PK parameters were calculated by WinNolin software. The PK data showed that the maximum concentration (Cmax), peak time (Tmax), and area under the concentration–time curve (AUC) were 9.84 ± 0.39 μg/mL, 4.27 ± 0.19 h and 248.58 ± 21.17 h·μg/mL, respectively. Integration of the in vivo PK data and ex vivo PD data, an inhibition sigmoid Emax equation was established. The dosing regimen of acetylkitasamycin for the treatment S. suis infection established as 33.12 mg/kg b.w. every 12 h for 3 days. This study provided a reasonable dosing regimen for a new drug used in clinical treatment, which can effectively be used to treat S. suis infection and slow down the generation of drug resistance.
Collapse
|
6
|
Matsui N, Kawakami S, Hamamoto D, Nohara S, Sunada R, Panbangred W, Igarashi Y, Nihira T, Kitani S. Activation of cryptic milbemycin A 4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene. J GEN APPL MICROBIOL 2021; 67:240-247. [PMID: 34511540 DOI: 10.2323/jgam.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Streptomycetes are characterized by their ability to produce structurally diverse compounds as secondary metabolites and by their complex developmental life cycle, which includes aerial mycelium formation and sporulation. The production of secondary metabolites is growth-stage dependent, and generally coincides with morphological development on a solid culture. Streptomyces sp. BB47 produces several types of bioactive compounds and displays a bald phenotype that is devoid of an aerial mycelium and spores. Here, we demonstrated by genome analysis and gene complementation experiments that the bald phenotype arises from the bldA gene, which is predicted to encode the Leu-tRNAUUA molecule. Unlike the wild-type strain producing jomthonic acid A (1) and antarlide A (2), the strain complemented with a functional bldA gene newly produced milbemycin (3). The chemical structure of compound 3 was elucidated on the basis of various spectroscopic analyses, and was identified as milbemycin A4, which is an insecticidal/acaricidal antibiotic. These results indicate that genetic manipulation of genes involved in morphological development in streptomycetes is a valuable way to activate cryptic biosynthetic pathways.
Collapse
Affiliation(s)
- Nana Matsui
- International Center for Biotechnology, Osaka University
| | | | - Dai Hamamoto
- International Center for Biotechnology, Osaka University
| | - Sayuri Nohara
- International Center for Biotechnology, Osaka University
| | - Reina Sunada
- International Center for Biotechnology, Osaka University
| | | | | | - Takuya Nihira
- International Center for Biotechnology, Osaka University.,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
7
|
Chakraborty M, Mahmud NU, Muzahid ANM, Rabby SMF, Islam T. Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease. PLoS One 2020; 15:e0233665. [PMID: 32804955 PMCID: PMC7430738 DOI: 10.1371/journal.pone.0233665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Oligomycins are macrolide antibiotics, produced by Streptomyces spp. that show antagonistic effects against several microorganisms such as bacteria, fungi, nematodes and the oomycete Plasmopara viticola. Conidiogenesis, germination of conidia and formation of appressoria are determining factors pertaining to pathogenicity and successful diseases cycles of filamentous fungal phytopathogens. The goal of this research was to evaluate the in vitro suppressive effects of two oligomycins, oligomycin B and F along with a commercial fungicide Nativo® 75WG on hyphal growth, conidiogenesis, conidial germination, and appressorial formation of the wheat blast fungus, Magnaporthe oryzae Triticum (MoT) pathotype. We also determined the efficacy of these two oligomycins and the fungicide product in vivo in suppressing wheat blast with a detached leaf assay. Both oligomycins suppressed the growth of MoT mycelium in a dose dependent manner. Between the two natural products, oligomycin F provided higher inhibition of MoT hyphal growth compared to oligomycin B with a minimum inhibitory concentration of 0.005 and 0.05 μg/disk, respectively. The application of the compounds completely halted conidial formation of the MoT mycelium in agar medium. Further bioassays showed that these compounds significantly inhibited MoT conidia germination and induced lysis. The compounds also caused abnormal germ tube formation and suppressed appressorial formation of germinated spores. Interestingly, the application of these macrolides significantly inhibited wheat blast on detached leaves of wheat. This is the first report on the inhibition of mycelial growth, conidiogenesis, germination of conidia, deleterious morphological changes in germinated conidia, and suppression of blast disease of wheat by oligomycins from Streptomyces spp. Further study is needed to unravel the precise mode of action of these natural compounds and consider them as biopesticides for controlling wheat blast.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abu Naim Md. Muzahid
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S. M. Fajle Rabby
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- * E-mail:
| |
Collapse
|
8
|
Wewengkang DS, Yamazaki H, Takahashi M, Togashi T, Rotinsulu H, Sumilat DA, Namikoshi M. Production of an α-pyrone metabolite and microbial transformation of isoflavones by an Indonesian Streptomyces sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:754-761. [PMID: 31311336 DOI: 10.1080/10286020.2019.1635588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
A benzyl-α-pyrone metabolite, streptpyrone A (1), was obtained together with three known isoflavonoids, daidzein-7-O-α-l-rhamnoside (2), genistein-7-O-α-l-rhamnoside (3), and daidzein (4), from the culture broth of an Indonesian actinomycete Streptomyces sp. TPU1401A. The structure of 1, elucidated based on its spectroscopic data, has been reported as a synthetic compound. However, this is the first report of the isolation of 1 as a metabolite of microbial origin. Strain TPU1401A exhibited the ability to transform the isoflavone aglycones 4 and genistein (5) into the 7-O-glycosides 2 and 3, respectively. Compounds 2 and 3 promoted the growth of strain TPU1401A more effectively than compounds 4 and 5. These results suggest that strain TPU1401A utilizes isoflavone glycosides to promote growth by transforming isoflavones through microbial glycosidation.
Collapse
Affiliation(s)
- Defny S Wewengkang
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Moe Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Toshiki Togashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Henki Rotinsulu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
- Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Deiske A Sumilat
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia
| | - Michio Namikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
9
|
Yamazaki H, Takahashi O, Kirikoshi R, Yagi A, Ogasawara T, Bunya Y, Rotinsulu H, Uchida R, Namikoshi M. Epipolythiodiketopiperazine and trichothecene derivatives from the NaI-containing fermentation of marine-derived Trichoderma cf. brevicompactum. J Antibiot (Tokyo) 2020; 73:559-567. [PMID: 32427947 DOI: 10.1038/s41429-020-0314-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 11/09/2022]
Abstract
The marine-derived fungus Trichoderma sp. TPU199 (cf. Trichoderma brevicompactum) produces pretrichodermamide A (1) and gliovirin (2), which possess a rare type of epipolythiodiketopiperazine (ETP) structure with a disulfide bridge between the α- and β-positions of two amino acid residues. We previously reported that this strain gave the halogenated ETPs, DC1149B (4), DC1149R (6), and iododithiobrevamide (7), when fermented with sodium halides (NaCl, NaBr, and NaI). Further analyses of the metabolites obtained under NaI-containing culture conditions resulted in the isolation of two new ETP derivatives (11 and 12) and three new trichothecene sesquiterpenes (13-15). The structures of 11 and 12, including their absolute configurations, were elucidated based on spectroscopic data for 11 and 12 and comparisons with those for 1 and related compounds, revealing that 11 was an epimer of 1 at the C-5 position and 12 was a trithio-derivative of 11. The structures of 13-15 were established by analyzing their 1D and 2D NMR data. The absolute configurations of 13-15 were assigned by comparing their experimental electronic circular dichroism (ECD) spectra with the calculated ECD spectrum of 13.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan.
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| | - Ryota Kirikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| | - Akiho Yagi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| | - Teruki Ogasawara
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| | - Yuki Bunya
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| | - Henki Rotinsulu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan.,Faculty of Mathematic and Natural Sciences, Sam Ratulangi University, Kampus Bahu, Manado, 95115, Indonesia
| | - Ryuji Uchida
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| | - Michio Namikoshi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
10
|
Li JS, Zhang H, Qi H, Wang JD, Xiang WS. Bioactive naphthoquinone and anthrone derivatives from endophytic Micromonospora sp. NEAU-gq13. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1151-1160. [PMID: 30585513 DOI: 10.1080/10286020.2018.1520222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
Two new naphthalenone derivatives, 5-hydroxy-4-oxo-2-(2-oxopropyl)-1,2,3,4-tetrahydronaphthalen-1-yl acetate (1) and 5-hydroxy-2-(2-hydroxypropyl)naphthalene-1,4-dione (2), together with two new anthrone derivatives, (S)-2,5-dihydroxy-2-methyl-1,2,3,4-tetrahydroanthracene-9,10-dione (3) and 4,5-dihydroxy-2-methyl-9H-xanthen-9-one (4), were isolated from the fermentation broth of endophytic Micromonospora sp. NEAU-gq13. Their structures were determined by 1D-NMR, 2D-NMR, and HR-ESI-MS analysis. Compounds 2 and 3 exhibited strong cytotoxic activity against human central nervous system cancer (SF-268) with the IC50 values of 3.04 and 5.66 μg/ml, respectively. Moreover, compound 2 also displayed potent activity against human liver cancer (HepG2) with an IC50 value of 1.01 μg/ml.
Collapse
Affiliation(s)
- Jian-Song Li
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou 318000, China
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou 318000, China
| | - Huan Qi
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou 318000, China
| | - Ji-Dong Wang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou 318000, China
| | - Wen-Sheng Xiang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Lee MS, Yang YL, Wu CY, Chen YL, Lee CK, Tzean SS, Lee TH. Efficient identification of fungal antimicrobial principles by tandem MS and NMR database. J Food Drug Anal 2019; 27:860-868. [PMID: 31590757 PMCID: PMC9306986 DOI: 10.1016/j.jfda.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
The continuous re-isolation of the known and non-applicable compounds that is time-consuming and wasting resources is still a critical problem in the discovery of bioactive entities from natural resources. To efficiently address the problem, high performance liquid chromatography-diode array detector-microfractionation (HPLC-DAD-microfractionation) guided by disk agar diffusion assay was developed, and the active compounds were further identified using the tandem mass spectrometry (MS/MS)-based molecular networking. Of 150 fungal strains screened, the methanolic extracts of Phoma herbarum PPM7487, Cryptosporiopsis ericae PPM7405, and Albifimbria verrucaria PPM945 exhibited potent antimicrobial activity against Candida albicans SC5314 and Cryptococcus neoformans H99 in the preliminary agar diffusion assay. The concept of OSMAC (one strain many compounds) was employed in the fungal cultures in order to enrich the diversity of the 2nd metabolites in this study. HPLC coupled with off-line bioactivity-directed profiling of the extracts enabled a precise localization of the compounds responsible for the conspicuous antimicrobial activity. The purified active compounds were identified based mainly on MS/MS database, and further supported by 13C nuclear magnetic resonance (NMR) spectral data compared to the literatures. In addition to nineteen known compounds, a new trichothecene derivative 1, namely trichoverrin D, was isolated and identified through this protocol. The antifungal activities of all the pure isolates were evaluated, and the structure activity relationships were also inferred. This report has demonstrated the combination of HPLC microfractination and MS/MS coupled by NMR spectral dereplication for speeding up the antimicrobial natural products discovery process.
Collapse
Affiliation(s)
- Ming-Shian Lee
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Yen Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ching-Kuo Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shean-Shong Tzean
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Ōmura S, Asami Y, Crump A. Staurosporine: new lease of life for parent compound of today's novel and highly successful anti-cancer drugs. J Antibiot (Tokyo) 2018; 71:688-701. [PMID: 29934602 DOI: 10.1038/s41429-018-0029-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Staurosporine, together with such examples as penicillin, aspirin, ivermectin and sildenafil, exemplifies the role that serendipity has in drug discovery and why 'finding things without actually searching for them' retains a prominent role in drug discovery. Hitherto not clinically useful, due to its potency and promiscuity, new delivery technology is opening up new horizons for what was previously just the parent compound of innovative, highly-successful anti-cancer agents.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.
| | - Yukihiro Asami
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
13
|
Yamazaki H, Takahashi K, Iwakura N, Abe T, Akaishi M, Chiba S, Namikoshi M, Uchida R. A new protein tyrosine phosphatase 1B inhibitory α-pyrone-type polyketide from Okinawan plant-associated Aspergillus sp. TMPU1623. J Antibiot (Tokyo) 2018; 71:745-748. [DOI: 10.1038/s41429-018-0054-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023]
|
14
|
Yamada T, Yagita M, Kobayashi Y, Sennari G, Shimamura H, Matsui H, Horimatsu Y, Hanaki H, Hirose T, O̅mura S, Sunazuka T. Synthesis and Evaluation of Antibacterial Activity of Bottromycins. J Org Chem 2018; 83:7135-7149. [DOI: 10.1021/acs.joc.8b00045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Yamada
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miu Yagita
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yutaka Kobayashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Goh Sennari
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Shimamura
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidehito Matsui
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Horimatsu
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi O̅mura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
15
|
Pait IGU, Kitani S, Roslan FW, Ulanova D, Arai M, Ikeda H, Nihira T. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5. J Ind Microbiol Biotechnol 2017; 45:77-87. [PMID: 29255990 DOI: 10.1007/s10295-017-1997-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Farah Wahidah Roslan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dana Ulanova
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
| |
Collapse
|
16
|
5-O-Mycaminosyltylonolide antibacterial derivatives: design, synthesis and bioactivity. J Antibiot (Tokyo) 2017; 70:878-887. [PMID: 28559578 DOI: 10.1038/ja.2017.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023]
Abstract
Tylosin is a 16-membered macrolide broad-spectrum antibiotic that has an important role in veterinary medicine, active against Gram-positive and a restricted range of Gram-negative bacteria. We synthesized 15 types of tylosin-related derivatives by chemical modification and evaluated them against mastitis pathogens. Among them, 20-deoxy-20-{N-methyl-N-[1-(3-quinolyl)-1H-1,2,3-triazol-4-yl]methylamino}-5-O-mycaminosyltylonolide 2f and 20-deoxy-20-{N-benzyl-N-[1-(3-quinolyl)-1H-1,2,3-triazol-4-yl]methylamino}-5-O-mycaminosyltylonolide 2k were found to not only expand their antibacterial impact to include Gram-negative bacteria, such as Escherichia coli and Klebsiella pneumoniae, but also to retain or increase antibacterial activity against Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus uberis in comparison with the parent tylosin.
Collapse
|
17
|
Nan J, Hao H, Xie S, Pan Y, Xi C, Mao F, Liu Z, Huang L, Yuan Z. Pharmacokinetic and pharmacodynamic integration and modeling of acetylkitasamycin in swine for Clostridium perfringens. J Vet Pharmacol Ther 2017; 40:641-655. [PMID: 28464333 DOI: 10.1111/jvp.12404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/22/2017] [Indexed: 12/01/2022]
Abstract
The aim of this study was to establish an integrated pharmacokinetic/pharmacodynamic (PK/PD) modeling approach of acetylkitasamycin for designing dosage regimens and decreasing the emergence of drug-resistant bacteria. After oral administration of acetylkitasamycin to healthy and infected pigs at the dose of 50 mg/kg body weights (bw), a rapid and sensitive LC-MS/MS method was developed and validated for determining the concentration change of the major components of acetylkitasamycin and its possible metabolite kitasamycin in the intestinal samples taken from the T-shape ileal cannula. The PK parameters, including the integrated peak concentration (Cmax ), the time when the maximum concentration reached (Tmax ) and the area under the concentration-time curve (AUC), were calculated by WinNonlin software. The minimum inhibitory concentration (MIC) of 60 C. perfringens strains was determined following CLSI guideline. The in vitro and ex vivo activities of acetylkitasamycin in intestinal tract against a pathogenic strain of C. perfringens type A (CPFK122995) were established by the killing curve. Our PK data showed that the integrated Cmax , Tmax , and AUC were 14.57-15.81 μg/ml, 0.78-2.52 hR, and 123.84-152.32 μg hr/ml, respectively. The PD data show that MIC50 and MIC90 of the 60 C. perfringens isolates were 3.85 and 26.45 μg/ml, respectively. The ex vivo growth inhibition data were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC to produce bacteriostasis (4.84 hr), bactericidal activity (15.46 hr), and bacterial eradication (24.99 hr). A dosage regimen of 18.63 mg/kg bw every 12 hr could be sufficient in the prevention of C. perfringens infection. The therapeutic dosage regimen for C. perfringens infection was at the dose of 51.36 mg/kg bw every 12 hr for 3 days. In summary, the dosage regimen for the treatment of C. perfringens in pigs administered with acetylkitasamycin was designed using PK/PD integrate model. The designed dose regimen could to some extent decrease the risk for emergence of macrolide resistance.
Collapse
Affiliation(s)
- J Nan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - S Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Y Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| | - C Xi
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| | - F Mao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| | - L Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Samri SE, Baz M, Ghalbane I, El Messoussi S, Zitouni A, El Meziane A, Barakate M. Insecticidal activity of a Moroccan strain of Streptomyces phaeochromogenes LD-37 on larvae, pupae and adults of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:217-224. [PMID: 28276307 DOI: 10.1017/s000748531600078x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is considered the most important fruit pest worldwide. Its management is mainly based on the use of chemical insecticides. Although these conventional pesticides are effective at high doses, they cause considerable human health and environment problems. Thus, the aim of this study was to assess insecticidal activity of Moroccan actinobacteria against C. capitata. A total of 12 preselected actinobacteria isolated from various Moroccan habitats were screened for their insecticidal activity against larvae, pupae and adults of C. capitata. Four actinobacteria isolates were significantly active against the first-instar larvae, and nine were active against the medfly adult, while no significant mortality was obtained against the third-instar larval and pupal stages. Among the selected isolates, the biological screening revealed that strain Streptomyces LD-37, which showed 99.4% similarity with Streptomyces phaeochromogenes, exhibited the maximal corrected larval mortality of 98%. Moreover, the isolates AS1 and LD-37 showed the maximum significant corrected mortality against adults of 32.5 and 28.2%, respectively. The crude extract obtained from a fermented culture of strain S. phaeochromogenes LD-37 was separated into six fractions by thin layer chromatography. Fractions F3 and F4 caused a significant corrected larval mortality of 66.7 and 53.3%, respectively; whereas the maximum reduction in adult emergence was obtained with fraction F4. This finding could be useful for utilizing S. phaeochromogenes LD-37 as an alternative to chemical insecticides in pest management of C. capitata.
Collapse
Affiliation(s)
- S E Samri
- Laboratory of Biology and Biotechnology of Microorganisms,Department of Biology,Faculty of Sciences Semlalia,Cadi Ayyad University,P.O. Box. 2390 Marrakech 40000,Morocco
| | - M Baz
- Laboratory of Biology and Biotechnology of Microorganisms,Department of Biology,Faculty of Sciences Semlalia,Cadi Ayyad University,P.O. Box. 2390 Marrakech 40000,Morocco
| | - I Ghalbane
- Laboratory of Molecular and Ecophysiological Modelisation,Faculty of Sciences Semlalia,Cadi Ayyad University,P.O. Box. 2390 Marrakech 40000,Morocco
| | - S El Messoussi
- Laboratory of Molecular and Ecophysiological Modelisation,Faculty of Sciences Semlalia,Cadi Ayyad University,P.O. Box. 2390 Marrakech 40000,Morocco
| | - A Zitouni
- Department of Natural Sciences,Ecole Normale Supérieure,Algers,Algeria
| | - A El Meziane
- Laboratory of Biotechnology Valorisation and Protection of Agro-Resources,Faculty of Science and Techniques Gueliz,Cadi Ayyad University,P.O. Box 549 Marrakech 40000,Morocco
| | - M Barakate
- Laboratory of Biology and Biotechnology of Microorganisms,Department of Biology,Faculty of Sciences Semlalia,Cadi Ayyad University,P.O. Box. 2390 Marrakech 40000,Morocco
| |
Collapse
|
19
|
Total synthesis of (±)-naphthacemycin A9, possessing both antibacterial activity against methicillin-resistant Staphylococcus aureus and circumventing effect of β-lactam resistance. J Antibiot (Tokyo) 2016; 70:574-581. [DOI: 10.1038/ja.2016.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022]
|
20
|
Yamazaki H, Rotinsulu H, Takahashi O, Kirikoshi R, Namikoshi M. Induced production of a new dipeptide with a disulfide bridge by long-term fermentation of marine-derived Trichoderma cf. brevicompactum. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wińska K, Mączka W, Grabarczyk M, Sugimoto K, Matsuya Y, Szumny A, Anioł M. A Macrosphelide as the Unexpected Product of a Pleurotus ostreatus Strain-Mediated Biotransformation of Halolactones Containing the gem-Dimethylcyclohexane Ring. Part 1. Molecules 2016; 21:molecules21070859. [PMID: 27376255 PMCID: PMC6273929 DOI: 10.3390/molecules21070859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/14/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to obtain new compounds during biotransformation of two halocompounds, the δ-bromo and δ-iodo-γ-bicyclolactones 1 and 2. Unexpectedly Pleurotus ostreatus produced together with the hydroxylactone, 2-hydroxy-4,4-dimethyl-9-oxabicyclo[4.3.0]nonane-8-one (3), its own metabolite (3S,9S,15S)-(6E,12E)-3,9,15-trimethyl-4,10,16-trioxacyclohexa-deca-6,12-diene-1,5,8,11,14-pentaone (4). The method presented here, in which this macrosphelide 4 was obtained by biotransformation, has not been previously described in the literature. To the best of our knowledge, this compound has been prepared only by chemical synthesis to date. This is the first report on the possibility of the biosynthesis of this compound by the Pleurotus ostreatus strain. The conditions and factors, like temperature, salts, organic solvents, affecting the production of this macrosphelide by Pleurotus ostreatus strain were examined. The highest yield of macroshphelide production was noticed for halolactones, as well with iodide, bromide, iron and copper (2+) ions as inductors.
Collapse
Affiliation(s)
- Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Kenji Sugimoto
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, 930-0194 Toyama, Japan.
| | - Yuji Matsuya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, 930-0194 Toyama, Japan.
| | - Antoni Szumny
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Mirosław Anioł
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
22
|
Gopalakrishnan S, Rajendran V, Arumugam S, Sharma HC, Vadlamudi S, Bhimineni RK, V Gonzalez S, M Melø T, Simic N. Insecticidal activity of a novel fatty acid amide derivative from Streptomyces species against Helicoverpa armigera. Nat Prod Res 2016; 30:2760-2769. [PMID: 26956775 DOI: 10.1080/14786419.2016.1154055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Helicoverpa armigera, an important pest causes serious damage to grain legumes. The main objective of this study was to isolate and identify the metabolite against H. armigera from a previously characterised Streptomyces sp. CAI-155. The culture filtrate of CAI-155 was extracted using Diaion HP-20 and the active fractions were fractionated on Silica and C18 column chromatography. The C18 active fraction was further fractionated on Silica gel 60 F254 thin layer chromatography (TLC). The most active fraction (Rf 0.64) purified from TLC led to the identification of a novel metabolite N-(1-(2,2-dimethyl-5-undecyl-1,3-dioxolan-4-yl)-2-hydroxyethyl)stearamide by spectral studies. The purified metabolite showed 70-78% mortality in 2nd instar H. armigera by diet impregnation assay, detached leaf assay and greenhouse assay. The LD50 and LD90 values of the purified metabolite were 627 and 2276 ppm, respectively. Hence, this novel metabolite can be exploited for pest management in future.
Collapse
Affiliation(s)
| | - Vijayabharathi Rajendran
- a International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Patancheru , India
| | - Sathya Arumugam
- a International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Patancheru , India
| | - Hari C Sharma
- a International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Patancheru , India
| | - Srinivas Vadlamudi
- a International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Patancheru , India
| | - Ratna Kumari Bhimineni
- a International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Patancheru , India
| | - Susana V Gonzalez
- b Department of Chemistry , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Torunn M Melø
- c Department of Biotechnology , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Nebojsa Simic
- b Department of Chemistry , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| |
Collapse
|
23
|
HIRAMA M. Total synthesis and related studies of large, strained, and bioactive natural products. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:290-329. [PMID: 27725470 PMCID: PMC5243947 DOI: 10.2183/pjab.92.290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Our chemical syntheses and related scientific investigations of natural products with complex architectures and powerful biological activities are described, focusing on the very large 3 nm-long polycyclic ethers called the ciguatoxins, highly strained and labile chromoprotein antitumor antibiotics featuring nine-membered enediyne cores, and extremely potent anthelmintic macrolides called the avermectins.
Collapse
Affiliation(s)
- Masahiro HIRAMA
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
Abstract
The 2015 Nobel Prize in Physiology or Medicine has been awarded to William C. Campbell, Satoshi Omura, and Youyou Tu for the discovery of avermectins and artemisinin, respectively, therapies that revolutionized the treatment of devastating parasite diseases. With the recent technological advances, a New Golden Age of natural products drug discovery is dawning.
Collapse
Affiliation(s)
- Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL 33458, USA; Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
25
|
Yamazaki H, Takahashi O, Murakami K, Namikoshi M. Induced production of a new unprecedented epitrithiodiketopiperazine, chlorotrithiobrevamide, by a culture of the marine-derived Trichoderma cf. brevicompactum with dimethyl sulfoxide. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Yamada T, Ideguchi-Matsushita T, Hirose T, Shirahata T, Hokari R, Ishiyama A, Iwatsuki M, Sugawara A, Kobayashi Y, Otoguro K, Ōmura S, Sunazuka T. Asymmetric Total Synthesis of Indole Alkaloids Containing an Indoline Spiroaminal Framework. Chemistry 2015; 21:11855-64. [DOI: 10.1002/chem.201501150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/09/2022]
|
27
|
Sugawara A, Kubo M, Nakashima T, Hirose T, Tsunoda N, Yahagi K, Asami Y, Yamada T, Shiomi K, Takahashi Y, Ōmura S, Sunazuka T. Jietacins with potent nematocidal activity; efficient isolation of novel analogs and divergent total synthesis of jietacin A, B, C, and D. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Aburai N, Abe K. Metabolic switching: synergistic induction of carotenogenesis in the aerial microalga, Vischeria helvetica, under environmental stress conditions by inhibitors of fatty acid biosynthesis. Biotechnol Lett 2015; 37:1073-80. [PMID: 25820338 DOI: 10.1007/s10529-015-1770-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the roles of fatty acid biosynthesis in carotenogenesis in the high-lipid accumulating aerial microalga Vischeria helvetica KGU-Y001, we cultured algal cells with fatty acid biosynthesis inhibitors. RESULTS Under nitrogen-deficient, high-light (200 µmol photons m(-2) s(-1)) conditions, the alga accumulated 6.2 mg carotenoids g(-1) dry weight cells (DWC) after 1 week of culture. The total fatty acid content increased gradually, and reached 290 mg g(-1) DWC after 9 weeks. When algal cells were cultured with a fatty acid biosynthesis inhibitor (molinate) under nitrogen-deficient, high-light conditions for 1 week, carotenoid accumulation was synergistically increased to 2.4 times that in algal cells cultured without the inhibitor in nitrogen-deficient, low-light conditions (40 µmol photons m(-2) s(-1)). The synergistic induction of carotenogenesis was suppressed by an inhibitor of c-jun N-terminal kinase, a mitogen-activated protein kinase-like protein. CONCLUSION In a commercial context, carotenoid production could be increased by using fatty acid biosynthesis inhibitors to redirect metabolic flux to carotenoid biosynthesis instead of fatty acid synthesis.
Collapse
Affiliation(s)
- Nobuhiro Aburai
- Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo, 192-0015, Japan
| | | |
Collapse
|
29
|
Salah ES, Mohamed B, Abdelmounaim J, Houda A, Said EM, Abdellatif EM, Mustapha B. Preliminary assessment of insecticidal activity of
Moroccan actinobacteria isolates against mediterranean fruit fly (Ceratitis capitata). ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2014.14357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Aouiche A, Meklat A, Bijani C, Zitouni A, Sabaou N, Mathieu F. Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0973-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
31
|
Ito T, Masubuchi M. Dereplication of microbial extracts and related analytical technologies. J Antibiot (Tokyo) 2014; 67:353-60. [PMID: 24569671 DOI: 10.1038/ja.2014.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/06/2014] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
Natural products still continue to have an important role as a resource of various biologically active substances. Dereplication is a key process in natural product screening that analyzes the extracts of microbial fermentation broths or plant samples. In this review article, we describe and discuss the analytical techniques of dereplication and related technologies in the following sections: 1. Direct detection from microbial colonies. 2. Ultra high performance liquid chromatography (UHPLC)-MS profiling for library construction. 3. Micro-fractionation to identify active peaks. 4. Quantification of small-amount compounds. 5. Structure identification from small amounts. Using these techniques, the desired compound in the mixture library can be rapidly identified.
Collapse
Affiliation(s)
- Tatsuya Ito
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Miyako Masubuchi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| |
Collapse
|
32
|
|
33
|
Tilvawala R, Pratt RF. Covalent Inhibition of Serine β-Lactamases by Novel Hydroxamic Acid Derivatives. Biochemistry 2013; 52:3712-20. [DOI: 10.1021/bi4003887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ronak Tilvawala
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut
06459, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut
06459, United States
| |
Collapse
|
34
|
Abstract
INTRODUCTION Natural products have long been instrumental for discovering antibiotics, but many pharmaceutical companies abandoned this field and new antibiotics declined. In contrast, microbial resistance to current antibiotics has approached critical levels. AREAS COVERED This article gives historical perspectives by providing background about present-day economic realities and medical needs for antibiotic research, whose pipeline is mostly focused toward older known agents and newer semi-synthetic derivatives. Future research trends and projected technological developments open many innovative opportunities to discover novel antibacterials and find ways to control pathogenic bacteria without conventional antibiotics that provoke resistance. EXPERT OPINION The successful registration of daptomycin, retapamulin and fidaxomicin indicate the re-emergence of natural products has already begun. Semi-synthetic derivatives from other under-explored classes are progressing. More effort is being put into approaches such as total synthesis, discovery of new structural scaffolds for synthesis, alterations of biosynthetic pathways, combinatorial biosynthesis, new screening targets and new resources from which to isolate natural products. A return to successful screening of actinomycetes depends on solving the rate-limiting dereplication obstacle. Long-term solutions need to come from greater exploration of the massive numbers of uncultured microbes. An ultimate solution to the antibiotic-promoted microbial resistance cycle may lie in finding ways to control bacteria by non-lethal means.
Collapse
|
35
|
Dzhekieva L, Kumar I, Pratt RF. Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry 2012; 51:2804-11. [DOI: 10.1021/bi300148v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| | - Ish Kumar
- School of Natural
Sciences, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| |
Collapse
|
36
|
Kirst HA. Recent derivatives from smaller classes of fermentation-derived antibacterials. Expert Opin Ther Pat 2011; 22:15-35. [DOI: 10.1517/13543776.2012.642370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|