1
|
O'Brien S, Alvariño R, Kennedy B, Botana LM, Thomas OP. Antioxidant micropeptins from a Microcoleus autumnalis-dominated benthic cyanobacterial mat from Western Ireland. PHYTOCHEMISTRY 2024; 223:114137. [PMID: 38734043 DOI: 10.1016/j.phytochem.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Exploring the chemical diversity present in cyanobacterial mats increasingly frequent in fresh and marine waters is imperative for both evaluating risks associated with these diverse biofilms and their potential for biodiscovery. During a project aimed at the study of the (eco)toxicity of benthic cyanobacteria blooming in some lakes of the West of Ireland, three previously undescribed ahp-cyclodepsipeptides micropeptin LOF941 (1), micropeptin LOF925 (2) and micropeptin LOF953 (3) were isolated from the Microcoleus autumnalis-dominated benthic cyanobacterial biofilm collected from the shore of Lough O'Flynn, Co. Roscommon, Ireland. Their structures remain consistent in their amino acid sequence with the presence of an unusual methionine, and differ by their exocyclic side chains. The planar structures of the previously undescribed micropeptins were elucidated by 1D and 2D NMR and HRESIMS analyses, and their 3D configurations assessed by ROESY NMR and Marfey's analyses. The three isolated compounds showed no cytotoxic effects and all three compounds were shown to exhibit antioxidant properties, with 1 showing the highest bioactivity. Additionally, several micropeptin analogues are proposed from the methanolic fraction of the biofilm extract by UHPLC-HRESIMS/MS analysis and molecular networking. Notably, the known cyanotoxins anatoxin-a and dihydroanatoxin-a were annotated in the molecular network therefore raising issues about the toxicity of this cyanobacterial mat.
Collapse
Affiliation(s)
- Shauna O'Brien
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Rebeca Alvariño
- Physiology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, Avenida Carballo Calero s/n, 27002 Lugo, Spain
| | - Bryan Kennedy
- Environmental Protection Agency, John Moore Road, F23 KT91 Castlebar, Co. Mayo, Ireland
| | - Luis M Botana
- Pharmacology Department, Facultad de Veterinaria, Universidad de Santiago de Compostela, Avenida Carballo Calero s/n, 27002 Lugo, Spain
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland.
| |
Collapse
|
2
|
Konkel R, Cegłowska M, Szubert K, Wieczerzak E, Iliakopoulou S, Kaloudis T, Mazur-Marzec H. Structural Diversity and Biological Activity of Cyanopeptolins Produced by Nostoc edaphicum CCNP1411. Mar Drugs 2023; 21:508. [PMID: 37888443 PMCID: PMC10608790 DOI: 10.3390/md21100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial nonribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411 was explored. As a result, 93 CPs, including 79 new variants, were detected and structurally characterized based on their mass fragmentation spectra. CPs isolated in higher amounts were additionally characterized by NMR. To the best of our knowledge, this is the highest number of cyanopeptides found in one strain. The biological assays performed with the 34 isolated CPs confirmed the significance of the amino acid located between Thr and the unique 3-amino-6-hydroxy-2-piperidone (Ahp) on the activity of the compounds against serine protease and HeLa cancer cells.
Collapse
Affiliation(s)
- Robert Konkel
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Karolina Szubert
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, PL-80308 Gdańsk, Poland;
| | - Sofia Iliakopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece;
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR Demokritos, GR-15310 Agia Paraskevi, Greece;
- Laboratory of Organic Micropollutants, Water Quality Control Department, EYDAP SA, Menidi, GR-13674 Athens, Greece
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, PL-81378 Gdynia, Poland; (R.K.); (K.S.)
| |
Collapse
|
3
|
Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat Prod Rep 2021; 37:163-174. [PMID: 31451830 DOI: 10.1039/c9np00033j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Sarah Resch
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Till Kessenbrock
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Lukas Schrapp
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| |
Collapse
|
4
|
Liu Y, Zhao X, Wang H, Liu H, Sui Z, Yan B, Du Y. Total Synthesis of the Proposed Microcyclamides MZ602 and MZ568. J Org Chem 2021; 86:1065-1073. [PMID: 33295775 DOI: 10.1021/acs.joc.0c02541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first convergent total synthesis for the proposed structures of microcyclamides MZ602 (1) and MZ568 (2) has been accomplished in 11 linear steps with 12.5 and 16.8% overall yield, respectively. Key features of the syntheses include a one-pot cascade reaction to construct core Boc-l-Ile-Thz-OAllyl fragment 5, and a removable pseudoproline (ΨMe,Me pro) inducer assisted cyclization of thiazole-containing all-l linear peptides. The spectral data (1H NMR, 13C NMR, and HRMS) of synthetic MZ602 (1) were quite similar to those of the proposed natural microcyclamide MZ602, except to an opposite sign of the optical rotation value. Surprisingly, the synthetic MZ568 (2) presented large discrepancies in characteristic spectral data from those of the reported natural product, although the absolute configuration of key intermediate 36 was unambiguously determined by single-crystal X-ray analysis in our work. These findings revealed that the proposed structures of natural microcyclamides MZ602 and MZ568 required revision.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiangyun Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Huili Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Zhuyin Sui
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Bingfei Yan
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Burberg C, Petzoldt T, von Elert E. Phosphate Limitation Increases Content of Protease Inhibitors in the Cyanobacterium Microcystis aeruginosa. Toxins (Basel) 2020; 12:E33. [PMID: 31935921 PMCID: PMC7020438 DOI: 10.3390/toxins12010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/21/2019] [Accepted: 01/01/2020] [Indexed: 01/12/2023] Open
Abstract
Increased anthropogenic nutrient input has led to eutrophication of lakes and ponds, resulting worldwide in more frequent and severe cyanobacterial blooms. In particular, enhanced availability of phosphorus (P) can promote cyanobacterial mass developments and may affect the content of secondary metabolites in cyanobacteria, such as protease inhibitors (PIs). PIs are common among cyanobacteria and have been shown to negatively affect herbivorous zooplankton. Here, we test the hypothesis that P-limitation reduces the growth of Microcystis, but increases the content of PIs. In batch culture experiments with eight different initial phosphate concentrations (5-75 µM) we determined growth, stoichiometry, and PI content of Microcystis aeruginosa NIVA Cya 43. This strain produces the protease inhibitor BN920 that is converted by chlorination to CP954, which constitutes the major PI in this strain. C:N:P-ratios of the biomass indicated variation of P-limitation with treatment and time. When normalized to biomass, the PI content varied up to nearly nineteen-fold with treatment and time and was highest in the low-P treatments, especially during the mid-exponential growth phase. However, these effects were alleviated under nitrogen co-limitation. The content of CP954 showed an inverse u-shaped response to growth rate and C:N-ratio of the cyanobacterial biomass, whereas it increased with cyanobacterial C:P. The results indicate that P-limitation supports a higher content of defensive PIs and may indirectly foster cyanobacterial blooms by increasing the negative interference of cyanobacteria with their consumers.
Collapse
Affiliation(s)
- Christian Burberg
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, 50674 Cologne, Germany;
| | - Thomas Petzoldt
- Institute of Hydrobiology, Technische Universität (TU) Dresden, 01062 Dresden, Germany;
| | - Eric von Elert
- Workgroup Aquatic Chemical Ecology, Institute for Zoology, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
6
|
Thuan NH, An TT, Shrestha A, Canh NX, Sohng JK, Dhakal D. Recent Advances in Exploration and Biotechnological Production of Bioactive Compounds in Three Cyanobacterial Genera: Nostoc, Lyngbya, and Microcystis. Front Chem 2019; 7:604. [PMID: 31552222 PMCID: PMC6734169 DOI: 10.3389/fchem.2019.00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria, are only Gram-negative bacteria with the capacity of oxygenic photosynthesis, so termed as “Cyanophyta” or “blue-green algae.” Their habitat is ubiquitous, which includes the diverse environments, such as soil, water, rock and other organisms (symbiosis, commensalism, or parasitism, etc.,). They are characterized as prominent producers of numerous types of important compounds with anti-microbial, anti-viral, anti-inflammatory and anti-tumor properties. Among the various cyanobacterial genera, members belonging to genera Nostoc, Lyngbya, and Microcystis possess greater attention. The major reason for that is the strains belonging to these genera produce the compounds with diverse activities/structures, including compounds in preclinical and/or clinical trials (cryptophycin and curacin), or the compounds retaining unique activities such as protease inhibitor (micropeptins and aeruginosins). Most of these compounds were tested for their efficacy and mechanism of action(MOA) through in vitro and/or in vivo studies. Recently, the advances in culture techniques of these cyanobacteria, and isolation, purification, and chromatographic analysis of their compounds have revealed insurmountable novel bioactive compounds from these cyanobacteria. This review provides comprehensive update on the origin, isolation and purification methods, chemical structures and biological activities of the major compounds from Nostoc, Lyngbya, and Microcystis. In addition, multi-omics approaches and biotechnological production of compounds from selected cyanobacterial genera have been discussed.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Tran Tuan An
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam, South Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
| |
Collapse
|
7
|
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17:E320. [PMID: 31151260 PMCID: PMC6627551 DOI: 10.3390/md17060320] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin's lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Collapse
Affiliation(s)
- Justine Demay
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| | - Anita Reinhardt
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Benjamin Marie
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| |
Collapse
|
8
|
Gallegos DA, Saurí J, Cohen RD, Wan X, Videau P, Vallota-Eastman AO, Shaala LA, Youssef DTA, Williamson RT, Martin GE, Philmus B, Sikora AE, Ishmael JE, McPhail KL. Jizanpeptins, Cyanobacterial Protease Inhibitors from a Symploca sp. Cyanobacterium Collected in the Red Sea. JOURNAL OF NATURAL PRODUCTS 2018; 81:1417-1425. [PMID: 29808677 PMCID: PMC7847313 DOI: 10.1021/acs.jnatprod.8b00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC50 = 72 nM to 1 μM) compared to chymotrypsin (IC50 = 1.4 to >10 μM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.
Collapse
Affiliation(s)
- David A. Gallegos
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan D. Cohen
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc.,126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Xuemei Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD 57042
| | - Alec O. Vallota-Eastman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lamiaa A. Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - R. Thomas Williamson
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc.,126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gary E. Martin
- Structure Elucidation Group, Process and Analytical Research and Development, Merck & Co., Inc.,126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jane E. Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
9
|
Inhibitors of Serine Proteases from a Microcystis sp. Bloom Material Collected from Timurim Reservoir, Israel. Mar Drugs 2017; 15:md15120371. [PMID: 29194403 PMCID: PMC5742831 DOI: 10.3390/md15120371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/13/2023] Open
Abstract
Two new natural products, micropeptin TR1058 (1) and aeruginosin TR642 (2), were isolated from the hydrophilic extract of bloom material of Microcystis sp. collected from the Timurim water reservoir in Israel. The structures of compounds 1 and 2 were determined using 1D and 2D NMR spectroscopy and HR ESI MS and MS/MS techniques. Micropeptin TR1058 (1) was extremely unstable under the isolation conditions, and several degradation products were identified. NMR analysis of aeruginosin TR642 (2) revealed a mixture of eight isomers, and elucidation of its structure was challenging. Aeruginosin TR642 contains a 4,5-didehydroaraginal subunit that has not been described before. Micropeptin TR1058 (1) inhibited chymotrypsin with an IC50 of 6.78 µM, and aeruginosin TR642 (2) inhibited trypsin and thrombin with inhibition concentration (IC50) values of 3.80 and 0.85 µM, respectively. The structures and biological activities of the new compounds are discussed.
Collapse
|
10
|
Berlinck RGS, Romminger S. The chemistry and biology of guanidine natural products. Nat Prod Rep 2016; 33:456-90. [DOI: 10.1039/c5np00108k] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group.
Collapse
Affiliation(s)
| | - Stelamar Romminger
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| |
Collapse
|
11
|
Luo D, Chen QY, Luesch H. Total Synthesis of the Potent Marine-Derived Elastase Inhibitor Lyngbyastatin 7 and in Vitro Biological Evaluation in Model Systems for Pulmonary Diseases. J Org Chem 2015; 81:532-44. [PMID: 26709602 DOI: 10.1021/acs.joc.5b02386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lyngbyastatin 7 (1) is a marine cyanobacteria-derived lariat-type cyclic depsipeptide of which the macrocyclic core possesses modified amino acids, including a featured 3-amino-6-hydroxy-2-piperidone (Ahp) moiety and a (Z)-2-amino-2-butenoic acid (Abu) moiety. The first total synthesis of 1 was successfully established via 31 steps, and the conditions of several crucial steps were optimized to ensure smooth operations. The previously reported structural assignment and elastase inhibitory activity of the isolated natural product were confirmed. According to the extensive in vitro biological evaluation, compound 1 displayed low nanomolar IC50 in blocking elastase activity and strong ability in protecting bronchial epithelial cells against elastase-induced antiproliferation and abrogating the elastase-triggered induction of pro-inflammatory cytokine expression. Its overall performance was superior over sivelestat, the only approved small molecule drug targeting elastase, which indicated its potential in developing as a pharmacotherapeutic against elastase-mediated pathologies. The success in total synthesis, designed with a novel convergent strategy, not only overcame the supply issue for thorough preclinical studies but also paved the way for convenient synthesis of analogues with improved potency and druglike properties.
Collapse
Affiliation(s)
- Danmeng Luo
- Department of Medicinal Chemistry, University of Florida , Gainesville, Florida 32610, United States.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida , Gainesville, Florida 32610, United States.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida , Gainesville, Florida 32610, United States.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
12
|
Elkobi-Peer S, Carmeli S. New prenylated aeruginosin, microphycin, anabaenopeptin and micropeptin analogues from a Microcystis bloom material collected in Kibbutz Kfar Blum, Israel. Mar Drugs 2015; 13:2347-75. [PMID: 25884445 PMCID: PMC4413215 DOI: 10.3390/md13042347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022] Open
Abstract
Thirteen new and eighteen known natural products were isolated from a bloom material of an assembly of various Microcystis spp. collected in November, 2008, from a commercial fishpond near Kibbutz Kfar Blum, the Jordan Valley, Israel. The new natural products included the prenylated aeruginosin KB676 (1), microphycin KB921 (2), anabaenopeptins KB906 (3) and KB899 (4) and micropeptins KB928 (5), KB956 (6), KB970A (7), KB970B (8), KB984 (9), KB970C (10), KB1048 (11), KB992 (12) and KB1046 (13). Their structures were elucidated primarily by interpretation of their 1D and 2D nuclear magnetic resonance spectra and high-resolution mass spectrometry. Marfey's and chiral-phase high performance liquid chromatography methods were used to determine the absolute configurations of their chiral centers. Aeruginosin KB676 (1) contains the rare (2S,3aS,6S,7aS)-Choi and is the first prenylated aeruginosin derivative described in the literature. Compounds 1 and 5-11 inhibited trypsin with sub-μM IC50s, while Compounds 11-13 inhibited chymotrypsin with sub-μM IC50s. The structures and biological activities of the new natural products and our procedures of dereplication are described.
Collapse
Affiliation(s)
- Shira Elkobi-Peer
- Raymond and Beverly Sackler Faculty of Exact Sciences, Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - Shmuel Carmeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Thorskov Bladt T, Kalifa-Aviv S, Ostenfeld Larsen T, Carmeli S. Micropeptins from Microcystis sp. collected in Kabul Reservoir, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Adiv S, Carmeli S. Protease inhibitors from Microcystis aeruginosa bloom material collected from the Dalton Reservoir, Israel. JOURNAL OF NATURAL PRODUCTS 2013; 76:2307-2315. [PMID: 24261937 DOI: 10.1021/np4006844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nine new metabolites, aeruginosins DA495A (1), DA511 (2), DA642A (3), DA642B (4), DA688 (5), DA722 (6), and DA495B (7), microguanidine DA368 (8), and anabaenopeptin DA850 (9), were isolated along with the known micropeptins MZ924, MZ939A, and MZ1019, cyanopeptolins S and SS, microcin SF608, and aeruginazoles DA1497, DA1304, and DA1274 from bloom material of the cyanobacterium Microcystis aeruginosa collected from the Dalton reservoir, Israel, in October 2007. Their structures were elucidated by a combination of various spectroscopic techniques, primarily NMR and MS, while the absolute configurations of the asymmetric centers were determined by Marfey's and chiral-phase HPLC methods. Two of the new aeruginosins, DA511 (1) and DA495A (2), contain a new Choi isomer, (2S,3aS,6S,7aS)-Choi. The structure elucidation and biological activities of the new metabolites are described.
Collapse
Affiliation(s)
- Simi Adiv
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel-Aviv University , Ramat Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|