1
|
Targos K, Gogoi AR, Ángel Rentería-Gómez, Kim MJ, Gutierrez O, Wickens ZK. Mechanism of Z-Selective Allylic Functionalization via Thianthrenium Salts. J Am Chem Soc 2024; 146:13689-13696. [PMID: 38739163 DOI: 10.1021/jacs.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A detailed mechanistic study of the Z-selective allylic functionalization via thianthrenium salts is presented. Kinetic analyses, deuterium labeling experiments, and computational methods are used to rationalize the observed reactivity and selectivity. We find that the reaction proceeds via a rate-determining and stereodetermining allylic deprotonation of an alkenylthianthrenium species. The Z-configuration of the resultant allylic ylide is translated into the Z-allylic amine product through a sequence of subsequent fast and irreversible steps: protonation to form a Z-allylic thianthrenium electrophile and then regioselective substitution by the nucleophile. In the stereodetermining deprotonation step, computational studies identified a series of stabilizing nonbonding interactions in the Z-alkene-forming transition state that contribute to the stereoselectivity.
Collapse
Affiliation(s)
- Karina Targos
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Min Ji Kim
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Beč A, Zlatić K, Banjanac M, Radovanović V, Starčević K, Kralj M, Hranjec M. Design, Synthesis and Biological Activity of Novel Methoxy- and Hydroxy-Substituted N-Benzimidazole-Derived Carboxamides. Molecules 2024; 29:2138. [PMID: 38731629 PMCID: PMC11085308 DOI: 10.3390/molecules29092138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 μM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 μM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 μM).
Collapse
Affiliation(s)
- Anja Beč
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia;
| | - Katarina Zlatić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.Z.); (M.K.)
| | - Mihailo Banjanac
- Pharmacology In Vitro, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (M.B.); (V.R.)
| | - Vedrana Radovanović
- Pharmacology In Vitro, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (M.B.); (V.R.)
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.Z.); (M.K.)
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Sempsrott PJ, Trinh BB, Lovitt CF, Capra NE, Girolami GS. An osmium(II) methane complex: Elucidation of the methane coordination mode. SCIENCE ADVANCES 2023; 9:eadg8130. [PMID: 37294762 DOI: 10.1126/sciadv.adg8130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
The activation of inert C─H bonds by transition metals is of considerable industrial and academic interest, but important gaps remain in our understanding of this reaction. We report the first experimental determination of the structure of the simplest hydrocarbon, methane, when bound as a ligand to a homogenous transition metal species. We find that methane binds to the metal center in this system through a single M···H-C bridge; changes in the 1JCH coupling constants indicate clearly that the structure of the methane ligand is significantly perturbed relative to the free molecule. These results are relevant to the development of better C─H functionalization catalysts.
Collapse
Affiliation(s)
- Peter J Sempsrott
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Brian B Trinh
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Charity Flener Lovitt
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- School of Science, Technology, Engineering & Mathematics, University of Washington Bothell, Bothell, WA 98011, USA
| | - Nicolas E Capra
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Gregory S Girolami
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Song J, Lu G, Yang B, Bai M, Li J, Wang F, Lei T, Jiang S. A concise first total synthesis of luteoride A and luteoride B. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Li T, Song J, Wang L, Lei T, Jiang S, Wang F. A simple and efficient total synthesis of anticancer indole alkaloids TMC-205 and its analogues. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Gangani AJ, Kumar P, Fernandes RA. Concise Stereoselective Synthesis of β-Hydroxy-γ-lactones: (4 R,5 R)-4-Hydroxy-γ-decalactone from the Japanese Orange Fly and Enantiomers of Arachnid Harvestmen Isolates. JOURNAL OF NATURAL PRODUCTS 2021; 84:120-125. [PMID: 33390009 DOI: 10.1021/acs.jnatprod.0c01207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The naturally occurring (4R,5R)-4-hydroxy-γ-decalactone from the Japanese orange fly and the antipode of (4S,5R)-4-hydroxy-γ-dodecalactone from the harvestmen arachnid and their stereoisomers are synthesized from the chiral pool material d-glucono-δ-lactone in a few steps. The one-pot conversion of the latter to γ-vinyl-β-hydroxy-γ-lactone, cross-metathesis with requisite olefin, and hydrogenation enabled the synthesis of syn-lactones in just a two-pot operation. An additional efficient Pd-catalyzed allylic isomerization of γ-vinyl-β-hydroxy-γ-lactone led to the anti-lactones in high yields.
Collapse
Affiliation(s)
- Ashvin J Gangani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| |
Collapse
|
8
|
Xie S, Ning C, Yu Q, Hou J, Xu J. Protecting‐Group‐Free
Total Synthesis and Biological Investigation of Cabucine Oxindole A
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shengling Xie
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Qingzhen Yu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Jieping Hou
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Fernandes RA, Kumar P, Choudhary P. Evolution of Strategies in Protecting‐Group‐Free Synthesis of Natural Products: A Recent Update. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Priyanka Choudhary
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| |
Collapse
|
10
|
Liu Q, Liu L, Ratnayake R, Luesch H, Guo Y, Ye T. Nine‐Step
Total Synthesis and Biological Evaluation of Rhizonin A. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingchao Liu
- Department of Pharmaceutical Engineering, Northwest University 229 Taibai North Road Xi'an Shaanxi 710069 China
| | - Langlang Liu
- Department of Pharmaceutical Engineering, Northwest University 229 Taibai North Road Xi'an Shaanxi 710069 China
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Xili, Shenzhen Guangdong 518055 China
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida Gainesville, Florida 32610 United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida Gainesville, Florida 32610 United States
| | - Yian Guo
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Xili, Shenzhen Guangdong 518055 China
| | - Tao Ye
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Xili, Shenzhen Guangdong 518055 China
| |
Collapse
|
11
|
Fernandes RA, Kumar P, Choudhary P. Advances in catalytic and protecting-group-free total synthesis of natural products: a recent update. Chem Commun (Camb) 2020; 56:8569-8590. [PMID: 32537619 DOI: 10.1039/d0cc02659j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Catalytic processes in protecting-group-free syntheses of natural products are fast emerging towards achieving the goal of efficiency and economy in total synthesis. Present day sustainable development in synthesis of natural products does not permit the luxury of using stoichiometric reagents and protecting groups. Catalysis and step-economy can contribute significantly toward economy and efficiency of synthesis. This feature article details the ingenious efforts by many researchers in the last couple of years toward concise total syntheses, based on catalytic steps and protecting-group-free-strategies. These would again serve as guidelines in future development of reagents and catalysts aimed at achieving higher efficiency and chemoselectivity to the point that catalysis and protecting-group-free synthesis will be an accepted common practice.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| | | | | |
Collapse
|
12
|
Hu YJ, Li LX, Han JC, Min L, Li CC. Recent Advances in the Total Synthesis of Natural Products Containing Eight-Membered Carbocycles (2009-2019). Chem Rev 2020; 120:5910-5953. [PMID: 32343125 DOI: 10.1021/acs.chemrev.0c00045] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
13
|
Zhang X, Cai X, Huang B, Guo L, Gao Z, Jia Y. Enantioselective Total Syntheses of Pallambins A–D. Angew Chem Int Ed Engl 2019; 58:13380-13384. [DOI: 10.1002/anie.201907523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Xiwu Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Xinxian Cai
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bin Huang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Lei Guo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Zhongrun Gao
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
14
|
Zhang X, Cai X, Huang B, Guo L, Gao Z, Jia Y. Enantioselective Total Syntheses of Pallambins A–D. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiwu Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Xinxian Cai
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bin Huang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Lei Guo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Zhongrun Gao
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
15
|
Miyagawa M, Yoshida M, Kiyota Y, Akiyama T. Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with N‐Unprotected Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry 2019; 25:5677-5681. [DOI: 10.1002/chem.201901020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Masamichi Miyagawa
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Masaru Yoshida
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Yuki Kiyota
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Takahiko Akiyama
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
16
|
Xie S, Chen G, Yan H, Hou J, He Y, Zhao T, Xu J. 13-Step Total Synthesis of Atropurpuran. J Am Chem Soc 2019; 141:3435-3439. [DOI: 10.1021/jacs.9b00391] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shengling Xie
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gui Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hao Yan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jieping Hou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongping He
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tongyun Zhao
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
|
18
|
Abstract
Total syntheses of biologically and structurally fascinating sesterterpenoids published between Jan. 2012 and Jan. 2018 are summarized and discussed here.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
- Department of Chemistry and Shenzhen Grubbs Institute
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
19
|
Hayama N, Kuramoto R, Földes T, Nishibayashi K, Kobayashi Y, Pápai I, Takemoto Y. Mechanistic Insight into Asymmetric Hetero-Michael Addition of α,β-Unsaturated Carboxylic Acids Catalyzed by Multifunctional Thioureas. J Am Chem Soc 2018; 140:12216-12225. [PMID: 30215516 DOI: 10.1021/jacs.8b07511] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carboxylic acids and their corresponding carboxylate anions are generally utilized as Brønsted acids/bases and oxygen nucleophiles in organic synthesis. However, a few asymmetric reactions have used carboxylic acids as electrophiles. Although chiral thioureas bearing both arylboronic acid and tertiary amine were found to promote the aza-Michael addition of BnONH2 to α,β-unsaturated carboxylic acids with moderate to good enantioselectivities, the reaction mechanism remains to be clarified. Detailed investigation of the reaction using spectroscopic analysis and kinetic studies identified tetrahedral borate complexes, comprising two carboxylate anions, as reaction intermediates. We realized a dramatic improvement in product enantioselectivity with the addition of 1 equiv of benzoic acid. In this aza-Michael reaction, the boronic acid not only activates the carboxylate ligand as a Lewis acid, together with the thiourea NH-protons, but also functions as a Brønsted base through a benzoyloxy anion to activate the nucleophile. Moreover, molecular sieves were found to play an important role in generating the ternary borate complexes, which were crucial for obtaining high enantioselectivity as demonstrated by DFT calculations. We also designed a new thiourea catalyst for the intramolecular oxa-Michael addition to suppress another catalytic pathway via a binary borate complex using steric hindrance between the catalyst and substrate. Finally, to demonstrate the synthetic versatility of both hetero-Michael additions, we used them to accomplish the asymmetric synthesis of key intermediates in pharmaceutically important molecules, including sitagliptin and α-tocopherol.
Collapse
Affiliation(s)
- Noboru Hayama
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Ryuta Kuramoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Tamás Földes
- Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2 , H-1117 Budapest , Hungary
| | - Kazuya Nishibayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2 , H-1117 Budapest , Hungary
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
20
|
Hu X, Lim P, Fairhurst RM, Maimone TJ. Synthesis and Study of the Antimalarial Cardamom Peroxide. Tetrahedron 2018; 74:3358-3369. [PMID: 30319159 PMCID: PMC6181145 DOI: 10.1016/j.tet.2018.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A full account of our previously disclosed synthesis of the monoterpene dimer cardamom peroxide is reported. Inspired by hypotheses regarding the potential biosynthetic origins of this natural product, several unproductive routes are also reported. The chemical reactivity of this structurally unique metabolite in the presence of iron(II) sources is also reported as is its antimalarial activity against Plasmodium falciparum clinical isolates from several Cambodian provinces.
Collapse
Affiliation(s)
- Xirui Hu
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720 (USA)
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD (USA)
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD (USA)
| | - Thomas J Maimone
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720 (USA)
| |
Collapse
|
21
|
Bihelovic F, Vulovic B, Saicic RN. Gold(I)-Catalyzed C−O/C−C Bond-Forming Domino Reactions and Their Synthetic Applications. Isr J Chem 2017. [DOI: 10.1002/ijch.201700033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Filip Bihelovic
- Faculty of Chemistry; University of Belgrade; Studentski trg 16, P.O. Box 51 11158 Belgrade Serbia
| | - Bojan Vulovic
- Faculty of Chemistry; University of Belgrade; Studentski trg 16, P.O. Box 51 11158 Belgrade Serbia
| | - Radomir N. Saicic
- Faculty of Chemistry; University of Belgrade; Studentski trg 16, P.O. Box 51 11158 Belgrade Serbia
- Serbian Academy of Sciences and Arts; Knez Mihailova 35 Belgrade
| |
Collapse
|
22
|
Merad J, Borkar P, Caijo F, Pons JM, Parrain JL, Chuzel O, Bressy C. Double Catalytic Kinetic Resolution (DoCKR) of Acyclic anti
-1,3-Diols: The Additive Horeau Amplification. Angew Chem Int Ed Engl 2017; 56:16052-16056. [DOI: 10.1002/anie.201709844] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Jérémy Merad
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Prashant Borkar
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Frédéric Caijo
- DemetaSAS; 6 rue Pierre Joseph Colin, Biopole 35500 Rennes France
| | - Jean-Marc Pons
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Jean-Luc Parrain
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Cyril Bressy
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| |
Collapse
|
23
|
Merad J, Borkar P, Caijo F, Pons JM, Parrain JL, Chuzel O, Bressy C. Double Catalytic Kinetic Resolution (DoCKR) of Acyclic anti
-1,3-Diols: The Additive Horeau Amplification. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jérémy Merad
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Prashant Borkar
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Frédéric Caijo
- DemetaSAS; 6 rue Pierre Joseph Colin, Biopole 35500 Rennes France
| | - Jean-Marc Pons
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Jean-Luc Parrain
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| | - Cyril Bressy
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; Marseille France
| |
Collapse
|
24
|
Kim SW, Zhang W, Krische MJ. Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier. Acc Chem Res 2017; 50:2371-2380. [PMID: 28792731 DOI: 10.1021/acs.accounts.7b00308] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merging the characteristics of transfer hydrogenation and carbonyl addition, we have developed a new class of catalytic enantioselective C-C bond formations. In these processes, hydrogen transfer between alcohols and π-unsaturated reactants generates carbonyl-organometal pairs that combine to deliver products of addition. On the basis of this mechanistic paradigm, lower alcohols are converted directly to higher alcohols in the absence of premetalated reagents or discrete alcohol-to-carbonyl redox reactions. In certain cases, due to a pronounced kinetic preference for primary versus secondary alcohol dehydrogenation, diols and higher polyols are found to engage in catalytic stereo- and site-selective C-C bond formation-a capability that further enhances efficiency by enabling skeletal construction events without extraneous manipulations devoted to the installation and removal of protecting groups. While this Account focuses on redox-neutral couplings of alcohols, corresponding aldehyde reductive couplings mediated by 2-propanol were developed in parallel for most of the catalytic transformations reported herein. Mechanistically, two distinct classes of alcohol C-H functionalizations have emerged, which are distinguished by the mode of pronucleophile activation, specifically, processes wherein alcohol oxidation is balanced by (a) π-bond hydrometalation or (b) C-X bond reductive cleavage. Each pathway offers access to allylmetal or allenylmetal intermediates and, therefrom, enantiomerically enriched homoallylic or homopropargylic alcohol products, respectively. In the broadest terms, carbonyl addition mediated by premetalated reagents has played a central role in synthetic organic chemistry for well over a century, but the requisite organometallic reagents pose issues of safety, require multistep syntheses, and generate stoichiometric quantities of metallic byproducts. The concepts and catalytic processes described in this Account, conceived and developed wholly within the author's laboratory, signal a departure from the use of stoichiometric organometallic reagents in carbonyl addition. Rather, they reimagine carbonyl addition as a hydrogen autotransfer process or cross-coupling in which alcohol reactants, by virtue of their native reducing ability, drive the generation of transient organometallic nucleophiles and, in doing so, serve dually as carbonyl proelectrophiles. The catalytic allylative and propargylative transformations developed to date display capabilities far beyond their classical counterparts, and their application to the total synthesis of type-I polyketide natural products have evoked a step-change in efficiency. More importantly, the present data suggest that diverse transformations traditionally reliant on premetalated reagents may now be conducted catalytically without stoichiometric metals. This Account provides the reader and potential practitioner with a catalog of enantioselective alcohol-mediated carbonyl additions-a user's guide, 10-year retrospective, and foundation for future work in this emerging area of catalytic C-C bond formation.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Chemistry, University of Texas at Austin, Welch
Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Wandi Zhang
- Department of Chemistry, University of Texas at Austin, Welch
Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, Welch
Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Green RA, Jolley KE, Al-Hadedi AAM, Pletcher D, Harrowven DC, De Frutos O, Mateos C, Klauber DJ, Rincón JA, Brown RCD. Electrochemical Deprotection of para-Methoxybenzyl Ethers in a Flow Electrolysis Cell. Org Lett 2017; 19:2050-2053. [DOI: 10.1021/acs.orglett.7b00641] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robert A. Green
- Department
of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, U.K
| | - Katherine E. Jolley
- Department
of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, U.K
| | - Azzam A. M. Al-Hadedi
- Department
of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, U.K
| | - Derek Pletcher
- Department
of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, U.K
| | - David C. Harrowven
- Department
of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, U.K
| | - Oscar De Frutos
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, 28108 Alcobendas-Madrid, Spain
| | - Carlos Mateos
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, 28108 Alcobendas-Madrid, Spain
| | - David J. Klauber
- Early Chemical Development,
AstraZeneca, Charter Way, Macclesfield, SK10 2NA, U.K
| | - Juan A. Rincón
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, 28108 Alcobendas-Madrid, Spain
| | - Richard C. D. Brown
- Department
of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, U.K
| |
Collapse
|
26
|
Hao HD, Trauner D. Furans as Versatile Synthons: Total Syntheses of Caribenol A and Caribenol B. J Am Chem Soc 2017; 139:4117-4122. [DOI: 10.1021/jacs.7b00234] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hong-Dong Hao
- Department of Chemistry and Center for
Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstrasse
5-13, 81377 München, Germany
| | - Dirk Trauner
- Department of Chemistry and Center for
Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstrasse
5-13, 81377 München, Germany
| |
Collapse
|
27
|
Shin I, Hong S, Krische MJ. Total Synthesis of Swinholide A: An Exposition in Hydrogen-Mediated C-C Bond Formation. J Am Chem Soc 2016; 138:14246-14249. [PMID: 27779393 PMCID: PMC5096380 DOI: 10.1021/jacs.6b10645] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diverse hydrogen-mediated C-C couplings enable construction of the actin-binding marine polyketide swinholide A in only 15 steps (longest linear sequence), roughly half the steps required in two prior total syntheses. The redox-economy, chemo- and stereoselectivity embodied by this new class of C-C couplings are shown to evoke a step-change in efficiency.
Collapse
Affiliation(s)
- Inji Shin
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Suckchang Hong
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
28
|
Feng J, Noack F, Krische MJ. Modular Terpenoid Construction via Catalytic Enantioselective Formation of All-Carbon Quaternary Centers: Total Synthesis of Oridamycin A, Triptoquinones B and C, and Isoiresin. J Am Chem Soc 2016; 138:12364-7. [PMID: 27632643 DOI: 10.1021/jacs.6b08902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Total syntheses of oridamycin A, triptoquinones B and C, and isoiresin are accomplished from a common intermediate prepared via iridium-catalyzed alcohol C-H tert-(hydroxy)prenylation - a byproduct-free process that forms an all-carbon quaternary stereocenter with excellent control of diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Jiajie Feng
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Florian Noack
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
29
|
Wang G, Krische MJ. Total Synthesis of (+)-SCH 351448: Efficiency via Chemoselectivity and Redox-Economy Powered by Metal Catalysis. J Am Chem Soc 2016; 138:8088-91. [PMID: 27337561 PMCID: PMC4935581 DOI: 10.1021/jacs.6b04917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The polyketide natural product (+)-SCH 351448, a macrodiolide ionophore bearing 14 stereogenic centers, is prepared in 14 steps (LLS). In eight prior syntheses, 22-32 steps were required. Multiple chemoselective and redox-economic functional group interconversions collectively contribute to a step-change in efficiency.
Collapse
Affiliation(s)
- Gang Wang
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
30
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Feng J, Kasun ZA, Krische MJ. Enantioselective Alcohol C-H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis. J Am Chem Soc 2016; 138:5467-78. [PMID: 27113543 PMCID: PMC4871165 DOI: 10.1021/jacs.6b02019] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development and application of stereoselective and site-selective catalytic methods that directly convert lower alcohols to higher alcohols are described. These processes merge the characteristics of transfer hydrogenation and carbonyl addition, exploiting alcohols and π-unsaturated reactants as redox pairs, which upon hydrogen transfer generate transient carbonyl-organometal pairs en route to products of C-C coupling. Unlike classical carbonyl additions, stoichiometric organometallic reagents and discrete alcohol-to-carbonyl redox reactions are not required. Additionally, due to a kinetic preference for primary alcohol dehydrogenation, the site-selective modification of glycols and higher polyols is possible, streamlining or eliminating use of protecting groups. The total syntheses of several iconic type I polyketide natural products were undertaken using these methods. In each case, the target compounds were prepared in significantly fewer steps than previously achieved.
Collapse
Affiliation(s)
- Jiajie Feng
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Zachary A. Kasun
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
32
|
Liu W, Li H, Cai PJ, Wang Z, Yu ZX, Lei X. Scalable Total Synthesis of rac
-Jungermannenones B and C. Angew Chem Int Ed Engl 2016; 55:3112-6. [DOI: 10.1002/anie.201511659] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Weilong Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| | - Houhua Li
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| | - Pei-Jun Cai
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhen Wang
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| | - Zhi-Xiang Yu
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| |
Collapse
|
33
|
Liu W, Li H, Cai PJ, Wang Z, Yu ZX, Lei X. Scalable Total Synthesis of rac
-Jungermannenones B and C. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Weilong Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| | - Houhua Li
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| | - Pei-Jun Cai
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhen Wang
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| | - Zhi-Xiang Yu
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- National Institute of Biological Sciences (NIBS); Beijing 102206 China
| |
Collapse
|
34
|
Hong S, Krische MJ. Beyond Protecting Groups in Metal Catalyzed C-C Coupling: Direct Anomeric Propargylation of Aldoses. ACS CENTRAL SCIENCE 2016; 2:12-13. [PMID: 27163021 PMCID: PMC4827466 DOI: 10.1021/acscentsci.6b00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
35
|
Huang B, Guo L, Jia Y. Protecting-Group-Free Enantioselective Synthesis of (−)-Pallavicinin and (+)-Neopallavicinin. Angew Chem Int Ed Engl 2015; 54:13599-603. [DOI: 10.1002/anie.201506575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 12/17/2022]
|
36
|
Huang B, Guo L, Jia Y. Protecting-Group-Free Enantioselective Synthesis of (−)-Pallavicinin and (+)-Neopallavicinin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Benedeković G, Kovačević I, Popsavin M, Francuz J, Kojić V, Bogdanović G, Popsavin V. Divergent total synthesis of crassalactones B and C and evaluation of their antiproliferative activity. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Christmann M, Hu J, Kitamura M, Stoltz B. Tetrahedron reports on organic chemistry. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Maimone TJ, Ishihara Y, Baran PS. Scalable Total Syntheses of (-)-Hapalindole U and (+)-Ambiguine H. Tetrahedron 2015; 71:3652-3665. [PMID: 25983347 PMCID: PMC4430130 DOI: 10.1016/j.tet.2014.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Stigonemataceae family of cyanobacteria produces a class of biogenetically related indole natural products that include hapalindoles and ambiguines. In this full account, a practical route to the tetracyclic hapalindole family is presented by way of an eight-step, enantiospecific, protecting-group-free total synthesis of (-)-hapalindole U that features an oxidative indole-enolate coupling. With gram-scale access to hapalindole U, the first total synthesis of an ambiguine alkaloid, (+)-ambiguine H, was completed via an isonitrile-assisted prenylation of an indole followed by a photofragmentation cascade.
Collapse
Affiliation(s)
- Thomas J. Maimone
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
40
|
Merad J, Borkar P, Bouyon Yenda T, Roux C, Pons JM, Parrain JL, Chuzel O, Bressy C. Highly Enantioselective Acylation of Acyclic Meso 1,3-Diols through Synergistic Isothiourea-Catalyzed Desymmetrization/Chiroablative Kinetic Resolution. Org Lett 2015; 17:2118-21. [DOI: 10.1021/acs.orglett.5b00707] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jérémy Merad
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Prashant Borkar
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Tracy Bouyon Yenda
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Christèle Roux
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Marc Pons
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jean-Luc Parrain
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Cyril Bressy
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
41
|
Zhao YM, Maimone TJ. Short, enantioselective total synthesis of chatancin. Angew Chem Int Ed Engl 2015; 54:1223-6. [PMID: 25470723 PMCID: PMC4300267 DOI: 10.1002/anie.201410443] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/06/2022]
Abstract
An enantioselective total synthesis of the polycyclic diterpene (+)-chatancin, a potent PAF antagonist, is reported. Proceeding in seven steps from dihydrofarnesal, this synthetic route was designed to circumvent macrocyclization-based strategies to complex, cyclized cembranoids. The described synthesis requires only six chromatographic purifications, is high yielding, and avoids protecting-group manipulations. An X-ray crystal structure of this fragile marine natural product was obtained.
Collapse
Affiliation(s)
- Yu-Ming Zhao
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA 94720 (USA)
| | | |
Collapse
|
42
|
|