1
|
Long HP, Zhou X, Zhou SQ, Li LQ, Liang AL, Lu WY, Wang WX, Liu S, Li J, Liu JK. Five brasilane-type sesquiterpenoids with neuroprotective activities from Xylaria nigripes. PHYTOCHEMISTRY 2025; 231:114357. [PMID: 39662694 DOI: 10.1016/j.phytochem.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Five brasilane-type sesquiterpenoids, including four previously undescribed compounds named xylaribrasilaids A-D, along with a known analogue, were isolated from the ethyl acetate extracts of solid fermentation from Xylaria nigripes. X. nigripes, a traditional Chinese medicinal fungus utilized for treating various ailments such as insomnia, trauma, and depression, has garnered attention due to its pharmacological potential. Their structures and absolute configurations were elucidated through comprehensive spectroscopic analysis, including NMR, HRESIMS, and experimental ECD data. In vitro bioassays were conducted to assess the neuroprotective activities of these compounds against glutamate-induced damage in PC12 cells. Remarkably, all isolated compounds demonstrated significant enhancements in cell viability while concurrently inhibiting apoptosis. Moreover, they effectively attenuated oxidative stress markers, as evidenced by increased activities of superoxide dismutase and glutathione. Furthermore, these compounds displayed the capacity to mitigate intracellular reactive oxygen species accumulation, highlighting their potential in combating oxidative stress-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hong-Ping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, PR China
| | - Xi Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Si-Qian Zhou
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, PR China
| | - Lan-Qing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Ai-Lin Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wen-Yu Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Uchiyama A, Ohta H, Ogawa Y, Sasaki I, Sugimura H. Stereoselective Synthesis of Spirolactone Analogues of Pyrrolomorpholine Alkaloids. J Org Chem 2024; 89:12864-12870. [PMID: 39163643 DOI: 10.1021/acs.joc.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The synthesis of a spirolactone analogue of xylapyrraside B1, a potent antioxidant agent, is described. The key step is the stereoselective formation of the spirolactone skeleton via the formal [3+2] annulation of the isopropylidene-protected glyceraldehyde and δ-methylene lactone, mediated by trifluoroborane etherate. This study addresses the stereoselective synthesis of pyrrolomorpholine spiroketal alkaloids, enabling the production of these bioactive compounds and their analogues.
Collapse
Affiliation(s)
- Ami Uchiyama
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hikari Ohta
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuya Ogawa
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ikuo Sasaki
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hideyuki Sugimura
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
3
|
Li J, Jiang YP, Li LQ, Long HP, Liu HT, Yang R, Liu S, Wang WX, Liu JK. A pair of new chromone enantiomers from Xylaria nigripes. Nat Prod Res 2024; 38:128-134. [PMID: 35949107 DOI: 10.1080/14786419.2022.2110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
A pair of new chromone derivative enantiomers, (+)-xylarichromone A (1a) and (-)-xylarichromone A (1b), were isolated from the solid fermentation of Xylaria nigripes. The planar structure of 1 was determined by extensive NMR spectroscopic data, and its absolute configuration was assigned by comparison the ECD spectra with the known chromone derivatives. Compound 1 was the first chromone derivative reported from this medicinal fungus. The neuroprotective effects of 1 against oxygen and glucose deprivation (OGD) induced pheochromocytoma-12 cells (PC12) injury was investigated.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yue-Ping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lan-Qing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Hai-Tao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, PR China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yu L, Nakamura H. Short, Scalable Access to Pyrrovobasine. JACS AU 2023; 3:3000-3004. [PMID: 38034961 PMCID: PMC10685420 DOI: 10.1021/jacsau.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
A concise gram-scale synthesis of pyrrovobasine (1) is reported. Key transformations include a three-step decagram-scale synthesis of the tetracyclic compound, Mn-mediated direct radical cyclization, and the introduction of a naturally rare pyrraline structure. The synthesis is designed to be applicable to gram-scale synthesis using inexpensive and readily available reagents.
Collapse
Affiliation(s)
- Longhui Yu
- Department of Chemistry, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hugh Nakamura
- Department of Chemistry, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
Pyrrole-2-carboxaldehydes: Origins and Physiological Activities. Molecules 2023; 28:molecules28062599. [PMID: 36985566 PMCID: PMC10058459 DOI: 10.3390/molecules28062599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Pyrrole-2-carboxaldehyde (Py-2-C) derivatives have been isolated from many natural sources, including fungi, plants (roots, leaves, and seeds), and microorganisms. The well-known diabetes molecular marker, pyrraline, which is produced after sequential reactions in vivo, has a Py-2-C skeleton. Py-2-Cs can be chemically produced by the strong acid-catalyzed condensation of glucose and amino acid derivatives in vitro. These observations indicate the importance of the Py-2-C skeleton in vivo and suggest that molecules containing this skeleton have various biological functions. In this review, we have summarized Py-2-C derivatives based on their origins. We also discuss the structural characteristics, natural sources, and physiological activities of isolated compounds containing the Py-2-C group.
Collapse
|
6
|
Wang H, Xie J, Dong C, Lai S, Liu J, Shao H, Chen R, Kang J. Derivatives of sesquiterpenes, 2-furaldehyde, phenols, and alkaloids isolated from Taraxacum mongolicum. Fitoterapia 2023; 166:105463. [PMID: 36848964 DOI: 10.1016/j.fitote.2023.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Four new compounds (1-4), together with 23 known compounds (5-27), were isolated from the whole plant of Taraxacum mongolicum. Among them, one racemic mixture (4) was separated with a chiral HPLC column. Their structures were identified by spectroscopic evidence and mass spectrometry. The absolute configurations of compounds 1, 3, and 4 were determined via comparison of their calculated and experimental electronic circular dichroism (ECD) spectra. Compound 3 showed an inhibitory effect against aldose reductase with a 59.1% inhibition. Two known compounds (13 and 27) showed α-glucosidase inhibition of 51.5% and 56.0%, respectively.
Collapse
Affiliation(s)
- Hongqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Jun Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Chaoxuan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou Overseas Chinese Hospital, Jinan University, 613 W. Huangpu Avenue, Guangzhou, Guangdong Province 510630, China
| | - Shengtian Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Jianbo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Hongjie Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China
| | - Jie Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
7
|
Long H, Zhou S, Li L, Li J, Liu J. Two New Compounds from the Fungus Xylaria nigripes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020508. [PMID: 36677568 PMCID: PMC9862878 DOI: 10.3390/molecules28020508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
In the process of discovering more neural-system-related bioactive compounds from Xylaria nigripes, xylariamino acid A (1), a new amino acid derivative, and a new isovaleric acid phenethyl ester (2) were isolated and identified. Their structures and absolute configurations were determined by analyses of IR, HRESIMS, NMR spectroscopic data, and gauge-independent atomic orbital (GIAO) NMR calculation, as well as electronic circular dichroism (ECD) calculation. The isolated compounds were evaluated for their neuroprotective effects against damage to PC12 cells by oxygen and glucose deprivation (OGD). Compounds 1 and 2 can increase the viability of OGD-induced PC12 cells at all tested concentrations. Moreover, compound 2 (1 μmol L-1) can significantly reduce the percentage of apoptotic cells.
Collapse
Affiliation(s)
- Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Center for Medical Research and Innovation, Changsha 410007, China
| | - Siqian Zhou
- The First Hospital of Hunan University of Chinese Medicine, Center for Medical Research and Innovation, Changsha 410007, China
| | - Lanqing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (J.L.)
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (J.L.); (J.L.)
| |
Collapse
|
8
|
Kdimy A, El Yadini M, Guaadaoui A, Bourais I, El Hajjaji S, Le HV. Phytochemistry, Biological Activities, Therapeutic Potential, and Socio-Economic Value of the Caper Bush (Capparis spinosa L.). Chem Biodivers 2022; 19:e202200300. [PMID: 36064949 DOI: 10.1002/cbdv.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Capparis spinosa L., commonly known as the caper bush, is an aromatic plant growing in most of the Mediterranean basin and some parts of Western Asia. C. spinosa L. has been utilized as a medicinal plant for quite a long time in conventional phytomedicine. Polyphenols and numerous bioactive chemicals extracted from C. spinosa L. display various therapeutic properties that have made this plant a target for further research as a health promoter. This review is meant to systematically summarize the traditional uses, the phytochemical composition of C. spinosa L., and the diverse pharmacological activities, as well as the synthetic routes to derivatives of some identified chemical components for the improvement of biological activities and enhancement of pharmacokinetic profiles. This review also addresses the benefits of C. spinosa L. in adapting to climate change and the socio-economic value that C. spinosa L. brings to the rural economies of many countries.
Collapse
Affiliation(s)
- Ayoub Kdimy
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Meryem El Yadini
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Abdelkarim Guaadaoui
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Ilhame Bourais
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Souad El Hajjaji
- Mohammed V University of Rabat Faculty of Sciences: Universite Mohammed V de Rabat Faculte des Sciences, Faculty of Science, United Nations Avenue, Agdal, Rabat, MOROCCO
| | - Hoang V Le
- University of Mississippi School of Pharmacy, Department of BioMolecular Sciences, 419 Faser Hall, 38677, University, UNITED STATES
| |
Collapse
|
9
|
Antioxidant Activity and Cytotoxicity against Cancer Cell Lines of the Extracts from Novel Xylaria Species Associated with Termite Nests and LC-MS Analysis. Antioxidants (Basel) 2021; 10:antiox10101557. [PMID: 34679692 PMCID: PMC8533195 DOI: 10.3390/antiox10101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Xylaria species associated with termite nests or soil have been considered rare species in nature and the few which have been reported upon have been found to act as a rich source of bioactive metabolites. This study evaluated 10 ethyl acetate extracts of five new Xylaria species associated with termite nests or soil for their antioxidant activity, and cytotoxicity against different cancer and normal cell lines. DPPH and ABTS radical scavenging activities of the extracts demonstrated strong capacity with low IC50 values. The highest observed activities belonged to X. vinacea SWUF18-2.3 having IC50 values of 0.194 ± 0.031 mg/mL for DPPH assay and 0.020 ± 0.004 mg/mL for ABTS assay. Total phenolic content ranged from 0.826 ± 0.123 to 3.629 ± 0.381 g GAE/g crude extract which correlated with antioxidant activities. The high total phenolic content could contribute to the high antioxidant activities. Cytotoxicity was recorded against A549, HepG2, HeLa and PNT2 and resulted in broad spectrum to specific activity depending on the cell lines. The highest activities were observed with X. subintraflava SWUF16-11.1 which resulted in 11.15 ± 0.32 to 13.17 ± 2.37% cell viability at a concentration of 100 µg/mL. Moreover, LC-MS fingerprints indicated over 61 peaks from all isolates. There were 18 identified and 43 unidentified compounds compared to mass databases. The identified compounds were from various groups of diterpenoids, diterpenes, cytochalasin, flavones, flavonoids, polyphenols, steroids and derivatives, triterpenoids and tropones. These results indicate that Xylaria spp. has abundant secondary metabolites that could be further explored for their therapeutic properties.
Collapse
|
10
|
Acosta-Quiroga K, Rojas-Peña C, Nerio LS, Gutiérrez M, Polo-Cuadrado E. Spirocyclic derivatives as antioxidants: a review. RSC Adv 2021; 11:21926-21954. [PMID: 35480788 PMCID: PMC9034179 DOI: 10.1039/d1ra01170g] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/22/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, spiro compounds have attracted significant interest in medicinal chemistry due to their numerous biological activities attributed primarily to their versatility and structural similarity to important pharmacophore centers. Currently, the development of drugs with potential antioxidant activities is of great importance since numerous investigations have shown that oxidative stress is involved in the development and progression of numerous diseases such as cancer, senile cataracts, kidney failure, diabetes, high blood pressure, cirrhosis, and neurodegenerative diseases, among others. This article provides an overview of the synthesis and various antioxidant activities found in naturally occurring and synthetic spiro compounds. Among the antioxidant activities reviewed are DPPH, ABTS, FRAP, anti-LPO, superoxide, xanthine oxidase, peroxide, hydroxyl, and nitric oxide tests, among others. Molecules that presented best results for these tests were spiro compounds G14, C12, D41, C18, C15, D5, D11, E1, and C14. In general, most active compounds are characterized for having at least one oxygen atom; an important number of them (around 35%) are phenolic compounds, and in molecules where this functional group was absent, aryl ethers and nitrogen-containing functional groups such as amine and amides could be found. Recent advances in the antioxidant activity profiles of spiro compounds have shown that they have a significant position in discovering drugs with potential antioxidant activities.
Collapse
Affiliation(s)
- Karen Acosta-Quiroga
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Cristian Rojas-Peña
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Luz Stella Nerio
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
11
|
Li J, Li LQ, Long HP, Liu J, Jiang YP, Xue Y, Wang WX, Tan GS, Gong ZC, Liu JK. Xylarinaps A-E, five pairs of naphthalenone derivatives with neuroprotective activities from Xylaria nigripes. PHYTOCHEMISTRY 2021; 186:112729. [PMID: 33721798 DOI: 10.1016/j.phytochem.2021.112729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Five pairs of undescribed naphthalenone derivative enantiomers, xylarinaps A-E, including one pair of indole naphthalenones and four pairs of naphthalene-naphthalenone dimers, were isolated from the ethyl acetate extracts of the solid fermentation of Xylaria nigripes, which has been used as a traditional Chinese medicinal fungus for the treatment of insomnia, trauma, and depression. The structures of these enantiomers were elucidated based on comprehensive spectroscopic analysis, including NMR and HRESIMS. Their absolute configurations were assigned by the experimental and calculated ECD data. The neuroprotective effects of all the compounds against damage to PC12 cells by oxygen and glucose deprivation (OGD) were evaluated by an in vitro bioassay. The results revealed that xylarinaps A, B, D, and E significantly enhanced cell viability, decreased the levels of malondialdehyde (MDA), increased the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as further markedly inhibiting apoptosis, which indicated that these results could be the mode of action of their neuroprotective effect.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Lan-Qing Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, PR China
| | - Jian Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, PR China
| | - Yue-Ping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Gui-Shan Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
12
|
Li LQ, Li J, Long HP, Liu JK, Wang X. Four new resorcinol derivatives with neuroprotective activities from Xylaria nigripes. Nat Prod Res 2021; 36:1522-1528. [PMID: 33715538 DOI: 10.1080/14786419.2021.1897591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Four new resorcinol derivatives, namely (-)/(+)-xylarinig A (1), as well as xylarinigs B (2) and C (3), were isolated from the ethyl acetate extracts of the solid fermentation of Xylaria nigripes. Their structures were established by comprehensive spectroscopic analysis combined with electronic circular dichroism (ECD) calculations. Compound 1 is an optical mixture, and was resoluted into optical pure enatiomers (+)-1 and (-)-1 by chiral HPLC. The neuroprotective effects of 1-3 against the damage of PC12 cells induced by oxygen and glucose deprivation (OGD) were evaluated.
Collapse
Affiliation(s)
- Lan-Qing Li
- College of Chemistry & Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China
| | - Xian Wang
- College of Chemistry & Materials Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
13
|
Singh N, Singh S, Kohli S, Singh A, Asiki H, Rathee G, Chandra R, Anderson EA. Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020). Org Chem Front 2021. [DOI: 10.1039/d0qo01574a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review discusses total syntheses of pyrrole-containing natural products over the last ten years, highlighting recent advances in the chemistry of pyrroles in the context of their innate reactivity, and their preparation in complex settings.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sahil Kohli
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Aarushi Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hannah Asiki
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Garima Rathee
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Edward A. Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
14
|
Feng Y, Yang C, Deng Q, Xiong R, Zhang X, Xiong Y. Synthesis of Antitricyclic Morpholine Derivatives through Iodine(III)-Mediated Intramolecular Umpolung Cycloaddition of Olefins. J Org Chem 2020; 85:4500-4506. [PMID: 32098469 DOI: 10.1021/acs.joc.0c00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A (diacetoxyiodo)benzene-mediated intramolecular cycloaddition of olefins to construct tricyclic morpholines is presented. A series of substituted tricyclic morpholines were obtained in one-step simple operation under mild conditions, and the NMR studies were employed to see the interaction of reactants. The studies on stereochemistry showed that transformation of Z-alkene was inhibited, which is interpreted by density functional theory calculations on Z- and E-transition state models, and only E-alkene resulted in an anticycloaddition product, which is testified by a single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Yangyang Feng
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Chenglin Yang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qingfu Deng
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Ruimei Xiong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Xiaohui Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
|
16
|
Mineyeva IV. Functionalized 2-Substituted Allyl Bromides in the Barbier Allylation of (R)-2,3-O-Isopropylideneglyceraldehyde. Synthesis of the C8–C17, C8–C18, and C5–C17 Building Blocks of Laulimalides and Their Synthetic Analogs. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019040195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Huang C, Xiong J, Guan HD, Wang CH, Lei X, Hu JF. Discovery, synthesis, biological evaluation and molecular docking study of (R)-5-methylmellein and its analogs as selective monoamine oxidase A inhibitors. Bioorg Med Chem 2019; 27:2027-2040. [DOI: 10.1016/j.bmc.2019.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 01/23/2023]
|
18
|
Wood J, Furkert DP, Brimble MA. 2-Formylpyrrole natural products: origin, structural diversity, bioactivity and synthesis. Nat Prod Rep 2019; 36:289-306. [DOI: 10.1039/c8np00051d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
2-Formylpyrroles constitute a large and growing family of bioactive Maillard reaction products found in food, traditional medicine and throughout nature.
Collapse
Affiliation(s)
- James M. Wood
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| | - Daniel P. Furkert
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
19
|
Pyrrole Alkaloids from the Edible Mushroom Phlebopus portentosus with Their Bioactive Activities. Molecules 2018; 23:molecules23051198. [PMID: 29772776 PMCID: PMC6100406 DOI: 10.3390/molecules23051198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022] Open
Abstract
Seven pyrrole alkaloids, three of which are novel (phlebopines A⁻C (1⁻3)), were isolated from the fruiting bodies of the edible mushroom Phlebopus portentosus. Their structures were determined on the basis of spectroscopic data. All the isolated compounds were tested for their neuroprotective properties and acetylcholine esterase (AChE) inhibition activities. Compound 7 displayed remarkable neuroprotective effects against hydrogen peroxide (H₂O₂)-induced neuronal-cell damage in human neuroblastoma SH-SY5Y cells.
Collapse
|
20
|
Faisal M, Shahzad D, Larik FA, Dar P. Synthetic approaches to access acortatarins, shensongines and pollenopyrroside; potent antioxidative spiro-alkaloids with a naturally rare morpholine moiety. Fitoterapia 2018; 129:366-382. [PMID: 29617626 DOI: 10.1016/j.fitote.2018.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
Abstract
Pyrrole spiroketal alkaloids (PSAs) are a class of novel natural products that have been recently disclosed. Acortatarin A and acortatarin B, two potent antioxidative spiroalkaloids with a naturally rare morpholine moiety, are important members of this class. These spiroalkaloids are isolated from Acorus tatarinowii, Brassica campestris, Capparis spinose, bread crust, Xylaria nigripes and medicine Shensong Yangxin and could inhibit significantly the reactive oxygen species (ROS) production in high-glucose-induced mesangial cells in a time- and dose-dependent manner. Hence, these natural products are promising starting points for the formation of new therapeutics to medicate cardiovascular diseases, cancer, diabetic complications, and other diseases in which ROS are implicated. The impressive structure combined with an interesting pharmacological activity prompted synthetic chemists to construct an asymmetric synthetic strategy that could be used to access structural derivatives in addition to the larger quantities of natural products required for further biological investigations. This review summarizes the current state of the literature regarding with the synthesis of acortatarin A and B and its other family members viz. shensongine A, B and C, and pollenopyrroside A. The present review discusses the pros and cons of synthetic methodologies, which would be beneficial for further developments in the synthetic methodologies. Hopefully, this struggle pushes the reader's mind to consider new perspectives, think differently and forge new connections.
Collapse
Affiliation(s)
- Muhammad Faisal
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Danish Shahzad
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Peter Grünberg Institute, PGI-6, Research Centre Jülich, D-52425 Jülich, Germany.
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Parsa Dar
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
21
|
Zhang FM, Zhang SY, Tu YQ. Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals. Nat Prod Rep 2018; 35:75-104. [DOI: 10.1039/c7np00043j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals from 2011 to July 2017 have been summarized in this review.
Collapse
Affiliation(s)
- Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Verano AL, Tan DS. Stereocontrolled Synthesis of Spiroketals: An Engine for Chemical and Biological Discovery. Isr J Chem 2017; 57:279-291. [PMID: 29104308 DOI: 10.1002/ijch.201600134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spiroketals are key structural motifs found in diverse natural products with compelling biological activities. However, stereocontrolled synthetic access to spiroketals, independent of their inherent thermodynamic preferences, is a classical challenge in organic synthesis that has limited in-depth biological exploration of this intriguing class. Herein, we review our laboratory's efforts to advance the glycal epoxide approach to the stereocontrolled synthesis of spiroketals via kinetically controlled spirocyclization reactions. This work has provided new synthetic methodologies with applications in both diversity- and target-oriented synthesis, fundamental insights into structure and reactivity, and efficient access to spiroketal libraries and natural products for biological evaluation.
Collapse
Affiliation(s)
- Alyssa L Verano
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| | - Derek S Tan
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA.,Chemical Biology Program and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, USA
| |
Collapse
|
23
|
Liu Y, Yi X, Luo X, Xi C. MeOTf-Mediated Annulation of Alkylnitriles and Arylalkynes Leading to Polysubstituted NH-Pyrroles. J Org Chem 2017; 82:11391-11398. [DOI: 10.1021/acs.joc.7b01845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangli Yi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xuewei Luo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Production of Xylaria nigripes-fermented grains by solid-state fermentation and an assessment of their resulting bioactivity. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
In vitro and in vivo assessment of anti-inflammatory and immunomodulatory activities of Xylaria nigripes mycelium. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
26
|
Verano AL, Tan DS. Family-level stereoselective synthesis and biological evaluation of pyrrolomorpholine spiroketal natural product antioxidants. Chem Sci 2017; 8:3687-3693. [PMID: 28845229 PMCID: PMC5571482 DOI: 10.1039/c6sc05505b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/27/2017] [Indexed: 01/15/2023] Open
Abstract
The pyranose spiroketal natural products pollenopyrroside A and shensongine A (also known as xylapyrroside A, ent-capparisine B) have been synthesized by stereoselective spirocyclizations of a common C1-functionalized glycal precursor. In conjunction with our previously reported syntheses of the corresponding furanose isomers, this provides a versatile family-level synthesis of the pyrrolomorpholine spiroketal natural products and analogues. In rat mesangial cells, hyperglycemia-induced production of reactive oxygen species, which is implicated in diabetic nephropathy, was inhibited by pollenopyrroside A and shensongine A with mid-μM IC50 values, while unnatural C2-hydroxy analogues exhibited more potent, sub-μM activity.
Collapse
Affiliation(s)
- Alyssa L Verano
- Pharmacology Graduate Program , Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 422 , New York , NY 10065 , USA .
| | - Derek S Tan
- Pharmacology Graduate Program , Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 422 , New York , NY 10065 , USA .
- Chemical Biology Program and Tri-Institutional Research Program , Memorial Sloan Kettering Cancer Center , 1275 York Avenue, Box 422 , New York , NY 10065 , USA
| |
Collapse
|
27
|
Wimmer E, Borghèse S, Blanc A, Bénéteau V, Pale P. Zeolite-Based Organic Synthesis (ZeoBOS) of Acortatarin A: First Total Synthesis Based on Native and Metal-Doped Zeolite-Catalyzed Steps. Chemistry 2017; 23:1484-1489. [DOI: 10.1002/chem.201605048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Wimmer
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse; UMR 7177 associé au CNRS; Institut de Chimie; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg France
| | - Sophie Borghèse
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse; UMR 7177 associé au CNRS; Institut de Chimie; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg France
| | - Aurélien Blanc
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse; UMR 7177 associé au CNRS; Institut de Chimie; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg France
| | - Valérie Bénéteau
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse; UMR 7177 associé au CNRS; Institut de Chimie; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg France
| | - Patrick Pale
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse; UMR 7177 associé au CNRS; Institut de Chimie; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
28
|
Reddy CR, Panda SA, Ramaraju A. Oxidative Aza-Annulation of Enynyl Azides to 2-Keto/Formyl-1H-pyrroles. J Org Chem 2017; 82:944-949. [DOI: 10.1021/acs.joc.6b02468] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Chada Raji Reddy
- Division
of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India
- Academy
of Scientific
and Innovative Research, New Delhi, India
| | - Sujatarani A. Panda
- Division
of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India
- Academy
of Scientific
and Innovative Research, New Delhi, India
| | - Andhavaram Ramaraju
- Division
of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India
| |
Collapse
|
29
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Reddy CR, Burra AG, Singarapu KK, Grée R. Facile Entry to 3,4-Dihydro-1H-pyrrolo[2,1-c][1,4]oxazines through theoxa-Pictet-Spengler Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chada Raji Reddy
- Division of Natural Products Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Amarender Goud Burra
- Division of Natural Products Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Kiran K. Singarapu
- Centre for NMR & Structural Chemistry; CSIR-Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - René Grée
- Institut des Sciences Chimiques de Rennes; CNRS UMR 6226; Avenue du Général Leclerc 35042 Rennes CEDEX France
| |
Collapse
|
31
|
Wakamatsu J, Stark TD, Hofmann T. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5845-5854. [PMID: 27381763 DOI: 10.1021/acs.jafc.6b02396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations.
Collapse
Affiliation(s)
- Junichiro Wakamatsu
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
32
|
Bao LL, Liu ZQ. Tetrahydropyrrolization of Resveratrol and Other Stilbenes Improves Inhibitory Effects on DNA Oxidation. ChemMedChem 2016; 11:1617-25. [PMID: 27381052 DOI: 10.1002/cmdc.201600205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/28/2016] [Indexed: 01/13/2023]
Abstract
The inhibitory effect of resveratrol on DNA oxidation caused by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) was found to be enhanced if the C=C bond in resveratrol was converted into tetrahydropyrrole by reaction with azomethine ylide (CH2 =N(+) (CH3 )CH2 (-) ). This encouraged us to explore whether the inhibitory activities of other stilbenes could also be increased by the same method. We found that the inhibitory effects of the tetrahydropyrrole derivatives on AAPH-induced oxidation of DNA were higher than those of the corresponding stilbenes, because the tetrahydropyrrole motif can provide hydrogen atoms to be abstracted by radicals. Therefore, the tetrahydropyrrolization offered an advantage for enhancing the antioxidant effects of stilbenes. Notably, (CH3 )3 SiCH2 N(CH3 )CH2 OCH3 (in the presence of CF3 COOH) and (CH3 )3 NO (in the presence of LiN(iPr)2 ) can be used to generate azomethine ylide for the tetrahydropyrrolization of stilbenes containing electron-withdrawing and -donating groups, respectively.
Collapse
Affiliation(s)
- Liang-Liang Bao
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2519 Jiefang Road, Changchun, 130021, China
| | - Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2519 Jiefang Road, Changchun, 130021, China.
| |
Collapse
|
33
|
Xiong J, Huang Y, Wu XY, Liu XH, Fan H, Wang W, Zhao Y, Yang GX, Zhang HY, Hu JF. Chemical Constituents from the Fermented Mycelia of the Medicinal FungusXylaria nigripes. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201500231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Wood JM, Furkert DP, Brimble MA. Synthesis of the 2-formylpyrrole spiroketal pollenopyrroside A and structural elucidation of xylapyrroside A, shensongine A and capparisine B. Org Biomol Chem 2016; 14:7659-64. [DOI: 10.1039/c6ob01361a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A convergent synthesis enabled structural elucidation of the 2-formyl pyrrole spiroketals pollenopyrroside A and shensongine A/xylapyrroside A. The key step involves a Maillard-type condensation to furnish the 2-formylpyrrole ring system.
Collapse
Affiliation(s)
- James M. Wood
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Daniel P. Furkert
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|