1
|
Li F, Xu Y, Wang C, Wang C, Xie H, Xu Y, Chen P, Wang L. Efficient Synthesis of Substituted Pyrazoles Via [3+2] Cycloaddition Catalyzed By Lipase in Ionic Liquid. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
2
|
Recent developments in promiscuous enzymatic reactions for carbon-nitrogen bond formation. Bioorg Chem 2022; 127:106014. [PMID: 35841668 DOI: 10.1016/j.bioorg.2022.106014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
Biocatalytic promiscuity is a new field of enzyme application in biochemistry, which has received much attention and has developed rapidly in recent years. The promiscuous biocatalysis has been promoted as a useful supplement to traditional strategy for the formation of C-heteroatom bonds. The generation of carbon-nitrogen (CN) bonds is an important issue in synthetic chemistry and is indispensable for the manufacturing of various pharmaceuticals and agrochemicals. Therefore, numerous efficient and reliable synthetic methods for the formation of CN bonds have been developed in recent years. Enzymatic CN bond forming reactions catalyzed by lipases, cytochrome P450 monooxygenases, glycosyltransferases, amine dehydrogenases, proteases, acylases, amylases and halohydrin dehalogenases are well established for synthetic purposes. This review introduces the recent progress in the construction of CN bonds using promiscuous enzymes.
Collapse
|
3
|
Patti A, Sanfilippo C. Stereoselective Promiscuous Reactions Catalyzed by Lipases. Int J Mol Sci 2022; 23:ijms23052675. [PMID: 35269815 PMCID: PMC8910291 DOI: 10.3390/ijms23052675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
The ability of lipases to display activity beyond their physiological reactions, so-called "catalytic promiscuity", has gained increasing interest in the last two decades as an important tool for expanding the application of these enzymes in organic synthesis. Some lipases have been shown to be effective in catalyzing a variety of C-C bond formation reactions and most of the investigations have been directed to the optimization of the products yield through a careful tuning of the experimental parameters. Despite the fact that new stereogenic carbons are formed in many of the tested reactions, the target products have been often obtained in racemic form and examples of an efficient asymmetric induction by the used lipases are quite limited. The aim of this review, mainly focused on those lipase-catalyzed promiscuous reactions in which optically active products have been obtained, is to offer a current state of art together with a perspective in this field of asymmetric synthesis.
Collapse
|
4
|
Li F, Wang C, Xu Y, Gao X, Xu Y, Xie H, Chen P, Wang L. Lipase‐Catalyzed Synthesis of Anthrone Functionalized Benzylic Amines via a Multicomponent Reaction in Supercritical Carbon Dioxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202104517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130023 P. R. China
| | - Ciduo Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130023 P. R. China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130023 P. R. China
| | - Xiaojun Gao
- Affiliated Hospital of Yanbian University Yan Ji, Yanji 133000(P. R. China
| | - Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130023 P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130023 P. R. China
| | - Peng Chen
- The Second Hospital of Jilin UniversityChangchun Jilin University Changchun 130041 P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun 130023 P. R. China
| |
Collapse
|
5
|
Yu Y, Zhang W, Gong QT, Liu YH, Yang ZJ, He WX, Wang N, Yu XQ. Enzyme-catalysed one-pot synthesis of 4H-pyrimido[2,1-b] benzothiazoles and their application in subcellular imaging. J Biotechnol 2020; 324:91-98. [PMID: 33010308 DOI: 10.1016/j.jbiotec.2020.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Enzymes, which provide more efficient and eco-friendly strategies for various functional molecules' construction than traditional chemo-catalysts, were utilized for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives. Reported herein is a trypsin-catalysed three- component Biginelli reaction of aldehyde, β-ketoester and 2-amino benzothiazole in one pot, affording a streamlined pathway to diverse ring-fused pyrimidines. In addition to using commercially available aromatic aldehydes as substrates, acetaldehyde, the chemical liquid with rather low boiling point and difficult to handle above room temperature, is utilized to further extend the range of substrates. It was verified that most of the tested substrates exhibited satisfactory reactivity. In addition, several substrates indicated AIE (Aggregation-Induced Emission) property and have been investigated as potential biomarkers.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Qing-Tian Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Wei-Xun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
6
|
Jumbam ND, Masamba W. Bio-Catalysis in Multicomponent Reactions. Molecules 2020; 25:E5935. [PMID: 33333902 PMCID: PMC7765341 DOI: 10.3390/molecules25245935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/16/2023] Open
Abstract
Enzyme catalysis is a very active research area in organic chemistry, because biocatalysts are compatible with and can be adjusted to many reaction conditions, as well as substrates. Their integration in multicomponent reactions (MCRs) allows for simple protocols to be implemented in the diversity-oriented synthesis of complex molecules in chemo-, regio-, stereoselective or even specific modes without the need for the protection/deprotection of functional groups. The application of bio-catalysis in MCRs is therefore a welcome and logical development and is emerging as a unique tool in drug development and discovery, as well as in combinatorial chemistry and related areas of research.
Collapse
Affiliation(s)
| | - Wayiza Masamba
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa;
| |
Collapse
|
7
|
First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Mahata A, Bhaumick P, Panday AK, Yadav R, Parvin T, Choudhury LH. Multicomponent synthesis of diphenyl-1,3-thiazole-barbituric acid hybrids and their fluorescence property studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00406e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel diphenyl-1,3-thiazole linked barbituric acid hybrids (4) were prepared by two catalyst-free methods from readily available starting materials.
Collapse
Affiliation(s)
- Alok Mahata
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| | - Prabhas Bhaumick
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| | - Anoop Kumar Panday
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| | - Rahul Yadav
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800 005
- India
| | - Tasneem Parvin
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800 005
- India
| | - Lokman H. Choudhury
- Department of Chemistry
- Indian Institute of Technology Patna
- Patna-801106
- India
| |
Collapse
|
9
|
Wilk M, Brodzka A, Koszelewski D, Madej A, Paprocki D, Żądło-Dobrowolska A, Ostaszewski R. The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Bioorg Chem 2019; 93:102817. [PMID: 30824123 DOI: 10.1016/j.bioorg.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023]
Abstract
The impact of isocyanoesters structure on enzymatic three-component Ugi reactions course has been determined. The significant promiscuous ability of enzyme in Ugi-type reaction switching between four (U-4CR) and three (U-3CR) components reactions depending on the size of used isocyanoester. The application of short-chain cyanoesters up to isocyanpropionate leading to product of three component reaction exclusively while longer isocyanobutyrate gives only the product of four component reaction. The limitation of studied enzymatic Ugi reaction is a substrate selectivity of lipases.
Collapse
Affiliation(s)
- Monika Wilk
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arleta Madej
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Daniel Paprocki
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Żądło-Dobrowolska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
10
|
Lambruschini C, Basso A, Banfi L. Integrating biocatalysis and multicomponent reactions. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 29:3-9. [PMID: 30471671 DOI: 10.1016/j.ddtec.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/08/2018] [Indexed: 06/09/2023]
Abstract
While often multicomponent reactions (MCR) are used for the diversity-oriented synthesis of racemic (or achiral) molecular entities, this short review describes two alternative approaches for accessing enantiopure products exploiting the power of biocatalysis. Enzymes or microorganisms may be used for preparing enantiopure MCR inputs or for resolving racemic (or achiral) MCR adducts.
Collapse
Affiliation(s)
- Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146, Genova, Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146, Genova, Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso, 31-16146, Genova, Italy.
| |
Collapse
|
11
|
Dalal KS, Padvi SA, Wagh YB, Dalal DS, Chaudhari BL. Lipase from Porcine Pancreas: An Efficient Biocatalyst for the Synthesis of ortho
-Aminocarbonitriles. ChemistrySelect 2018. [DOI: 10.1002/slct.201802352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kiran S. Dalal
- School of Life Sciences; Kavayitri Bahinabai Chaudhari North Maharashtra University; Jalgaon 425 001 (MS) India
| | - Swapnil A. Padvi
- School of Chemical Sciences; Kavayitri Bahinabai Chaudhari North Maharashtra University; Jalgaon 425 001 (MS) India
| | - Yogesh B. Wagh
- School of Chemical Sciences; Kavayitri Bahinabai Chaudhari North Maharashtra University; Jalgaon 425 001 (MS) India
| | - Dipak S. Dalal
- School of Chemical Sciences; Kavayitri Bahinabai Chaudhari North Maharashtra University; Jalgaon 425 001 (MS) India
| | - Bhushan L. Chaudhari
- School of Life Sciences; Kavayitri Bahinabai Chaudhari North Maharashtra University; Jalgaon 425 001 (MS) India
| |
Collapse
|
12
|
Dwivedee BP, Soni S, Sharma M, Bhaumik J, Laha JK, Banerjee UC. Promiscuity of Lipase-Catalyzed Reactions for Organic Synthesis: A Recent Update. ChemistrySelect 2018. [DOI: 10.1002/slct.201702954] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bharat P. Dwivedee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Surbhi Soni
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research, S.A.S. Nagar; 160062 Punjab India
| | - Misha Sharma
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Research; S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
13
|
|
14
|
|