1
|
Establishment of In Vitro and In Vivo Anticolorectal Cancer Efficacy of Lithocholic Acid-Based Imidazolium Salts. Int J Mol Sci 2022; 23:ijms23137019. [PMID: 35806024 PMCID: PMC9266680 DOI: 10.3390/ijms23137019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Imidazolium salts (IMSs) are the subject of many studies showing their anticancer activities. In this research, a series of novel imidazolium salts substituted with lithocholic acid (LCA) and alkyl chains of various lengths (S1–S10) were evaluated against colon cancer cells. A significant reduction in the viability and metabolic activity was obtained in vitro for DLD-1 and HT-29 cell lines when treated with tested salts. The results showed that the activities of tested agents are directly related to the alkyl chain length, where S6–S8 compounds were the most cytotoxic against the DLD-1 line and S4–S10 against HT-29. The research performed on the xenograft model of mice demonstrated a lower tendency of tumor growth in the group receiving compound S6, compared with the group receiving 5-fluorouracil (5-FU). Obtained results indicate the activity of S6 in the induction of apoptosis and necrosis in induced colorectal cancer. LCA-based imidazolium salts may be candidates for chemotherapeutic agents against colorectal cancer.
Collapse
|
2
|
Wilson JA, Lin ZJ, Rodriguez I, Ta T, Martz L, Fico D, Johnson SS, Gorden JD, Shelton KL, King LB. Synthesis, characterization, and antimicrobial activity of lipophilic
N
,
N
′‐bis‐substituted triazolium salts. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julie A. Wilson
- Department of Biology Columbus State University Columbus Georgia USA
| | - Zi Jie Lin
- Department of Chemistry Columbus State University Columbus Georgia USA
| | | | - Thong Ta
- Department of Chemistry Columbus State University Columbus Georgia USA
| | - Luke Martz
- Department of Chemistry Columbus State University Columbus Georgia USA
| | - Dominic Fico
- Department of Chemistry Columbus State University Columbus Georgia USA
| | | | - John D. Gorden
- Department of Chemistry Texas Tech University Lubbock Texas USA
| | - Kerri L. Shelton
- Department of Chemistry Columbus State University Columbus Georgia USA
| | - Lauren B. King
- Department of Biology Columbus State University Columbus Georgia USA
| |
Collapse
|
3
|
Berthiot R, Giudice N, Douce L. Luminescent Imidazolium Salts as Bright Multi‐Faceted Tools for Biology. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Romain Berthiot
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| | - Nicolas Giudice
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| | - Laurent Douce
- Département des Matériaux Organiques Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504) Université de Strasbourg/CNRS 23 Rue du Loess 67000 Strasbourg France
| |
Collapse
|
4
|
Southerland MR, DeBord MA, Johnson NA, Crabtree SR, Alexander NE, Stromyer ML, Wagers PO, Panzner MJ, Wesdemiotis C, Shriver LP, Tessier CA, Youngs WJ. Synthesis, characterization, in vitro SAR study, and preliminary in vivo toxicity evaluation of naphthylmethyl substituted bis-imidazolium salts. Bioorg Med Chem 2021; 30:115893. [PMID: 33333447 PMCID: PMC7903221 DOI: 10.1016/j.bmc.2020.115893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
A series of novel bis-imidazolium salts was synthesized, characterized, and evaluated in vitro against a panel of non-small cell lung cancer (NSCLC) cells. Two imidazolium cores were connected with alkyl chains of varying lengths to develop a structure activity relationship (SAR). Increasing the length of the connecting alkyl chain was shown to correlate to an increase in the anti-proliferative activity. The National Cancer Institute's NCI-60 human tumor cell line screen confirmed this trend. The compound containing a decyl linker chain, 10, was chosen for further in vivo toxicity studies with C578BL/6 mice. The compound was well tolerated by the mice and all of the animals survived and gained weight over the course of the study.
Collapse
Affiliation(s)
| | - Michael A DeBord
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Nicholas A Johnson
- Department of Chemistry, Ashland University, 401 College Ave., Ashland, OH 44805, USA
| | - Steven R Crabtree
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | | | - Michael L Stromyer
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Patrick O Wagers
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Matthew J Panzner
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Claire A Tessier
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Wiley J Youngs
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| |
Collapse
|
5
|
Stromyer ML, Southerland MR, Satyal U, Sikder RK, Weader DJ, Baughman JA, Youngs WJ, Abbosh PH. Synthesis, characterization, and biological activity of a triphenylphosphonium-containing imidazolium salt against select bladder cancer cell lines. Eur J Med Chem 2020; 185:111832. [PMID: 31718944 PMCID: PMC7224591 DOI: 10.1016/j.ejmech.2019.111832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 01/26/2023]
Abstract
Imidazolium salts have shown great promise as anticancer materials. A new imidazolium salt (TPP1), with a triphenylphosphonium substituent, has been synthesized and evaluated for in vitro and in vivo cytotoxicity against bladder cancer. TPP1 was determined to have a GI50 ranging from 200 to 250 μM over a period of 1 h and the ability to effectively inhibit bladder cancer. TPP1 induces apoptosis, and it appears to act as a direct mitochondrial toxin. TPP1 was applied intravesically to a bladder cancer mouse model based on the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). Cancer selectivity of TPP1 was demonstrated, as BBN-induced tumors exhibited apoptosis but normal adjacent urothelium did not. These results suggest that TPP1 may be a promising intravesical agent for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Michael L Stromyer
- Department of Chemistry, The University of Akron, 190 East Buchtel Commons, Akron, OH, 44325, USA
| | - Marie R Southerland
- Department of Chemistry, The University of Akron, 190 East Buchtel Commons, Akron, OH, 44325, USA
| | - Uttam Satyal
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Rahmat K Sikder
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David J Weader
- Department of Chemistry, The University of Akron, 190 East Buchtel Commons, Akron, OH, 44325, USA; Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Jessi A Baughman
- Department of Chemistry, The University of Akron, 190 East Buchtel Commons, Akron, OH, 44325, USA
| | - Wiley J Youngs
- Department of Chemistry, The University of Akron, 190 East Buchtel Commons, Akron, OH, 44325, USA.
| | - Philip H Abbosh
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
6
|
Skočibušić M, Odžak R, Ramić A, Smolić T, Hrenar T, Primožič I. Novel Imidazole Aldoximes with Broad-Spectrum Antimicrobial Potency against Multidrug Resistant Gram-Negative Bacteria. Molecules 2018; 23:molecules23051212. [PMID: 29783685 PMCID: PMC6100315 DOI: 10.3390/molecules23051212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022] Open
Abstract
In the search for a new class of potential antimicrobial agents, five novel N-substituted imidazole 2-aldoximes and their six quaternary salts were evaluated. The antimicrobial activity was assessed against a panel of representative Gram-positive and Gram-negative bacteria, including multidrug resistant bacteria. All compounds demonstrated potent in vitro activity against the tested microorganisms, with MIC values ranging from 6.25 to 50.0 μg/mL. Among the tested compounds, two quaternary compounds (N-but-3-enyl- and meta- (10) or para- N-chlorobenzyl (11) imidazolium 2-aldoximes) displayed the most potent and broad-spectrum activity against both Gram-positive and Gram-negative bacterial strains. The broth microdilution assay was also used to investigate the antiresistance efficacy of the both most active compounds against a set of Enterobacteriaceae isolates carried a multiple extended-spectrum β-lactamases (ESBLs) in comparison to eight clinically relevant antibiotics. N-but-3-enyl-N-meta-chlorobenzyl imidazolium 2-aldoxime was found to possess promising antiresistance efficacy against a wide range of β-lactamases producing strains (MIC 2.0 to 16.0 μg/mL). Best results for that compound were obtained against Escherichia coli and Enterobacter cloacae producing multiple β-lactamases form A and C molecular classes, which were 32- and 128-fold more potent than ceftazidime and cefotaxime, respectively. To visualize the results, principal component analysis was used as an additional classification tool. The mixture of ceftazidime and compound 10 (3 μg:2 μg) showed a strong activity and lower the necessary amount (up to 40-fold) of 10 against five of ESBL-producing isolates (MIC ≤ 1 µg/mL).
Collapse
Affiliation(s)
- Mirjana Skočibušić
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, HR-21 000 Split, Croatia.
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, HR-21 000 Split, Croatia.
| | - Alma Ramić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| | - Tomislav Smolić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| | - Tomica Hrenar
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
7
|
Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017; 22:molecules22081263. [PMID: 28749425 PMCID: PMC6152056 DOI: 10.3390/molecules22081263] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 01/12/2023] Open
Abstract
Because of their great structural diversity and multitude of chemical properties, N-heterocyclic carbenes (NHCs) have been utilized in a variety of capacities. Most recently, NHCs have been utilized as carrier molecules for many transition metals in medicinal chemistry. Specifically, Ag(I)-NHCs have been investigated as potent antibacterial agents and chemotherapeutics and have shown great efficacy in both in vitro and in vivo studies. Ag(I)-NHC compounds have been shown to be effective against a wide range of both Gram-positive and Gram-negative bacterial strains. Many compounds have also shown great efficacy as antitumor agents demonstrating comparable or better antitumor activity than standard chemotherapeutics such as cisplatin and 5-fluorouracil. While these compounds have shown great promise, clinical use has remained an unattained goal. Current research has been focused upon synthesis of novel Ag(I)-NHC compounds and further investigations of their antibacterial and antitumor activity. This review will focus on recent advances of Ag(I)-NHCs in medicinal applications.
Collapse
|
8
|
DeBord MA, Southerland MR, Wagers PO, Tiemann KM, Robishaw NK, Whiddon KT, Konopka MC, Tessier CA, Shriver LP, Paruchuri S, Hunstad DA, Panzner MJ, Youngs WJ. Synthesis, characterization, in vitro SAR and in vivo evaluation of N,N'bisnaphthylmethyl 2-alkyl substituted imidazolium salts against NSCLC. Bioorg Med Chem Lett 2017; 27:764-775. [PMID: 28126518 PMCID: PMC5575737 DOI: 10.1016/j.bmcl.2017.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Alkyl- and N,N'-bisnaphthyl-substituted imidazolium salts were tested in vitro for their anti-cancer activity against four non-small cell lung cancer cell lines (NCI-H460, NCI-H1975, HCC827, A549). All compounds had potent anticancer activity with 2 having IC50 values in the nanomolar range for three of the four cell lines, a 17-fold increase in activity against NCI-H1975 cells when compared to cisplatin. Compounds 1-4 also showed high anti-cancer activity against nine NSCLC cell lines in the NCI-60 human tumor cell line screen. In vitro studies performed using the Annexin V and JC-1 assays suggested that NCI-H460 cells treated with 2 undergo an apoptotic cell death pathway and that mitochondria could be the cellular target of 2 with the mechanism of action possibly related to a disruption of the mitochondrial membrane potential. The water solubilities of 1-4 was over 4.4mg/mL using 2-hydroxypropyl-β-cyclodextrin as a chemical excipient, thereby providing sufficient solubility for systemic administration.
Collapse
Affiliation(s)
- Michael A. DeBord
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Marie R. Southerland
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Patrick O. Wagers
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Kristin M. Tiemann
- Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nikki K. Robishaw
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Kyle T. Whiddon
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Michael C. Konopka
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Claire A. Tessier
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Leah P. Shriver
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
- Department of Biology, University of Akron, Akron, Ohio 44325, United States
| | - Sailaja Paruchuri
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - David A. Hunstad
- Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Matthew J. Panzner
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| | - Wiley J. Youngs
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States, USA. Tel: 330-972-5362, Fax: 330-972-6085
| |
Collapse
|
9
|
DeBord MA, Wagers PO, Crabtree SR, Tessier CA, Panzner MJ, Youngs WJ. Synthesis, characterization, and in vitro SAR evaluation of N,N'-bis(arylmethyl)-C 2-alkyl substituted imidazolium salts. Bioorg Med Chem Lett 2017; 27:196-202. [PMID: 27939175 PMCID: PMC5204360 DOI: 10.1016/j.bmcl.2016.11.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
A series of C2-alkyl substituted N,N'-bis(arylmethyl)imidazolium salts were synthesized, characterized, and tested for their in vitro anti-cancer activity against multiple non-small cell lung cancer cell lines by our group and the National Cancer Institute's-60 human tumor cell line screen to establish a structure-activity relationship. Compounds are related to previously published N,N'-bis(arylmethyl)imidazolium salts but utilize the historical quinoline motif and anion effects to increase the aqueous solubility. Multiple derivatives displayed high anti-cancer activity with IC50 values in the nanomolar to low micromolar range against a panel of non-small cell lung cancer cell lines. Several of these derivatives have high aqueous solubilities with potent anti-proliferative properties and are ideal candidates for future in vivo xenograft studies and have high potential to progress into clinic use.
Collapse
Affiliation(s)
- Michael A DeBord
- Department of Chemistry, University of Akron, Akron, OH 44325, United States
| | - Patrick O Wagers
- Department of Chemistry, University of Akron, Akron, OH 44325, United States
| | - Steven R Crabtree
- Department of Chemistry, University of Akron, Akron, OH 44325, United States
| | - Claire A Tessier
- Department of Chemistry, University of Akron, Akron, OH 44325, United States
| | - Matthew J Panzner
- Department of Chemistry, University of Akron, Akron, OH 44325, United States.
| | - Wiley J Youngs
- Department of Chemistry, University of Akron, Akron, OH 44325, United States.
| |
Collapse
|
10
|
Shelton KL, DeBord MA, Wagers PO, Southerland MR, Williams TM, Robishaw NK, Shriver LP, Tessier CA, Panzner MJ, Youngs WJ. Synthesis, anti-proliferative activity, SAR study, and preliminary in vivo toxicity study of substituted N,N'-bis(arylmethyl)benzimidazolium salts against a panel of non-small cell lung cancer cell lines. Bioorg Med Chem 2016; 25:421-439. [PMID: 27876249 DOI: 10.1016/j.bmc.2016.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022]
Abstract
A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N1(N3)) and highly lipophilic substituents at the carbon atoms (C2 and C5(C6)) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents.
Collapse
Affiliation(s)
- Kerri L Shelton
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Michael A DeBord
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Patrick O Wagers
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | | | - Travis M Williams
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Nikki K Robishaw
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Claire A Tessier
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Matthew J Panzner
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Wiley J Youngs
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| |
Collapse
|