1
|
Kumar N, Jangid K, Kumar V, Devi B, Arora T, Mishra J, Kumar V, Dwivedi AR, Parkash J, Bhatti JS, Kumar V. Mannich reaction mediated derivatization of chromones and their biological evaluations as putative multipotent ligands for the treatment of Alzheimer's disease. RSC Med Chem 2024:d4md00550c. [PMID: 39399311 PMCID: PMC11462584 DOI: 10.1039/d4md00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurological disorder and multiple pathways are associated with its pathology. Currently available single-targeting drugs are found to be ineffective for the treatment of AD, and most of these drugs provide symptomatic relief. The multi-target directed ligand strategy is proposed as an effective approach for the treatment of AD. Herein, we report the design and synthesis of a series of 2-phenyl substituted chromone derivatives and their evaluation against AChE, MAO-B, and β amyloid self-aggregation inhibition. In the series, NS-4 and NS-13 were identified as the potent leads against all the specified targets. NS-4 and NS-13 exhibited balanced multipotent activities against AChE with IC50 values of 3.09 μM, and 0.625 μM and against MAO-B with IC50 values of 19.64 μM and 12.31 μM, respectively. These compounds also displayed 28.5% and 32.2% self-aggregation inhibition potential against Aβ1-42, respectively. All the compounds were found to be selective for AChE over BuChE. Additionally, NS-4 also exhibited potent BuChE inhibition with an IC50 value of 1.95 μM. Moreover, NS-4 and NS-13 reduced intracellular ROS levels up to 65% against SH-SY5Y cells at 25 μM concentration. The lead compounds were found to be neuroprotective and exhibited no cytotoxicity even at 25 μM concentration. In enzyme kinetic inhibition studies, these compounds showed mixed-type inhibition to AChE. In the computational studies, binding interactions, and orientations of the ligands at the active site of the enzymes were analyzed and these lead compounds were found to be thermodynamically stable inside the active cavity for up to 100 ns.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab India-151401
| | - Vinay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Tania Arora
- Department of Zoology, Central University of Punjab Bathinda Punjab India-151401
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda Punjab India-151401
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab India-151401
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Jyoti Parkash
- Department of Zoology, Central University of Punjab Bathinda Punjab India-151401
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab Bathinda Punjab India-151401
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| |
Collapse
|
2
|
Abbass EM, El-Rayyes A, Khalil Ali A, El-Farargy AF, Kozakiewicz-Piekarz A, Ramadan RM. Catalyzed syntheses of novel series of spiro thiazolidinone derivatives with nano Fe 2O 3: spectroscopic, X-ray, Hirshfeld surface, DFT, biological and docking evaluations. Sci Rep 2024; 14:18773. [PMID: 39138211 PMCID: PMC11322538 DOI: 10.1038/s41598-024-65282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Twelve spiro thiazolidinone compounds (A-L) were synthesized via either conventional thermal or ultrasonication techniques using Fe2O3 nanoparticles. The modification of the traditional procedure by using Fe2O3 nanoparticles led to enhancement of the yield of the desired candidates to 78-93% in approximately half reaction time compared with 58-79% without catalyst. The products were fully characterized using different analytical and spectroscopic techniques. The structure of the two derivatives 4-phenyl-1-thia-4-azaspirodecan-3-one (A) and 4-(p-tolyl)-1-thia-4-azaspirodecan-3-one (B) were also determined using single crystal X-ray diffraction and Hirshfeld surface analysis. The two compounds (A and B) were crystallized in the orthorhombic system with Pbca and P212121 space groups, respectively. In addition, the crystal packing of compounds revealed the formation of supramolecular array with a net of intermolecular hydrogen bonding interactions. The energy optimized geometries of some selected derivatives were performed by density functional theory (DFT/B3LYP). The reactivity descriptors were also calculated and correlated with their biological properties. All the reported compounds were screened for antimicrobial inhibitions. The two derivatives, F and J, exhibited the highest levels of bacterial inhibition with an inhibition zone of 10-17 mm. Also, the two derivatives, F and J, displayed the most potent fungal inhibition with an inhibition zone of 15-23 mm. Molecular docking investigations of some selected derivatives were performed using a B-DNA (PDB: 1BNA) as a macromolecular target. Structure and activity relationship of the reported compounds were correlated with the data of antimicrobial activities and the computed reactivity parameters.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, 1321, Arar, Saudi Arabia
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Olu-Igbiloba OA, Sitzmann H, Manolikakes G. Merging Cobalt-Catalyzed C-H Activation with the Mannich Reaction: A Modular Approach to α-Substituted N-Sulfonyl Amines. J Org Chem 2024; 89:6903-6914. [PMID: 38698761 DOI: 10.1021/acs.joc.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A three-component synthesis of α-substituted N-sulfonyl amines from aryl aldehydes, primary sulfonamides, and (hetero)arenes is described. This transformation enables a straightforward and modular synthesis of highly substituted sulfonamide scaffolds in good yields. The direct functionalization of C(sp2)-H bonds via cobalt-catalyzed C-H-activation offers an appealing and atom-economical alternative to classical methods for the synthesis of α-arylated amines such as the Petasis or Mannich-type reactions.
Collapse
Affiliation(s)
| | - Helmut Sitzmann
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Abdelhameid MK, Taher ES, Hara MA, Ramadan M, Mohamed KO. Discovery of novel octahydroquinazoline scaffolds endowed with dual inhibition of tubulin polymerization/Eg5 against HCC: Apoptotic and radio-chemotherapeutic studies. Bioorg Chem 2024; 148:107449. [PMID: 38759356 DOI: 10.1016/j.bioorg.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Mitotic kinesin Eg5 isozyme as a motor protein plays a critical role in cell division of tumor cells. Kinesin Eg5 selective inhibitors and Colchicine binding site suppressors are essential targets for many anticancer drugs and radio chemotherapies. On this work, a new series of octahydroquinazoline as anti-mitotic candidates 2-13 has been synthesized with dual inhibition of tubulin polymerization/Eg5 against HCC cell line. All octahydroquinazolines have been in vitro assayed against HepG-2 cytotoxicity, Eg5 inhibitory and anti-tubulin polymerization activities. The most active analogues 7, 8, 9, 10, and 12 against HepG-2 were further subjected to in vitro cytotoxic assay against HCT-116 and MCF-7 cell lines. Chalcones 9, 10, and 12 displayed the most cytotoxic potency and anti-tubulin aggregation in comparable with reference standard colchicine and potential anti-mitotic Eg5 inhibitory activity in comparison with Monastrol as well. Besides, they exhibited cell cycle arrest at the G2/M phase. Moreover, good convinced apoptotic activities have been concluded as overexpression of caspase-3 levels and tumor suppressive gene p53 in parallel with higher induction of Bax and inhibition of Bcl-2 biomarkers. Octahydroquinazoline 10 displayed an increase in caspase-3 by 1.12 folds compared to standard colchicine and induce apoptosis and demonstrated cell cycle arrest in G2/M phase arrest by targeting p53 pathway. Analogue 10 has considerably promoted cytotoxic radiation activity and boosted apoptotic induction in HepG-2 cells by 1.5 fold higher than standard colchicine.
Collapse
Affiliation(s)
- Mohammed K Abdelhameid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mohammed A Hara
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed Ramadan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Arish branch, Arish 45511, Egypt
| |
Collapse
|
5
|
Bessoni Kosctiuk J, Ribeiro Neto ME, Alcoforado Pereira G, Krieger N, Zambelli Mezalira D, Pilissão C. A Multicomponent Mannich Reaction Catalyzed by Hydrolases Immobilized on Titanate Nanotubes. Chempluschem 2024; 89:e202300698. [PMID: 38242852 DOI: 10.1002/cplu.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
This study presents an innovative method for synthesizing β-amino carbonylated compounds, specifically 2-[phenyl(phenylamino)methyl] cyclohexanone, achieving high conversions and diastereomeric ratios. Using trypsin or α-chymotrypsin in both free and immobilized forms on titanate nanotubes (NtsTi), synthesized through alkaline hydrothermal methods, successful immobilization yields were attained. Notably, α-chymotrypsin, when free, displayed a diastereoselective synthesis of the anti-isomer with 97 % conversion and 16 : 84 (syn : anti) diastereomeric ratio, which slightly decreased upon immobilization on NtsTi. Trypsin, in its free form, exhibited diastereoselective recognition of the syn-isomer, while immobilization on NtsTi (trypsin/NtsTi) led to an inversion of diastereomeric ratio. Both trypsin/NtsTi and α-chymotrypsin/NtsTi demonstrated significant catalytic efficiency over five cycles. In conclusion, NtsTi serves as an effective support for trypsin and α-chymotrypsin immobilization, presenting promising prospects for diastereoselective synthesis and potential industrial applications. Furthermore, it offers promising prospects for the diastereoselective synthesis of 2-[phenyl(phenylamino)methyl] cyclohexanone through multicomponent Mannich reaction and future industrial application.
Collapse
Affiliation(s)
- Juliane Bessoni Kosctiuk
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| | - Matheus Enrique Ribeiro Neto
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| | - Gabriela Alcoforado Pereira
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| | - Nadia Krieger
- Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | | | - Cristiane Pilissão
- Department of Chemistry and Biology, Federal University Technological of Paraná, 81280-340, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Relevant Developments in the Use of Three-Component Reactions for the Total Synthesis of Natural Products. The last 15 Years. ChemistryOpen 2024; 13:e202300306. [PMID: 38647363 PMCID: PMC11095226 DOI: 10.1002/open.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Multicomponent reactions (MCRs) offer a highly useful and valuable strategy that can fulfill an important role in synthesizing complex polysubstituted compounds, by simplifying otherwise long sequences and increasing their efficiency. The total synthesis of selected natural products employing three-component reactions as their common strategic MCR approach, is reviewed on a case-by-case basis with selected targets conquered during the last 15 years. The revision includes detailed descriptions of the selected successful sequences; relevant information on the isolation, and bioactivity of the different natural targets is also briefly provided.
Collapse
Affiliation(s)
- Enrique L. Larghi
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| | - Andrea B. J. Bracca
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| | - Sebastian O. Simonetti
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario IQUIR (CONICET-UNR)Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 5312000RosarioArgentina
| |
Collapse
|
7
|
Phelps J, Kumar R, Robinson JD, Chu JCK, Flodén NJ, Beaton S, Gaunt MJ. Multicomponent Synthesis of α-Branched Amines via a Zinc-Mediated Carbonyl Alkylative Amination Reaction. J Am Chem Soc 2024; 146:9045-9062. [PMID: 38488310 PMCID: PMC10996026 DOI: 10.1021/jacs.3c14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Methods for the synthesis of α-branched alkylamines are important due to their ubiquity in biologically active molecules. Despite the development of many methods for amine preparation, C(sp3)-rich nitrogen-containing compounds continue to pose challenges for synthesis. While carbonyl reductive amination (CRA) between ketones and alkylamines is the cornerstone method for α-branched alkylamine synthesis, it is sometimes limited by the sterically demanding condensation step between dialkyl ketones and amines and the more restricted availability of ketones compared to aldehydes. We recently reported a "higher-order" variant of this transformation, carbonyl alkylative amination (CAA), which utilized a halogen atom transfer (XAT)-mediated radical mechanism, enabling the streamlined synthesis of complex α-branched alkylamines. Despite the efficacy of this visible-light-driven approach, it displayed scalability issues, and competitive reductive amination was a problem for certain substrate classes, limiting applicability. Here, we report a change in the reaction regime that expands the CAA platform through the realization of an extremely broad zinc-mediated CAA reaction. This new strategy enabled elimination of competitive CRA, simplified purification, and improved reaction scope. Furthermore, this new reaction harnessed carboxylic acid derivatives as alkyl donors and facilitated the synthesis of α-trialkyl tertiary amines, which cannot be accessed via CRA. This Zn-mediated CAA reaction can be carried out at a variety of scales, from a 10 μmol setup in microtiter plates enabling high-throughput experimentation, to the gram-scale synthesis of medicinally-relevant compounds. We believe that this transformation enables robust, efficient, and economical access to α-branched alkylamines and provides a viable alternative to the current benchmark methods.
Collapse
Affiliation(s)
| | | | | | | | - Nils J. Flodén
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sarah Beaton
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J. Gaunt
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F. Multicomponent Reaction-Assisted Drug Discovery: A Time- and Cost-Effective Green Approach Speeding Up Identification and Optimization of Anticancer Drugs. Int J Mol Sci 2023; 24:6581. [PMID: 37047554 PMCID: PMC10095429 DOI: 10.3390/ijms24076581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic organic chemistry due to their widespread applications in drug discovery and development. MCRs are flexible transformations in which three or more substrates react to form structurally complex products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable, cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based synthetic strategies have found extensive application in the field of drug discovery, and several anticancer drugs have been synthesized through MCRs. In this review, we present an overview of representative and recent literature examples documenting different approaches and applications of MCRs in the development of new anticancer drugs.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angela Stefanachi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Marialessandra Contino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Antonio Scilimati
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| |
Collapse
|
10
|
Maikhuri VK, Verma V, Mathur D, Prasad AK, Chaudhary A, Kumar R. Sugars in Multicomponent Reactions: A Toolbox for Diversity-Oriented Synthesis. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMulticomponent reactions (MCRs) cover strategically employed chemical transformations that incorporate three or more reactants in one pot leading to a functionalized final product. Thus, it is an ideal tool to achieve high levels of complexity, diversity, yields of desired products, atom economy, and reduced reaction times. Sugars belong to the class of naturally occurring compounds with fascinating applications in the field of drug discovery due to the presence of various hydroxy groups and well-defined stereochemistry. However, their potential in MCRs has been realized only recently. This account describes recent advances in the synthesis of sugar-derived heterocycles synthesized by MCRs. We hope to encourage the synthetic and medicinal chemistry community to apply this powerful MCR chemistry to generate novel glycoconjugate challenges.1 Introduction2 Synthesis of Various Functionalized Sugar Compounds2.1 Passerini and Ugi Multicomponent Reactions2.2 Petasis Reaction2.3 Hantzsch Reaction2.4 Domino Ferrier–Povarov Reaction2.5 Marckwald Reaction2.6 Groebke–Blackburn–Bienaymé (GBB) Reaction2.7 Prins–Ritter Reaction2.8 Debus–Radziszewski Imidazole Synthesis Reaction2.9 Mannich Reaction2.10 A3-Coupling Reaction2.11 [3+2]-Cycloaddition Reactions2.12 Miscellaneous Reactions3 Conclusion
Collapse
Affiliation(s)
| | - Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Department of Chemistry, Starex University
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Daulat Ram College, Department of Chemistry, University of Delhi
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
| | | | - Rajesh Kumar
- Department of Chemistry, R.D.S. College, B.R.A. Bihar University
| |
Collapse
|
11
|
Li J, Yu Y, Huang R, Yao X, Tang Y, He Y. Combustion performance of lignite after efficient upgrading via deep eutectic solvent‐assisted hydrothermal dewatering. ASIA-PAC J CHEM ENG 2023. [DOI: 10.1002/apj.2885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Jianfeng Li
- Electrical Engineering College Guizhou University Guiyang China
| | - Yujie Yu
- Electrical Engineering College Guizhou University Guiyang China
| | - Rui Huang
- Electrical Engineering College Guizhou University Guiyang China
| | - Xianrui Yao
- Electrical Engineering College Guizhou University Guiyang China
| | - Yumu Tang
- Electrical Engineering College Guizhou University Guiyang China
| | - Yu He
- Electrical Engineering College Guizhou University Guiyang China
| |
Collapse
|
12
|
Zhao G, Wang H, Luo J, He X, Xiong F, Li Y, Zhang G, Li Y. Multicomponent DNA-Compatible Synthesis of an Annelated Benzodiazepine Scaffold for Focused Chemical Libraries. Org Lett 2023; 25:665-670. [PMID: 36693020 DOI: 10.1021/acs.orglett.2c04293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Annelated benzodiazepines are attractive drug-like scaffolds with a broad spectrum of biological activities. Incorporation of this heterocyclic core into DNA-encoded chemical libraries (DELs) via multicomponent assembly is highly demanded. Herein, we developed a DNA-compatible method to generate the tricyclic benzodiazepine scaffold via catalyst-free three-component condensation using a broad range of aldehyde, o-phenylenediamine, and diketone sources. With either aldehyde or o-phenylenediamine conjugated with DNA tags, functionalized 1,5-benzodiazepine scaffolds were efficiently forged, expanding the chemical space of the diazepine-centered drug-like DEL.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China
| | - Jie Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
13
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
14
|
Ghamari kargar P, Bakhshi F, Bagherzade G. Value-Added Synthesized Acidic Polymer Nanocomposite with Waste Chicken Eggshell: A novel metal-free and heterogeneous catalyst for Mannich and Hantzsch Cascade Reactions from Alcohols. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
15
|
Fine-Tuned Reactivity of N-Containing Naphthol Analogues. Int J Mol Sci 2022; 23:ijms232012329. [PMID: 36293186 PMCID: PMC9604367 DOI: 10.3390/ijms232012329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
6-Hydroxyquinoline and 3-hydroxyisoquinoline as N-containing naphthol analogues were tested in modified Mannich reactions (mMr's). In the case of 6-hydroxyquinoline, the outcomes of the attempted Mannich reactions were strongly influenced by the amine components. Aminoalkylation of this substrate with reagents 1-naphthaldehyde and N-benzylmethylamine led to the isolation of a diol regarded as a stabilised water adduct of an ortho-quinone methide (o-QM), of which formation can be ascribed to the presence of a hydroxide ion in a relatively higher concentration generated by the bulky and basic amine component with decreased nucleophilicity. The classical Mannich base was isolated as a single product when the amine component was replaced for morpholine, featuring nucleophilicity rather than basic character under the applied reaction conditions. Starting from the isomer substrate 3-hydroxyisoquinoline, independently on the nucleophile (methanol or morpholine) besides the formation of the classical Mannich base, the nucleophilic attack at position one of the heterocyclic substrate was also observed. The DFT analysis of the acceptor molecular orbitals of the potential electrophilic components and the thermodynamics of the assumed-possible transformations demonstrated that this regioselective addition is a feasible process on the investigated heterocyclic skeleton. DFT modelling studies also suggest that besides the steric bulk, the orbital-controlled electronic properties of the aryl group, originating from the aldehyde components, have a strong influence on the ratios and the NMR-monitored interconversions of the C-1-substituted 3-hydroxyisoquinolines and the classical Mannich bases formed in multistep reaction sequences. On the basis of the DFT analysis of the thermodynamics of alternative pathways, a reaction mechanism was proposed for the rationalization of these characteristic substrate-controlled interconversions.
Collapse
|
16
|
Mammadbayli EH, Ismayilova SV, Hajiyeva GA, Jafarova NA, Suleymanova EI. Synthesis and Antimicrobial Activity of Cyclohexane-Containing Mannich Bases Derived from Secondary Amines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Gribov PS, Frank DF, Getmanova AD, Suponitsky KY, Sheremetev AB. Synthesis and structure of 3-substituted 1,5-dinitro-1,3,5-triazepanes. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Synthesis of 4-Hydroxyquinolines as Potential Cytotoxic Agents. Int J Mol Sci 2022; 23:ijms23179688. [PMID: 36077085 PMCID: PMC9456289 DOI: 10.3390/ijms23179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett–Brown substituent were correlated.
Collapse
|
19
|
Li Y, Wu W, Zhu H, Kang Q, Xu L, Shi H. Rhodium‐Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors. Angew Chem Int Ed Engl 2022; 61:e202207917. [DOI: 10.1002/anie.202207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Wen‐Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Qi‐Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
20
|
Multicomponent Reactions for the Synthesis of Active Pharmaceutical Ingredients. Pharmaceuticals (Basel) 2022; 15:ph15081009. [PMID: 36015157 PMCID: PMC9416173 DOI: 10.3390/ph15081009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis. While relatively less exploited, their use in target-oriented synthesis offers significant advantages in terms of synthetic efficiency. This review provides a critical summary of the use of multicomponent reactions for the preparation of active pharmaceutical principles.
Collapse
|
21
|
Hooshmand SE, Yazdani H, Hulme C. Six‐Component Reactions and Beyond: The Nuts and Bolts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hossein Yazdani
- Independent researcher Independent Researcher Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Christopher Hulme
- The University of Arizona Department of Chemistry and Biochemistry Tucson UNITED STATES
| |
Collapse
|
22
|
Li Y, Wu W, Zhu H, Kang Q, Xu L, Shi H. Rhodium‐Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Wen‐Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Qi‐Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
23
|
Hf(OTf) 4-Catalyzed Three-Component Synthesis of N-Carbamate-Protected β-Amino Ketones. Molecules 2022; 27:molecules27031122. [PMID: 35164390 PMCID: PMC8840004 DOI: 10.3390/molecules27031122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hafnium(IV) triflate (Hf(OTf)4) has been identified as a potent catalyst for the direct three-component synthesis of β-carbamate ketones. This new method, featuring a low catalyst loading, fast reaction rate, and solvent-free conditions, provided facile access to a diversity of carbamate-protected Mannich bases. A mechanistic investigation indicated that the three-component reaction proceeds via sequential aldol condensation and aza-Michael addition, but not the Mannich-type pathway.
Collapse
|
24
|
Hammouda MM, Elattar KM. Recent progress in the chemistry of β-aminoketones. RSC Adv 2022; 12:24681-24712. [PMID: 36128366 PMCID: PMC9428906 DOI: 10.1039/d2ra03864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
The current study highlighted the significance of β-aminoketones as privileged biologically active molecules, recent synthetic strategies, and synthetic applications.
Collapse
Affiliation(s)
- Mohamed M. Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Khaled M. Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| |
Collapse
|
25
|
Dey P, Rai P, Maji B. Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis. ACS ORGANIC & INORGANIC AU 2021; 2:99-125. [PMID: 36855455 PMCID: PMC9954445 DOI: 10.1021/acsorginorgau.1c00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of asymmetric catalysis has been developing to access synthetically efficacious chiral molecules from the last century. Although there are many sustainable ways to produce nonracemic molecules, simplified and unique methodologies are always appreciated. In the recent developments of asymmetric catalysis, chiral-at-metal Lewis acid catalysis has been recognized as an attractive strategy. The catalysts coordinatively activate a substrate while serving the sole source of chirality by virtue of its helical environment. These configurationally stable complexes were utilized in a large number of asymmetric transformations, ranging from asymmetric Lewis acid catalysis to photoredox and electrocatalysis. Here we provide a comprehensive review of the current advancements in asymmetric catalysis utilizing iridium and rhodium-based chiral-at-metal complexes as catalysts. First, the asymmetric transformations via LUMO and HOMO activation assisted by a chiral Lewis acid catalyst are reviewed. In the second part, visible-light-induced asymmetric catalysis is summarized. The asymmetric transformation via the electricity-driven method is discussed in the final section.
Collapse
|
26
|
Neetha M, Saranya PV, Philip RM, Anilkumar G. An Overview of Silver‐Catalyzed Mannich Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| | - Padinjare Veetil Saranya
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| | - Rose Mary Philip
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O Kottayam Kerala INDIA 686560
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University, Priyadarsini Hills P O Kottayam Kerala INDIA 686560
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University, Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| |
Collapse
|
27
|
Li H, He YH, Hu YM, Chu QR, Chen YJ, Wu ZR, Zhang ZJ, Liu YQ, Yang CJ, Liang HJ, Yan YF. Design, Synthesis, and Structure-Activity Relationship Studies of Magnolol Derivatives as Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11781-11793. [PMID: 34582205 DOI: 10.1021/acs.jafc.1c01838] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant pathogenic fungi seriously affect agricultural production and are difficult to control. The discovery of new leads based on natural products is an important way to innovate fungicides. In this study, 30 natural-product-based magnolol derivatives were synthesized and characterized on the basis of NMR and mass spectroscopy. Bioactivity tests on phytopathogenic fungi (Rhizoctonia solani, Fusarium graminearum, Botrytis cinerea, and Sclerotinia sclerotiorum) in vitro of these compounds were performed systematically. The results showed that 11 compounds were active against four kinds of phytopathogenic fungi with EC50 values in the range of 1.40-20.00 μg/mL, especially compound L5 that exhibited excellent antifungal properties against B. cinerea with an EC50 value of 2.86 μg/mL, approximately 2.8-fold more potent than magnolol (EC50 = 8.13 μg/mL). Moreover, compound L6 showed the highest antifungal activity against F. graminearum and Rhophitulus solani with EC50 values of 4.39 and 1.40 μg/mL, respectively, and compound L7 showed good antifungal activity against S. sclerotiorum. Then, an in vivo experiment of compound L5 against B. cinerea was further investigated in vivo using infected tomatoes (curative effect, 50/200 and 36%/100 μg/mL). The physiological and biochemical studies illustrated that the primary action mechanism of compound L5 on B. cinerea might change the mycelium morphology, increase cell membrane permeability, and destroy the function of mitochondria. Furthermore, structure-activity relationship (SAR) studies revealed that hydroxyl groups play a key role in antifungal activity. To sum up, this study provides a reference for understanding the application of magnolol-based antifungal agents in crop protection.
Collapse
Affiliation(s)
- Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhen-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
28
|
Han W, Liu F, Fujisawa K, Oriyama T. Mannich Reaction of α-Aminomaleimides with Imines. CHEM LETT 2021. [DOI: 10.1246/cl.210345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Han
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Fan Liu
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Kiyoshi Fujisawa
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takeshi Oriyama
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
29
|
Dabiri M, Lehi NF, Mohammadian R. Catalytic stereoselective Mannich-type reactions for construction of fluorinated compounds. Mol Divers 2021; 26:1267-1310. [PMID: 34228344 DOI: 10.1007/s11030-021-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/13/2021] [Indexed: 10/20/2022]
Abstract
For its unique role in developing and designing new bioactive materials and healthcare products, fluoro-organic compounds have attracted remarkable interest. Along with ever-increasing demand for a wider availability of fluorine-containing structural units, a large diversity of methods has been introduced to incorporate fluorine atoms specially in a stereoselective fashion. Among them, catalytic Mannich reaction can proceed with a broad variety of reactants and open clear paths for the synthesis of versatile amine synthons in the synthesis of natural product and pharmaceutical molecules. This review provides an overview of the employment of catalytic asymmetric Mannich reactions in the synthesis of fluorine-containing amine compounds and highlights the conceivable distinct mechanisms.
Collapse
Affiliation(s)
- Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran.
| | - Noushin Farajinia Lehi
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| | - Reza Mohammadian
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, 1983969411, Tehran, Islamic Republic of Iran
| |
Collapse
|
30
|
Mammadbayli EH, Hajieva GE, Ismayilova SV, Maharramova LM. Synthesis and Antimicrobial Properties of Chiral Mannich Bases Containing a Norbornene Fragment. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
32
|
Eisavi R, Naseri K. Preparation, characterization and application of MgFe 2O 4/Cu nanocomposite as a new magnetic catalyst for one-pot regioselective synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. RSC Adv 2021; 11:13061-13076. [PMID: 35423852 PMCID: PMC8697271 DOI: 10.1039/d1ra01588e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Magnesium ferrite magnetic nanoparticles were synthesized by a solid-state reaction of magnesium nitrate, hydrated iron(iii) nitrate, NaOH and NaCl salts and then calcined at high temperatures. In order to prevent oxidation and aggregation of magnesium ferrite particles, and also for preparing a new catalyst of supported copper on the magnetic surface, the MgFe2O4 was covered by copper nanoparticles in alkaline medium. Magnetic nanoparticles of MgFe2O4/Cu were successfully obtained. The structure of the synthesized magnetic nanoparticles was identified using XRD, TEM, EDS, FT-IR, FESEM and VSM techniques. The prepared catalyst was used in the three component one-pot regioselective synthesis of 1,2,3-triazoles in water. The various thiiranes bearing alkyl, allyl and aryl groups with terminal alkynes, and sodium azide in the presence of the MgFe2O4/Cu nanocatalyst were converted to the corresponding β-thiolo/benzyl-1,2,3-triazoles as new triazole derivatives. The effects of different factors such as time, temperature, solvent, and catalyst amount were investigated, and performing the reaction using 0.02 g of catalyst in water at 60 °C was chosen as the optimum conditions. The recovered catalyst was used several times without any significant change in catalytic activity or magnetic property.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor University PO Box 19395-3697 Tehran Iran
| | - Kazhal Naseri
- Department of Chemistry, Payame Noor University PO Box 19395-3697 Tehran Iran
| |
Collapse
|
33
|
Matos AP, Sarria ALF, Volante AC, Bernardo AR, Cunha GOS, Fernandes JB, Vieira PC, da Silva MFDGF. Potential insecticidal activity of aminonaphthoquinone Mannich bases derived from lawsone and their copper (II) complex derivatives. Z NATURFORSCH C 2021; 76:111-115. [PMID: 33099518 DOI: 10.1515/znc-2020-0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022]
Abstract
The fall armyworm, Spodoptera frugiperda, is a polyphagous pest that causes important damage in different regions of America and mainly affects corn crops in both tropical and subtropical areas. Currently, control relies on both transgenic plants and/or chemical pesticides. In this work, we describe insecticidal activity against the fall armyworm from a series of Mannich bases (1-10), derived from 2-hydroxy-1,4-naphthoquinone (lawsone), substituted benzaldehydes, and two primary amines, and their Cu2+ complexes (11-20). The [Cu(L)2] complexes were more effective in larval mortality compared to the free Mannich bases. Among the tested compounds, complex 11 showed the highest toxicity, with 70.00% larval mortality.
Collapse
Affiliation(s)
- Andréia P Matos
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - André L F Sarria
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Ana C Volante
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Antônio R Bernardo
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Gracielle O S Cunha
- Federal Institute of Education, Science and Technology of Goias, Campus Anapolis, Avenida Pedro Ludovico, 75131-457, Anapolis, GO, Brazil
| | - João B Fernandes
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Paulo C Vieira
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Maria Fátima das G F da Silva
- Department of Chemistry, Natural Products Laboratory, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
34
|
Mahmoud MAA, Alsharif MA, Mohareb RM. Synthesis and Anti-Proliferative Evaluations of New Heterocyclic Derivatives Using 5,6,8,9-Tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one Derivatives Derived from Cyclohexa-1,4-dione. Anticancer Agents Med Chem 2021; 21:468-486. [PMID: 32445457 DOI: 10.2174/1871520620666200523162549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recentlty, pyrazoloquinazoline derivatives acquired a special attention due to their wide range of pharmacological activities, especially therapeutic. Through the market, it was found that many pharmacological drugs containing the quinazoline nucleus were known. OBJECTIVE The aim of this work is to synthesize target molecules possessing not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained through the synthesis of a series of 5,6,8,9- tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one derivatives 4a-i using the multi-component reactions of cyclohexane- 1,4-dione (1), the 5-amino-4-(2-arylhydrazono)-4H-pyrazol-3-ol derivatives 2a-c, the aromatic aldehydes 3a-c, respectively. The synthesized compounds were evaluated against c-Met kinase, PC-3 cell line, and different kinds of cancer cell lines together with normal cell line, tyrosine kinases, and Pim-1 kinase. METHODS Multi-component reactions were adopted using compound 1 to get different 5,6,8,9- tetrahydropyrazolo[5,1-b]quinazolin-7(3H)-one derivatives which underwent further heterocyclization reactions. The c-Met kinase activity of all compounds was evaluated using Homogeneous Time-Resolved Fluorescence (HTRF) assay, taking foretinib as the positive control. The anti-proliferative activity of all target compounds against the human prostatic cancer PC-3 cell line was measured using MTT assay using SGI-1776 as the reference drug. All the synthesized compounds were assessed for inhibitory activities against A549 (non-small cell lung cancer), H460 (human lung cancer), HT-29 (human colon cancer), and MKN-45 (human gastric cancer) cancer cell lines together with foretinib as the positive control by an MTT assay. RESULTS Antiproliferative evaluations and c-Met kinase, Pim-1 kinase inhibitions were performed for the synthesized compounds, where the varieties of substituents through the aryl ring and the thiophene moiety afforded compounds with high activities. CONCLUSION The compounds with high antiproliferative activity were tested towards c-Met and the results showed that compounds 4e, 4f, 4g, 4i, 6i, 6k, 6l, 8f, 8i, 10d, 10e, 10f, 10h, 12e, 12f, 12g, 12h, 12i, 14f, 14g, 14h, and 14i were the most potent compounds. A further selection of compounds for the Pim-1 kinase inhibition activity showed that compounds 4f, 6i, 6l, 8h, 8i, 8g, 10d, 12i, and 14f were the most active compounds to inhibit Pim-1.
Collapse
Affiliation(s)
- Mahmoud A A Mahmoud
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
35
|
Mohareb RM, Milad YR, Mostafa BM, El-Ansary RA. New Approaches for the Synthesis of Heterocyclic Compounds Corporating Benzo[d]imidazole as Anticancer Agents, Tyrosine, Pim-1 Kinases Inhibitions and their PAINS Evaluations. Anticancer Agents Med Chem 2021; 21:327-342. [PMID: 32698742 DOI: 10.2174/1871520620666200721111230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. OBJECTIVE We are aiming in this work to synthesize target molecules that possess not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2- yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 using the standard MTT assay in vitro, with foretinib as the positive control. RESULTS Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim-1 kinases inhibitions were performed for the most active compounds where the variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between the structure of the compound and the substituents of target molecules. CONCLUSION Our present research proved that the synthesized heterocyclic compounds with varieties of substituents have a strong impact on the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were the excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara R Milad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Bahaa M Mostafa
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem A El-Ansary
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
36
|
Rodrigues MO, Eberlin MN, Neto BAD. How and Why to Investigate Multicomponent Reactions Mechanisms? A Critical Review. CHEM REC 2021; 21:2762-2781. [PMID: 33538117 DOI: 10.1002/tcr.202000165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Indexed: 01/03/2023]
Abstract
We review the most innovative efforts and greatest challenges faced when elucidating multicomponent reactions (MCRs) mechanisms. When compared to traditional reactions, the often two or more concurrent reactions pathways and the greater number of possible intermediates in MCRs turn their mechanistic investigation both a harder and trickier task. The common approaches used to investigate reaction mechanisms are often unable to clarify MCRs mechanisms; hence few but clever approaches are currently used to determine these mechanisms and to depict their key transformations. Their complexity has required most innovative approaches and the use of a number of unique techniques that have shed light over the favored pathway selected from the myriad of alternatives theoretically available for MCRs. This review focuses on the most successful efforts applied by a few leading groups to perform these puzzlingly investigations.
Collapse
Affiliation(s)
- Marcelo O Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil.,School of Physics and Astronomy, Nottingham University, NG72RD, Nottingham, U.K
| | - Marcos N Eberlin
- MackMass Laboratory, PPGENM, School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-970, Brazil
| |
Collapse
|
37
|
Abstract
Abstract
The gel type microscopic polymer beads bearing epoxy functionalities were modified using the two-stage procedures in order to decorate their surface with the moieties of the zeroth order PAMAM type dendrimer and different heterocyclic aldehydes (2-pyridinecarboxaldehyde, 2-pyrrolidinecarboxaldehyde, furfural or 2-thiophenecarboxaldehyde). The polymeric supports provided in this manner were then used for the immobilization of copper(II) ions. The resulting materials were characterized using different instrumental techniques (optical microscopy, SEM, FTIR microscopy, DR UV–Vis, ICP-OES, and thermal analysis). They were also used as catalysts in the model A3 coupling reaction of benzaldehyde, morpholine and phenylacetylene. The best catalytic activity was found for the polymeric catalyst bearing 2-pyridinecarboxaldehyde moieties. It turned out to be effective in the A3 coupling reactions included different benzaldehyde, alkyne, and secondary amine derivatives, as well. It could also be recycled several times without a significant decrease in its activity in the model A3 coupling reaction.
Graphic Abstract
Collapse
|
38
|
Torabi M, Yarie M, Zolfigol MA, Rouhani S, Azizi S, Olomola TO, Maaza M, Msagati TAM. Synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism in the presence of a novel quinoline-based dendrimer-like ionic liquid. RSC Adv 2021; 11:3143-3152. [PMID: 35424257 PMCID: PMC8693819 DOI: 10.1039/d0ra09400e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
In the present study, we reported the synthesis of a novel quinoline-based dendrimer-like ionic liquid. After characterization of the mentioned ionic liquid with suitable techniques such as Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), elemental mapping, thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG), its catalytic performance was investigated in the synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism under mild reaction conditions. All target molecules were achieved in short reaction times and high yields.
Collapse
Affiliation(s)
- Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Shamila Rouhani
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Johannesburg 1709 South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa Muckleneuk Ridge, PO Box 392 Pretoria South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation 1 Old Faure Road, PO Box 722 Somerset West 7129 Western Cape South Africa
| | - Temitope O Olomola
- Department of Chemistry, Obafemi Awolowo University Ile-Ife 220005 Nigeria
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa Muckleneuk Ridge, PO Box 392 Pretoria South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation 1 Old Faure Road, PO Box 722 Somerset West 7129 Western Cape South Africa
| | - Titus A M Msagati
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Johannesburg 1709 South Africa
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology PO Box 447, Tengeru Arusha United Republic of Tanzania
| |
Collapse
|
39
|
Benzene-1,3-diol derivatives as the inhibitors of butyrylcholinesterase: An emergent target of Alzheimer’s disease. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc210416073d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Molecular docking is a powerful and significant approach for the identification of lead molecules on the basis of virtual screening. With it a large number of compounds can be tested and based on the scoring function and ranking, the conclusion can be made about how the selected compounds can inhibit the targeted protein/receptor. Considering the importance of selective inhibitors of cholinesterase in the treatment of Alzheimer disease, this research is focused on the determination of the mechanism of binding interactions of few benzene-1,3-diol derivatives within the active site of both acetyl-choline-sterase (AChE) and butyrylcholinesterase (BChE). All the selective ligands were found to have a greater binding affinity with the BChE when compared to that of AChE, by an average value of ~?28.4 and ~?12.5 kJ/mol, respectively. The results suggested that the identified inhibitors can be used as the lead com-pounds for the development of novel inhibitors of the targeted enzymes against some specific diseases, thus opening the possibility of new therapeutic strategies.
Collapse
|
40
|
Huynh TKC, Ngo KKH, Nguyen HP, Dang HK, Phung VT, Thai KM, Hoang TKD. Catalyst-free and multicomponent synthesis of 3-aminoalkylated indoles via a Mannich-type reaction: multitargeted anticancer, tyrosinase and α-glucosidase inhibitory activities. NEW J CHEM 2021. [DOI: 10.1039/d1nj02536h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3-Aminoalkylated indoles, synthesized via a multicomponent Mannich-like reaction, are evaluated for enzyme inhibition; 5e and 5f are shown to be prospective multitargeted anticancer agents, and the cytotoxic mechanism of action is demonstrated via molecular docking study.
Collapse
Affiliation(s)
- Thi-Kim-Chi Huynh
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Str., Dist. 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
| | - Kim-Khanh-Huy Ngo
- Ton Duc Thang University, 19 Nguyen Huu Tho Str., Dist. 7, Ho Chi Minh City, Vietnam
| | - Hoang-Phuc Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Str., Dist. 12, Ho Chi Minh City, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Str., Dist. 7, Ho Chi Minh City, Vietnam
| | - Hoai-Khanh Dang
- Ton Duc Thang University, 19 Nguyen Huu Tho Str., Dist. 7, Ho Chi Minh City, Vietnam
| | - Van-Trung Phung
- Center for Research and Technology Transfer – VAST, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
| | - Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41–43 Dinh Tien Hoang Str., Dist. 1, Ho Chi Minh City, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Str., Dist. 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
| |
Collapse
|
41
|
Basak S, Winfrey L, Kustiana BA, Melen RL, Morrill LC, Pulis AP. Electron deficient borane-mediated hydride abstraction in amines: stoichiometric and catalytic processes. Chem Soc Rev 2021; 50:3720-3737. [DOI: 10.1039/d0cs00531b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Borane mediated hydride abstraction of amines efficiently generates useful iminium salts. This review explores this fascinating reactivity and discusses how the iminium intermediates are utilised in a variety of stoichiometric and catalytic processes.
Collapse
Affiliation(s)
- Shyam Basak
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Laura Winfrey
- School of Chemistry
- University of Leicester
- Leicester
- UK
| | - Betty A. Kustiana
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Rebecca L. Melen
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Louis C. Morrill
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | | |
Collapse
|
42
|
Synthesis, characterization and catalytic application of tributyl(carboxymethyl)phosphonium bromotrichloroferrate as a new magnetic ionic liquid for the preparation of 2,3-dihydroquinazolin-4(1H)-ones and 4H-pyrimidobenzothiazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04183-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Nariya P, Shukla F, Vyas H, Devkar R, Thakore S. Synthesis and characterization of Mannich bases of lawsone and their anticancer activity. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Pratik Nariya
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Falguni Shukla
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Hitarthi Vyas
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
44
|
Lamberth C. Multicomponent reactions in crop protection chemistry. Bioorg Med Chem 2020; 28:115471. [PMID: 32253096 DOI: 10.1016/j.bmc.2020.115471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 11/16/2022]
Abstract
An overview is given of the significance of multicomponent reactions in the synthesis of agrochemicals. The most important applications of multicomponent condensations, such as the Biginelli reaction, Bucherer-Bergs reaction, Hantzsch dihydropyridine synthesis, Kabachnik-Fields reaction, Mannich reaction, Passerini reaction, Petasis reaction, Strecker reaction, Ugi reaction and Willgerodt-Kindler reaction, to the synthesis of herbicidally, fungicidally and insecticidally active compounds are presented. Also the mode of action and biological activity of these multicomponent reaction products are reported.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland.
| |
Collapse
|
45
|
Ghasemi P, Yarie M, Zolfigol MA, Taherpour AA, Torabi M. Ionically Tagged Magnetic Nanoparticles with Urea Linkers: Application for Preparation of 2-Aryl-quinoline-4-carboxylic Acids via an Anomeric-Based Oxidation Mechanism. ACS OMEGA 2020; 5:3207-3217. [PMID: 32118136 PMCID: PMC7045317 DOI: 10.1021/acsomega.9b03277] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 05/08/2023]
Abstract
In this exploration, we reported the design and synthesis of a novel ionically tagged magnetic nanoparticles bearing urea linkers, namely, Fe3O4@SiO2@(CH2)3-urea-thiazole sulfonic acid chloride. The structure of the mentioned compound was fully characterized by using several techniques including Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, elemental mapping analysis, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. In the presence of the novel reusable catalyst, applied starting materials including aryl aldehydes, pyruvic acid, and 1-naphthylamine condensed to afford the desired 2-aryl-quinoline-4-carboxylic acid derivatives via an anomeric-based oxidation pathway under solvent-free conditions.
Collapse
Affiliation(s)
- Parvin Ghasemi
- Department
of Organic Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah 6714414971, Iran
| | - Meysam Yarie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- E-mail: . Phone: +98 8138282807. Fax: +98 8138257407 (M.Y.)
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- E-mail: , (M.A.Z.)
| | - Avat Arman Taherpour
- Department
of Organic Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah 6714414971, Iran
- Medical
Biology Research Center, Kermanshah University
of Medical Sciences, Kermanshah 6715847141, Iran
- E-mail: (A.A.T.)
| | - Morteza Torabi
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
| |
Collapse
|
46
|
Kamali M, Shahi S, Mashhadi Akbar Bujar M. Temperature‐Dependent Green Synthesis of New Series of Mannich Bases from 4‐Hydroxy‐pyridine‐2‐one and Their Antioxidant Activity Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mahmood Kamali
- Faculty of Chemistry, Kharazmi University Mofatteh Ave., No. 49 15614 Tehran Iran
| | - Sahar Shahi
- Faculty of Chemistry, Kharazmi University Mofatteh Ave., No. 49 15614 Tehran Iran
| | | |
Collapse
|
47
|
Han SB, Wei JY, Peng XC, Liu R, Gong SS, Sun Q. Hf(OTf) 4 as a Highly Potent Catalyst for the Synthesis of Mannich Bases under Solvent-Free Conditions. Molecules 2020; 25:E388. [PMID: 31963465 PMCID: PMC7024362 DOI: 10.3390/molecules25020388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/04/2022] Open
Abstract
Hf(OTf)4 was identified as a highly potent catalyst (0.1-0.5 mol%) for three-component Mannich reaction under solvent-free conditions. Hf(OTf)4-catalyzed Mannich reaction exhibited excellent regioselectivity and diastereoselectivity when alkyl ketones were employed as substrates. 1H NMR tracing of the H/D exchange reaction of ketones in MeOH-d4 indicated that Hf(OTf)4 could significantly promote the keto-enol tautomerization, thereby contributing to the acceleration of reaction rate.
Collapse
Affiliation(s)
| | | | | | | | - Shan-Shan Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China
| |
Collapse
|
48
|
Kazantsev OA, Arifullin IR, Savinova MV, Sivokhin AP, Bol'shakova YA, Shchegravina ES. Two-stage one-pot synthesis of N-(dibutylaminomethyl)methacrylamide by Mannich reaction under mild conditions with high yield. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00135j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-(Dibutylaminomethyl)methacrylamide can be easily obtained via a two-stage one-pot Mannich reaction under mild conditions. By-products are practically absent and the monomer can be easily isolated from the reaction mixture with a 96% yield.
Collapse
Affiliation(s)
- Oleg A. Kazantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 603950 Nizhny Novgorod
- Russia
| | - Ildar R. Arifullin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 603950 Nizhny Novgorod
- Russia
| | - Maria V. Savinova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 603950 Nizhny Novgorod
- Russia
| | - Alexey P. Sivokhin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev
- 603950 Nizhny Novgorod
- Russia
| | | | | |
Collapse
|
49
|
Mammadbayli EH, Jafarov IA, Astanova AD, Maharramova LM, Jafarova NA. Synthesis and Properties of Aminomethoxy Derivatives of 1-(p-Tolyloxy)-3-(propylsulfanyl)propane. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Zarei A, Yarie M, Zolfigol MA, Niknam K. Synthesis of a novel bifunctional oxyammonium‐based ionic liquid: Application for the synthesis of pyrano[4,3‐b]pyrans and tetrahydrobenzo[b]pyrans. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azra Zarei
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr Iran
| |
Collapse
|