1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Wang X, Zhang M, Liu X, Lou M, Li G, Qi X. Total Synthesis of Tetracyclic Spirooxindole Alkaloids via a Double Oxidative Rearrangement/Cyclization Cascade. Org Lett 2024; 26:824-828. [PMID: 38237069 DOI: 10.1021/acs.orglett.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Skeleton rearrangement could rapidly transfer simple molecules to complex structures and has significant potential in the total synthesis of natural products. We developed a one-pot reaction cascade of double oxidative rearrangement of furan and indole followed by a nucleophilic cyclization that was successfully applied for the formal synthesis of rhynchophylline/isorhynchophylline and the first total synthesis of (±)-7(R)-geissoschizol oxindole/(±)-7(S)-geissoschizol oxindole. In addition, the geissoschizol oxindoles were revised to their C3 epimers, and the mechanism for the reversed stereochemistry through the retro-Mannich/Mannich cascade was proposed and supported by density functional theory calculations.
Collapse
Affiliation(s)
- Xin Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengjiao Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Chinese Academy of Medical Sciences & Union Medical College, Beijing 100730, China
| | - Xiaolei Liu
- Institute for Smart Materials & Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Mingliang Lou
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Gen Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Chinese Academy of Medical Sciences & Union Medical College, Beijing 100730, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Duan Y, Cheng Y, Hu Z, Wang C, Sui D, Yang Y, Lu T. A Comprehensive Review on Metal Catalysts for the Production of Cyclopentanone Derivatives from Furfural and HMF. Molecules 2023; 28:5397. [PMID: 37513268 PMCID: PMC10383880 DOI: 10.3390/molecules28145397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The catalytic transformation of biomass-based furan compounds (furfural and HMF) for the synthesis of organic chemicals is one of the important ways to utilize renewable biomass resources. Among the numerous high-value products, cyclopentanone derivatives are a kind of valuable compound obtained by the hydrogenation rearrangement of furfural and HMF in the aqueous phase of metal-hydrogen catalysis. Following the vast application of cyclopentanone derivatives, this reaction has attracted wide attention since its discovery, and a large number of catalytic systems have been reported to be effective in this transformation. Among them, the design and synthesis of metal catalysts are at the core of the reaction. This review briefly introduces the application of cyclopentanone derivatives, the transformation mechanism, and the pathway of biomass-based furan compounds for the synthesis of cyclopentanone derivatives. The important progress of metal catalysts in the reaction since the first report in 2012 up to now is emphasized, the characteristics and catalytic performance of different metal catalysts are introduced, and the critical role of metal catalysts in the reaction is discussed. Finally, the future development of this transformation process was prospected.
Collapse
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yiyi Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxu Wang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Dong Sui
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Tianliang Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Kang S, Wu Y, Hu M, Ma Y, Huang X, Hao Z, Li X, Chen W, Zhang H. Total Synthesis of Vinorine. Org Lett 2023; 25:3466-3470. [PMID: 37155153 DOI: 10.1021/acs.orglett.3c01041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The asymmetric total synthesis of vinorine, a polycyclic and cage-like alkaloid, has been realized in a flexible approach. Key features of the current synthesis include an aza-Achmatowicz rearrangement/Mannich-type cyclization to install the highly functional 9-azabicyclo-[3.3.1]nonane scaffold, a high yield Fischer indole annulation to synthesize the common intermediate for sarpagine-ajamaline type alkaloids, and an Ireland-Claisen rearrangement to construct the C15-C20 bond.
Collapse
Affiliation(s)
- Shiyuan Kang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Yinxia Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Min Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Ying Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Xiangdi Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Zhen Hao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Xiujuan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
- Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
- Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
5
|
Bag D, Kour H, Saha N, Kamal, Holla H, Bharatam PV, Sawant SD. Iodocycloisomerization/Nucleophile Addition Cascade Transformations of 1,2-Alkynediones. J Org Chem 2023; 88:2377-2384. [PMID: 36730785 DOI: 10.1021/acs.joc.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A general electrophilic iodocyclization/nucleophile addition cascade transformation for 1,2-alkynediones for the synthesis of various oxygen heterocycles and access to regioselective alkyne hydroxylation is reported. Furan-tethered ynediones resulted in the construction of exo-enol ethers via carbonyl-alkyne cyclization-initiated heteroarene dearomatization, whereas other (hetero)arene-, alkenyl-, and alkyl-tethered ynediones resulted in the formation of highly functionalized 3(2H)-furanones. Importantly, the developed domino protocols involve the construction of important heterocyclic scaffolds and installation of two functional groups in a single operation. Moreover, the use of water as a nucleophile resulted in regioselective alkyne hydroxylation via furanone ring opening. The developed protocols are characterized by a wide substrate scope, and their utility has been demonstrated by a number of postsynthetic transformations.
Collapse
Affiliation(s)
- Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Harpreet Kour
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Nirjhar Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar (Mohali) 160062, Punjab, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology, Jammu 181221, Jammu and Kashmir, India
| | - Harish Holla
- Department of Chemistry, Central University of Karnataka, Aland Road, Kalaburagi 585367, Karnataka, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar (Mohali) 160062, Punjab, India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Dangalov M, Fernández-Figueiras A, Ravutsov MA, Vakarelska E, Marinova MK, Candeias NR, Simeonov SP. Ru-Catalyzed Isomerization of Achmatowicz Derivatives: A Sustainable Route to Biorenewables and Bioactive Lactones. ACS Catal 2023; 13:1916-1925. [PMID: 36776384 PMCID: PMC9904008 DOI: 10.1021/acscatal.2c04867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Indexed: 01/20/2023]
Abstract
A Ru-catalyzed isomerization of Achmatowicz derivatives that opens unexplored routes to diversify the biogenic furanic platform is reported. The mechanistic insights of this formally redox-neutral intramolecular process were studied computationally and by deuterium labeling. The transformation proved to be a robust synthetic tool to achieve the synthesis of bioderived-monomers and a series of 4-keto-δ-valerolactones that further enabled the development of a flexible strategy for the synthesis of acetogenins. A concise and protective group-free asymmetric total synthesis of two natural products, namely, (S,S)-muricatacin and the (S,S)-L-factor, is also described.
Collapse
Affiliation(s)
- Miroslav Dangalov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 9, Sofia 1113, Bulgaria
| | - Adolfo Fernández-Figueiras
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 9, Sofia 1113, Bulgaria
| | - Martin A. Ravutsov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 9, Sofia 1113, Bulgaria
| | - Ekaterina Vakarelska
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 9, Sofia 1113, Bulgaria
| | - Maya K. Marinova
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 9, Sofia 1113, Bulgaria
| | - Nuno R. Candeias
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu
8, 33101 Tampere, Finland
| | - Svilen P. Simeonov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl 9, Sofia 1113, Bulgaria,Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal,
| |
Collapse
|
7
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
8
|
Márquez-Cadena MA, Zhang W, Tong R. Synthetic Studies toward the Berkeleyacetal Core Architecture. Org Lett 2021; 23:9227-9231. [PMID: 34780201 DOI: 10.1021/acs.orglett.1c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Berkeleyacetals are structurally complex natural products that have shown potent anti-inflammatory activity. The presence of a highly dense oxygen functionality and a polycyclic ring system presents significant synthetic challenges. Herein, we report an efficient strategy for the construction of the tetracyclic core system of berkeleyacetal. Our synthetic strategy features two cycloadditions ([4+2] and [5+2]) to forge the tetracyclic core and Achmatowicz rearrangement for the preparation of the cyclization substrates containing B and E rings.
Collapse
Affiliation(s)
- Miguel Adrián Márquez-Cadena
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Wei Zhang
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Rongbiao Tong
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
9
|
Virieux D, Delogu F, Porcheddu A, García F, Colacino E. Mechanochemical Rearrangements. J Org Chem 2021; 86:13885-13894. [PMID: 34259516 DOI: 10.1021/acs.joc.1c01323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Collapse
Affiliation(s)
- David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Universita degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, 09028 Cagliari, Italy
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, 21 Nanyang Link, 63737 Singapore
| | | |
Collapse
|
10
|
Oishi T, Watanabe Y, Torikai K, Yasuno Y. Synthetic Study of the C’D’E’ Ring System of Maitotoxin via Furan Based Strategy. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|